4. integrated photonics

40
1 4. Integrated Photonics (or optoelectronics on a flatland)

Upload: others

Post on 07-Apr-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

1

4. Integrated Photonics (or optoelectronics on a flatland)

Benefits of π’Šπ’π’•π’†π’ˆπ’“π’‚π’•π’Šπ’π’π’™

βˆ’βˆž

in Electronics:

4

Mach-Zehnder modulator made from Indium Phosphide (InP) designed for 128 Gbs.

Are we experiencing a

similar transformation in Photonics ?

5

β€œPhotonic Integrated Circuits are the next logical step in the world of optics!”, Infinera Corporation.

β€œWaveguide Integrated Optics involves the control of light analogous to integrated circuits in electronics. Processing and routing of data in the optical domain can offer advantages compared to electronic solutions, especially at increasing data rates”, Optical Society of America, 2015.

6

lasers photodetectors

A Few Examples of Integrated Photonic Components

optical fibers planar waveguides

7

modulators

add/drop filters

optical amplifiers

8

wavelength division multiplexing (WDM) couplers

optical isolator

Bragg gratings

9

M. Liu et al., Nature 474, 64 (2011)

A graphene-based electro-absorption modulator: In a device such as the one demonstrated by Liu et al. in 2011, electrically connected graphene is coupled to a SiO2

waveguide carrying a CW photon stream.

Driving Fundamental Research on Novel Materials and Devices

Early Days …

A Somewhat Recent (2008) Retrospect

A Crucial Element: Light Guiding Geometries

2D (slab) and 3D (channel & optical fiber)

𝑛𝑓 > 𝑛𝑐

𝑛𝑓 > 𝑛𝑠

graded refractive index

step refractive index

𝑇 > 𝑑0

Requirements

Plane Waves

discrete set of modes

continuous set of modes

continuous set of modes

πœƒπ‘  > πœƒ > πœƒπ‘

πœƒ > πœƒπ‘  > πœƒπ‘

πœƒπ‘  > πœƒπ‘ > πœƒ

Maxwell’s Equations (isotropic, linear, lossless, non-magnetic)

𝛻 Γ— 𝑬 = βˆ’πœ‡0 πœ•π‘―

πœ•π‘‘

𝛻 Γ— 𝑯 = 𝑛2 πœ–0 πœ•π‘¬

πœ•π‘‘

Faraday’s law

Ampere’s law

𝑬 β†’ βˆ’ 𝑯

𝑯 β†’ 𝑬

Note:

πœ– = 𝑛2 πœ–0 ↔ πœ‡0

𝛻 Γ— 𝛻 Γ— 𝑬 = βˆ’πœ‡0 πœ•π‘―

πœ•π‘‘

𝛻 Γ— 𝛻 Γ— 𝑯 = 𝑛2 πœ–0 πœ•π‘¬

πœ•π‘‘

𝛻2𝑬 = 𝑛2

𝑐2πœ•2𝑬

πœ•π‘‘2

𝛻2𝑯 = 𝑛2

𝑐2πœ•2𝑯

πœ•π‘‘2

Wave Equations

A Propagating Wave along the Guide

𝑬 π‘₯, 𝑦, 𝑧, 𝑑 = 𝐸 π‘₯, 𝑦 𝑒𝑗 πœ” 𝑑 βˆ’ 𝛽 𝑧

𝑯 π‘₯, 𝑦, 𝑧, 𝑑 = 𝐻 π‘₯, 𝑦 𝑒𝑗 πœ” 𝑑 βˆ’ 𝛽 𝑧

πœ•2

πœ•π‘‘2= βˆ’πœ”2

𝛻2 =πœ•2

πœ•π‘₯2+πœ•2

πœ•π‘¦2βˆ’ 𝛽2

πœ•2𝐸 π‘₯, 𝑦

πœ•π‘₯2+πœ•2𝐸 π‘₯, 𝑦

πœ•π‘¦2+𝑛2πœ”2

𝑐2 βˆ’ 𝛽2 𝐸 π‘₯, 𝑦 = 0

πœ•2𝐻 π‘₯, 𝑦

πœ•π‘₯2+πœ•2𝐻 π‘₯, 𝑦

πœ•π‘¦2+𝑛2πœ”2

𝑐2 βˆ’ 𝛽2 𝐻 π‘₯, 𝑦 = 0

2D Optical Waveguides

By considering the symmetry along y-axis: (slab case)

𝐸 π‘₯, 𝑦 = 𝐸 π‘₯

𝐻 π‘₯, 𝑦 = 𝐻 π‘₯

𝑑2𝐸 π‘₯

𝑑π‘₯2+𝑛2πœ”2

𝑐2 βˆ’ 𝛽2 𝐸 π‘₯ = 0

𝑑2𝐻 π‘₯

𝑑π‘₯2+𝑛2πœ”2

𝑐2 βˆ’ 𝛽2 𝐻 π‘₯ = 0

Transverse Electric (TE)

𝐸 π‘₯ =0𝐸𝑦 π‘₯

0

𝛻 Γ— 𝑬 π‘₯, 𝑦, 𝑧, 𝑑 = βˆ’πœ‡0 πœ•π‘― π‘₯, 𝑦, 𝑧, 𝑑

πœ•π‘‘ 𝐻 π‘₯ =

βˆ’π›½ 𝐸𝑦 π‘₯

πœ” πœ‡00

βˆ’ 1

𝑗 πœ” πœ‡0 𝑑𝐸𝑦 π‘₯

𝑑π‘₯

Faraday’s law

𝛽 β‰‘πœ”

𝑐 𝑁

𝑑2𝐸𝑦 π‘₯

𝑑π‘₯2+πœ”2

𝑐2𝑛2 π‘₯ βˆ’ 𝑁2 𝐸𝑦 π‘₯ = 0

Guided TE Solution 𝑑2𝐸𝑦 π‘₯

𝑑π‘₯2+πœ”2

𝑐2𝑛2 π‘₯ βˆ’ 𝑁2 𝐸𝑦 π‘₯ = 0

π‘₯

𝑧

𝑁 =?

𝑛𝑠

𝑛𝑓

𝑛𝑐

π‘₯ > 0 β†’ 𝑛 π‘₯ = 𝑛𝑐 < 𝑁

βˆ’π‘‡ < π‘₯ < 0 β†’ 𝑛 π‘₯ = 𝑛𝑓 > N

π‘₯ < βˆ’π‘‡ β†’ 𝑛 π‘₯ = 𝑛𝑠 < N

𝐸𝑦 π‘₯ = 𝐸𝑐 π‘’βˆ’π›Ύπ‘ π‘₯

𝐸𝑦 π‘₯ = 𝐸𝑠 𝑒𝛾𝑠 π‘₯+𝑇

𝑇

𝛾𝑐 =πœ”

𝑐𝑁2 βˆ’ 𝑛𝑐

2

𝛾𝑠 =πœ”

𝑐𝑁2 βˆ’ 𝑛𝑠

2

𝐸𝑦 π‘₯ = 𝐸𝑓 π‘π‘œπ‘  π‘˜π‘₯ π‘₯ + πœ™π‘

π‘˜π‘₯ =πœ”

𝑐𝑛𝑓2 βˆ’ 𝑁2

Boundary Condition at Cladding-Film Interface

𝐸𝑐 = 𝐸𝑓 π‘π‘œπ‘  πœ™π‘

π‘₯ = 0

𝐸𝑦

𝐻𝑧 =βˆ’ 1

𝑗 πœ” πœ‡0 𝑑𝐸𝑦 π‘₯

𝑑π‘₯ 𝛾𝑐𝐸𝑐 = π‘˜π‘₯ 𝐸𝑓 sin πœ™π‘

tan πœ™π‘ =π›Ύπ‘π‘˜π‘₯

Boundary Condition at Substrate-Film Interface

𝐸𝑠 = 𝐸𝑓 π‘π‘œπ‘  βˆ’π‘˜π‘₯ 𝑇 + πœ™π‘

π‘₯ = βˆ’π‘‡

𝐸𝑦

𝐻𝑧 =βˆ’ 1

𝑗 πœ” πœ‡0 𝑑𝐸𝑦 π‘₯

𝑑π‘₯ 𝛾𝑠𝐸𝑠 = βˆ’π‘˜π‘₯ 𝐸𝑓 sin βˆ’π‘˜π‘₯ 𝑇 + πœ™π‘

tan π‘˜π‘₯ 𝑇 βˆ’ πœ™π‘ =π›Ύπ‘ π‘˜π‘₯

Dispersion Relation for TE Modes

tan πœ™π‘ =π›Ύπ‘π‘˜π‘₯

tan π‘˜π‘₯ 𝑇 βˆ’ πœ™π‘ =π›Ύπ‘ π‘˜π‘₯

π‘˜π‘₯ 𝑇 = π‘‘π‘Žπ‘›βˆ’1π›Ύπ‘ π‘˜π‘₯+ π‘‘π‘Žπ‘›βˆ’1

π›Ύπ‘π‘˜π‘₯+π‘š πœ‹

&

2 πœ‹

πœ†π‘‡ 𝑛𝑓

2 βˆ’ 𝑁2 = π‘‘π‘Žπ‘›βˆ’1𝑁2 βˆ’ 𝑛𝑠

2

𝑛𝑓2 βˆ’ 𝑁2

+ π‘‘π‘Žπ‘›βˆ’1𝑁2 βˆ’ 𝑛𝑐

2

𝑛𝑓2 βˆ’ 𝑁2

+π‘š πœ‹

b-V diagram

2 πœ‹

πœ†π‘‡ 𝑛𝑓

2 βˆ’ 𝑁2

𝑉 ≑2 πœ‹

πœ†π‘‡ 𝑛𝑓

2 βˆ’ 𝑛𝑠2

𝑏𝐸 ≑𝑁2 βˆ’ 𝑛𝑠

2

𝑛𝑓2 βˆ’ 𝑛𝑠

2

π‘ŽπΈ ≑𝑛𝑠2 βˆ’ 𝑛𝑐

2

𝑛𝑓2 βˆ’ 𝑛𝑠

2

𝑉 1 βˆ’ 𝑏𝐸 = π‘‘π‘Žπ‘›βˆ’1

𝑏𝐸1 βˆ’ 𝑏𝐸

+ π‘‘π‘Žπ‘›βˆ’1π‘ŽπΈ + 𝑏𝐸1 βˆ’ 𝑏𝐸

+π‘š πœ‹

cut-off:

𝑁 𝑛𝑠

0 𝑏𝐸

π‘‰π‘š = 𝑉0 +π‘š πœ‹

𝑉0 ≑ π‘‘π‘Žπ‘›βˆ’1 π‘ŽπΈ

asymmetry factor

Transverse Magnetic (TM)

𝐻 π‘₯ =0𝐻𝑦 π‘₯

0

𝛻 Γ— 𝑯 π‘₯, 𝑦, 𝑧, 𝑑 = 𝑛2 πœ–0πœ•π‘¬ π‘₯, 𝑦, 𝑧, 𝑑

πœ•π‘‘ 𝐸 π‘₯ =

𝛽 𝐻𝑦 π‘₯

πœ” 𝑛2 πœ–00

1

π‘—πœ” 𝑛2 πœ–0 𝑑𝐻𝑦 π‘₯

𝑑π‘₯

Ampere’s law

𝑑2𝐻𝑦 π‘₯

𝑑π‘₯2+πœ”2

𝑐2𝑛2 π‘₯ βˆ’ 𝑁2 𝐻𝑦 π‘₯ = 0 𝛽 ≑

πœ”

𝑐 𝑁

Guided TM Solution 𝑑2𝐻𝑦 π‘₯

𝑑π‘₯2+πœ”2

𝑐2𝑛2 π‘₯ βˆ’ 𝑁2 𝐻𝑦 π‘₯ = 0

π‘₯

𝑧

𝑁

𝑛𝑠

𝑛𝑓

𝑛𝑐

π‘₯ > 0 β†’ 𝑛 π‘₯ = 𝑛𝑐 < 𝑁

βˆ’π‘‡ < π‘₯ < 0 β†’ 𝑛 π‘₯ = 𝑛𝑓 > N

π‘₯ < βˆ’π‘‡ β†’ 𝑛 π‘₯ = 𝑛𝑠 < N

𝐻𝑦 π‘₯ = 𝐻𝑐 π‘’βˆ’π›Ύπ‘ π‘₯

𝐻𝑦 π‘₯ = 𝐻𝑠 𝑒𝛾𝑠 π‘₯+𝑇

𝑇

𝛾𝑐 =πœ”

𝑐𝑁2 βˆ’ 𝑛𝑐

2

𝛾𝑠 =πœ”

𝑐𝑁2 βˆ’ 𝑛𝑠

2

𝐻𝑦 π‘₯ = 𝐻𝑓 π‘π‘œπ‘  π‘˜π‘₯ π‘₯ + πœ™π‘

π‘˜π‘₯ =πœ”

𝑐𝑛𝑓2 βˆ’ 𝑁2

Boundary Condition at Cladding-Film Interface

𝐻𝑐 = 𝐻𝑓 π‘π‘œπ‘  πœ™π‘

π‘₯ = 0

𝐻𝑦

𝛾𝑐𝑛𝑐2𝐻𝑐 =π‘˜π‘₯𝑛𝑓2 𝐻𝑓 sin πœ™π‘

tan πœ™π‘ =𝛾𝑐𝑛𝑐2

𝑛𝑓2

π‘˜π‘₯

𝐸𝑧 =1

𝑗 πœ” 𝑛2 πœ–0 𝑑𝐻𝑦 π‘₯

𝑑π‘₯

Boundary Condition at Substrate-Film Interface

𝐻𝑠 = 𝐻𝑓 π‘π‘œπ‘  βˆ’π‘˜π‘₯ 𝑇 + πœ™π‘

π‘₯ = βˆ’π‘‡

𝐻𝑦

𝐸𝑧 =1

𝑗 πœ” 𝑛2 πœ–0 𝑑𝐻𝑦 π‘₯

𝑑π‘₯

𝛾𝑠𝑛𝑠2𝐻𝑠 = βˆ’

π‘˜π‘₯𝑛𝑓2𝐻𝑓 sin βˆ’π‘˜π‘₯ 𝑇 + πœ™π‘

tan π‘˜π‘₯ 𝑇 βˆ’ πœ™π‘ =𝛾𝑠𝑛𝑠2

𝑛𝑓2

π‘˜π‘₯

Dispersion Relation for TM Modes

π‘˜π‘₯ 𝑇 = π‘‘π‘Žπ‘›βˆ’1𝛾𝑠𝑛𝑠2

𝑛𝑓2

π‘˜π‘₯+ π‘‘π‘Žπ‘›βˆ’1

𝛾𝑐𝑛𝑐2

𝑛𝑓2

π‘˜π‘₯+π‘š πœ‹

&

2 πœ‹

πœ†π‘‡ 𝑛𝑓

2 βˆ’ 𝑁2 = π‘‘π‘Žπ‘›βˆ’1𝑛𝑓2

𝑛𝑠2

𝑁2 βˆ’ 𝑛𝑠2

𝑛𝑓2 βˆ’ 𝑁2

+ π‘‘π‘Žπ‘›βˆ’1𝑛𝑓2

𝑛𝑐2

𝑁2 βˆ’ 𝑛𝑐2

𝑛𝑓2 βˆ’ 𝑁2

+π‘š πœ‹

tan πœ™π‘ =𝛾𝑐𝑛𝑐2

𝑛𝑓2

π‘˜π‘₯ tan π‘˜π‘₯ 𝑇 βˆ’ πœ™π‘ =

𝛾𝑠𝑛𝑠2

𝑛𝑓2

π‘˜π‘₯

Overall Dispersion Relation 2 πœ‹

πœ†π‘‡ 𝑛𝑓

2 βˆ’ 𝑁2 = π‘‘π‘Žπ‘›βˆ’1𝑛𝑓

𝑛𝑠

2πœŒπ‘2 βˆ’ 𝑛𝑠

2

𝑛𝑓2 βˆ’ 𝑁2

+ π‘‘π‘Žπ‘›βˆ’1𝑛𝑓

𝑛𝑐

2πœŒπ‘2 βˆ’ 𝑛𝑐

2

𝑛𝑓2 βˆ’ 𝑁2

+π‘š πœ‹

𝜌 = 0

𝜌 = 1

TE

TM

vπ‘”π‘Ÿπ‘œπ‘’π‘ =π‘‘πœ”

π‘‘π›½π‘š πœ”

phase velocity:

group velocity:

vπ‘β„Žπ‘Žπ‘ π‘’ =πœ”

π›½π‘š πœ”=𝑐

π‘π‘š πœ”

Different Types of Dispersion in a Waveguide

β€’ modal dispersion β€’ material dispersion β€’ waveguide dispersion

Field Profile of Guided Modes Discrete Set of Solutions

evanescent field

oscillatory behavior

m = mode order

Propagating Power along the Waveguide

𝑆 = 1

2Re 𝐸 Γ— π»βˆ— 𝑃𝑧 =

1

2𝑆𝑧 𝑑π‘₯

∞

βˆ’βˆž

Power/unit-width:

TE mode:

𝑃𝑧 = βˆ’1

2𝐸𝑦 𝐻π‘₯

βˆ—π‘‘π‘₯∞

βˆ’βˆž

𝐻π‘₯ =βˆ’π›½ 𝐸𝑦 π‘₯

πœ” πœ‡0

𝑃𝑧 =𝛽

2 πœ” πœ‡0 𝐸𝑦

2 𝑑π‘₯

∞

βˆ’βˆž

Poynting vector:

𝑃𝑧 =𝛽

2 πœ” πœ‡0 𝐸𝑦

2 𝑑π‘₯

∞

βˆ’βˆž=𝛽

4 πœ” πœ‡0𝐸𝑓2 𝑇𝑒𝑓𝑓

𝑇𝑒𝑓𝑓 ≑ 𝑇 + πœ†

2πœ‹ 𝑁2 βˆ’ 𝑛𝑠2

+πœ†

2πœ‹ 𝑁2 βˆ’ 𝑛𝑐2

effective thickness or mode size wavelength dependent

How much power can we put on each mode of a guide

from an incoherent blackbody source?

𝑆 =𝑐

πœ†2 β„Ž 𝜈 πœ–

π‘’β„Ž 𝜈𝐾 𝑇 βˆ’ 1

, 𝑆 = π‘Š

π‘š Γ—π‘šπ‘œπ‘‘π‘’

𝑆 = 19π‘π‘Š

π‘›π‘š Γ—π‘šπ‘œπ‘‘π‘’= βˆ’77

π‘‘π΅π‘š

π‘›π‘š Γ—π‘šπ‘œπ‘‘π‘’

πœ† = 550 π‘›π‘š 𝑇 = 3,000 𝐾 πœ– = 0.33

Intensity Profile propagating in Multimode Guides

pure excitation of mode 0

pure excitation of mode 1

mixed excitation of modes 0 & 1

Easier Route to Dispersion Relation:

Phase-change under total internal reflection

π‘Ÿπ‘ = π‘’π‘—πœ™π‘

π‘Ÿπ‘ π‘Ÿπ‘ 

phase-change at film/substrate interface

phase-change at film/cladding interface

πœ™π‘ = βˆ’2 π‘‘π‘Žπ‘›βˆ’1𝑛𝑓

𝑛𝑐

2πœŒπ‘2 βˆ’ 𝑛𝑐

2

𝑛𝑓2 βˆ’ 𝑁2

π‘Ÿπ‘  = π‘’π‘—πœ™π‘ 

πœ™π‘  = βˆ’2 π‘‘π‘Žπ‘›βˆ’1𝑛𝑓

𝑛𝑠

2πœŒπ‘2 βˆ’ 𝑛𝑠

2

𝑛𝑓2 βˆ’ 𝑁2

𝑁 = 𝑛𝑓 π‘ π‘–π‘›πœƒ

Phase Change due to Propagation

πœ™π‘π‘Ÿ = 𝑛𝑓 πœ”π‘ 𝐴𝐡 + 𝐡𝐢 = 𝑛𝑓

πœ”π‘ 2 𝑇 π‘π‘œπ‘ πœƒ = 2 𝑇 π‘˜π‘₯

𝑛𝑠

𝑛𝑐

𝑛𝑓 πœƒ 𝐴

𝐢

𝐡

𝑇

2 𝑇

Resonant Condition:

πœ™π‘π‘Ÿ +πœ™π‘  + πœ™π‘ = 2 πœ‹ π‘š

2 π‘˜π‘₯𝑇 βˆ’ 2 π‘‘π‘Žπ‘›βˆ’1𝑛𝑓

𝑛𝑠

2πœŒπ‘2 βˆ’ 𝑛𝑠

2

𝑛𝑓2 βˆ’ 𝑁2

βˆ’2 π‘‘π‘Žπ‘›βˆ’1𝑛𝑓

𝑛𝑐

2πœŒπ‘2 βˆ’ 𝑛𝑐

2

𝑛𝑓2 βˆ’ 𝑁2

= 2 πœ‹ π‘š

Waveguide Couplers: injecting light into waveguides

β€’ End couplers (usually used for channel and optical fibers)

β€’ Transverse couplers (prism-coupler or grating-coupler) (typically used for slab waveguides)

End Coupler

𝔼𝑖𝑛 π‘₯, 𝑦 = π‘Žπ›Ό

𝛼

𝑬𝛼 π‘₯, 𝑦

πœ‚π›Ό = 𝔼𝑖𝑛 . 𝑬𝛼

βˆ—π‘‘π΄2

𝔼𝑖𝑛2𝑑𝐴 𝑬𝛼

2𝑑𝐴

𝔼𝑖𝑛

𝑬𝛼

input field decomposed into modes of the guide

Overlap Integral: fraction of coupled power into each mode

Prism Coupler

𝒏𝒑 π’”π’Šπ’ πœ½π’‘ = 𝑡

Grating Coupler

π’πŸŽ π’”π’Šπ’ 𝜽𝟎 + 𝒒𝝀

𝚲= 𝑡