3d_integration_publishable_faun.pdf

Upload: puneet-thakral

Post on 05-Apr-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    1/65

    Frank Niklaus, December 8, 2008

    3D Platforms for

    IC Integrated MEMSFrank Niklaus, Gran Stemme

    Email: [email protected]

    Mobile: +46 76 216 73 49

    KTH - Royal Institute of TechnologySchool of Electrical EngineeringMicrosystem Technology Group

    Stockholm, Sweden

    Faun AB, Swedenwww.fauninfrared.com

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    2/65

    Frank Niklaus, December 8, 2008

    Research Topic: MEMS

    Total Staff: 24

    16 Ph.D. Students

    6 Senior Ph.D.

    Microsystem Technology at KTH Stockholm, Sweden

    KTH Semiconductor Laboratory in Kista

    1200 m2 clean room area

    MEMS process technologies up to 8 inch wafers

    Bio & MedMEMS

    RF

    MEMS

    IC Integrated

    MEMS

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    3/65

    Frank Niklaus, December 8, 2008

    Outline

    What is heterogeneous wafer-level 3D integration?

    Heterogeneous 3D integration of MEMS and ICs

    3D IC integrated MEMS platforms with via-last approach.

    3D IC integrated MEMS platforms with via-first approach.

    IC compatible wafer-level MEMS packaging

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    4/65

    Frank Niklaus, December 8, 2008

    Heterogeneous Wafer-Level 3D Integration (More than Moore)

    Heterogeneous integration is generally defined as the integration of two or

    more compounds.

    Heterogeneous wafer-level 3D integration can be defined as stacking and

    interconnecting wafers, typically prepared with diverse technologies and / or

    materials.

    WafersSequentially

    align, bond,thin andinterconnect

    Processor/Logic

    Memory

    I/Os, A/Ds, sensors

    and/or MEMS

    I/Os, A/Ds, sensorsand/or MEMS

    3-D ChipStack

    3-D ChipStack

    Image source: RPI, USA

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    5/65

    Frank Niklaus, December 8, 2008

    Heterogeneous 3D Integration of MEMS and ICs

    New MEMS designs, funct ionalit iesNew MEMS designs, funct ionalit ies

    and material combinations.and material combinations.

    High perform ance MEMS materialsHigh perform ance MEMS materials

    on standard foundry I Cs.on standard foundry I Cs.

    Very high integration densities forsmaller and cheaper components.

    CMOS I C

    MEMSAdvan tages :

    D isadvan tages :

    May not be economic if IC and MEMS partsare very different in size.

    Severe penalty in yield accumulation when stacking

    several layers (not typical for MEMS).

    Image source: KTH-MST

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    6/65

    Frank Niklaus, December 8, 2008

    Via Last:

    Heterogeneous 3D Integration Concepts

    Via First:

    Device Layer 1

    Wafer 1

    Device Layer 2

    Wafer 2

    El. Contacts/Vias

    Device Layer 1

    Wafer 1

    Device Layer 2

    Wafer 2

    Device Layer 1

    Wafer 1

    Device Layer 2

    Wafer 2

    El. Contacts

    Device Layer 1

    Wafer 1

    Device Layer 2

    Device Layer 1

    Wafer 1

    Device Layer 2

    Wafer 2

    (a) El. via deposition prior to bonding. (b) Wafer bonding incl. via formation.

    (a) Wafer preparation. (b) Wafer bonding and device release. (c) Via hole etching and via deposition.

    Image source: Modified from RPI, USA

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    7/65

    Frank Niklaus, December 8, 2008

    Outline

    What is heterogeneous wafer-level 3D MEMS integration?

    Heterogeneous 3D integration of MEMS and ICs

    3D IC integrated MEMS platforms with via-last approach.

    3D IC integrated MEMS platforms with via-first approach.

    IC compatible wafer-level MEMS packaging

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    8/65

    Frank Niklaus, December 8, 2008

    Heterogeneous 3D Integration Using Via-Last Approach

    Device Layer 1

    Wafer 1

    Device Layer 2

    Wafer 2

    El. Contacts

    Device Layer 1

    Wafer 1

    Device Layer 2

    Device Layer 1

    Wafer 1

    Device Layer 2

    (a) Wafer preparation. (b) Wafer bonding and device release. (c) Via hole etching and via deposition.

    Advantages:

    Extreme reduction of via and device

    dimensions (sub m) at high yield possible.

    No wafer-to-wafer alignment during

    bonding needed (cost efficient).

    Post-bond processing identical to surface

    micromachining.

    Disadvantages:

    MEMS devices must be processed

    after bonding.

    Only face-to-face bonding practical.

    Image source: Modified from RPI, USA

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    9/65

    Frank Niklaus, December 8, 2008

    Wafer Bonding for Via-Last Approach

    Device Layer 1

    Wafer 1

    Device Layer 2

    Wafer 2

    Device Layer 1

    Wafer 1

    Device Layer 2

    Wafer 2

    Device Layer 1

    Wafer 1

    Device Layer 2

    Wafer 2

    Device Layer 1

    Wafer 1

    Device Layer 2

    Wafer 2

    Direct wafer bonding:

    => R&D mainly focused on 3D ICs (i.e. Ziptronix).

    Some R&D on IC integrated MEMS

    (Fraunhofer, some universities).

    Wafer surface treatment and planarization

    needed.

    Sensitive to particles.

    Adhesive wafer bonding:

    => Extensive R&D for 3D IC integrated

    MEMS ongoing (e.g. KTH, Faun).

    Image source: Modified from RPI, USA

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    10/65

    Frank Niklaus, December 8, 2008

    Proprietary 3D IC Integrated MEMS Platform at KTH

    IC Wafer

    SOI Wafer

    (a)

    IC Wafer

    SOI Wafer

    (b)

    IC Wafer

    (c)

    IC Contact Pads

    Mono-Crystalline Si

    Polymer Adhesive

    IC Wafer

    SOI Wafer

    (a)

    IC Wafer

    SOI Wafer

    (b)

    IC Wafer

    (c)

    IC Contact Pads

    Mono-Crystalline Si

    Polymer Adhesive

    IC Wafer

    (d)

    IC Wafer

    (e)

    IC Wafer

    (f)

    Via Holes Vias IC-Integrated MEMS

    IC Wafer

    (d)

    IC Wafer

    (e)

    IC Wafer

    (f)

    Via Holes Vias IC-Integrated MEMS

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    11/65

    Frank Niklaus, December 8, 2008

    Mono-Si MEMS can be integrated on any foundry ASIC.

    Polymer adhesive can be used as sacrificial layer for dry

    release etch.

    Easy migration from one ASIC technology node to the next

    without changing the MEMS process. MEMS foundry compatible.

    No wafer-to-wafer bond alignment required.

    No wafer surface planarization required.

    Works practically with any wafer material.

    Low-cost, easy to use and high yield process.

    3D IC Integrated MEMS Platform Features

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    12/65

    Frank Niklaus, December 8, 2008

    Examples of 3D Integrated MEMS

    Micro-mirror Arrays

    IR Bolometer Arrays

    RF MEMS devices

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    13/65

    Frank Niklaus, December 8, 2008

    Spatial Light Modulators (SLMs)

    Mono-crystalline silicon micro-mirrors on ICs (FP6-Q2M)

    Goal: Improvement of mechanical and surface mirror properties 3D MEMS-IC integration using adhesive wafer bonding

    Applications

    DUV lithography using tilting mirrors

    Wavefront correction using piston mirrors

    KTH-MST and Fraunhofer IPMS

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    14/65

    Frank Niklaus, December 8, 2008

    Micro-mirror arrays for DUV lithography (Tilting mirrors) For Mask-writing systems.

    UV illumination.

    Step-and-Repeat lithography.

    Analogue tilt actuation in 16 steps(gray-tones) possible.

    1 million mirror array.

    (mirror size 16 x 16 m2). Single mirror actuation possible with

    underlying CMOS.

    Spatial Light Modulators (SLMs)

    Source: Zimmer, Fraunhofer IPMS

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    15/65

    Frank Niklaus, December 8, 2008

    Torsional Micromirrors

    Haasl, 2002

    Distance

    Holders

    Addressing

    Electrode

    MirrorMembrane Torsional Hinges

    Posts

    (Vias)

    Source: Zimmer, Fraunhofer IPMS

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    16/65

    Frank Niklaus, December 8, 2008

    Si Mirror Integration: SOI and IC wafer

    Thermistor Material (e.g.Si)

    SiN

    Al

    SiO2MoSi

    Ti

    Au

    SOI Wafer

    CMOS IC

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    17/65

    Frank Niklaus, December 8, 2008

    Glue

    Si Mirror Integration: Dispense Glue

    CMOS IC

    SOI Wafer

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    18/65

    Frank Niklaus, December 8, 2008

    Glue

    Si Mirror Integration: Adhesive Wafer Bonding

    CMOS IC

    SOI Wafer

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    19/65

    Frank Niklaus, December 8, 2008

    Glue

    Si Mirror Integration: Sacrificial Wafer Thinning

    CMOS IC

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    20/65

    Frank Niklaus, December 8, 2008

    Glue

    Si Mirror Integration: Removal of SiO2 Etch-Stop

    CMOS IC

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    21/65

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    22/65

    Frank Niklaus, December 8, 2008

    Glue

    Si Mirror Integration: Via Formation

    CMOS IC

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    23/65

    Frank Niklaus, December 8, 2008

    Glue

    Si Mirror Integration: Mirror Formation

    CMOS IC

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    24/65

    Frank Niklaus, December 8, 2008

    Si Mirror Integration: Mirror Release

    CMOS IC

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    25/65

    Frank Niklaus, December 8, 2008

    Torsional Mono-Si Micromirror Arrays

    Image source: KTH-MST

    Image source: MST NEWS 2008

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    26/65

    Frank Niklaus, December 8, 2008

    SLMs for Adaptive Optics in Astronomy and Microscopy

    Wave-front correction using piston mirrors

    Source: Zimmer, Fraunhofer IPMS

    Lapisa KTH-MST, Gehner, Fraunhofer, 2008

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    27/65

    Frank Niklaus, December 8, 2008

    Mono-crystalline silicon mirrors for AO

    Lapisa KTH-MST, Gehner, Fraunhofer, 2008

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    28/65

    Frank Niklaus, December 8, 2008

    Mono-crystalline silicon mirror arrays

    Lapisa KTH-MST, Gehner, Fraunhofer, 2008

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    29/65

    Frank Niklaus, December 8, 2008

    Mono-crystalline silicon mirror arrays

    Lapisa KTH-MST, Gehner, Fraunhofer, 2008

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    30/65

    Frank Niklaus, December 8, 2008

    http://sirtf.caltech.edu

    Infrared Imaging

    Uncooled Infrared Bolometer Arrays

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    31/65

    Frank Niklaus, December 8, 2008

    Operation of Bolometer Arrays

    Buttler, 1995

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    32/65

    Frank Niklaus, December 8, 2008

    Proprietary 3D IC Integration of IR Detectors at KTH / Faun

    IC Wafer

    SOI Wafer

    (a)

    IC Wafer

    SOI Wafer

    (b)

    IC Wafer

    (c)

    IC Contact Pads

    Mono-Crystalline Si

    Polymer Adhesive

    IC Wafer

    SOI Wafer

    (a)

    IC Wafer

    SOI Wafer

    (b)

    IC Wafer

    (c)

    IC Contact Pads

    Mono-Crystalline Si

    Polymer Adhesive

    IC Wafer

    (d)

    IC Wafer

    (e)

    IC Wafer

    (f)

    Via Holes Vias IC-Integrated MEMS

    IC Wafer

    (d)

    IC Wafer

    (e)

    IC Wafer

    (f)

    Via Holes Vias IC-Integrated MEMS

    Epitaxially grown Si/SiGe material with high TCR and low 1/f noise.

    Monolithic integration on IC not possible.

    => 3D MEMS IC integration

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    33/65

    Frank Niklaus, December 8, 2008

    Si-Based Bolometer on Fan-Out-Board

    16x 16 I R Bo lom e te r A r ray

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    34/65

    Frank Niklaus, December 8, 2008

    RF MEMS: Radar Beam Steering with MEMS Tuneable Metamaterials

    Image source: Sterner, KTH

    Col labora t ion

    App l i ca t i ons

    car radar

    77GHz

    high-capacity

    comm. links

    Col labora t ion

    App l i ca t i ons

    car radar

    77GHz

    high-capacity

    comm. links

    Frequency, GHz

    Reflectionpha

    se

    180

    0

    -180

    Frequency, GHz

    Reflectionpha

    se

    180

    0

    -180

    Tuned gradient

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    35/65

    Frank Niklaus, December 8, 2008

    RF Metamaterial Design of Fabrication Process

    glass substrate500 um

    gold, 1 um

    BCB, 5-10 um

    glass,100 um

    gold, 1 um

    SiN isolation0.2 m

    gold, 0.5 um

    gold, 0.5 um

    silicon, 1 um

    air gap 1.5 um 3-electrodetuneable capacitor

    for extended tuning range

    Image source: Sterner, KTH

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    36/65

    Frank Niklaus, December 8, 2008

    RF Metamaterial Fabricated Device Array

    Arrayof20052elements

    Etch hole

    Gapof~1.5m

    Springs

    Image source: Sterner, KTH

    RF MEMS PZT S i h

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    37/65

    Frank Niklaus, December 8, 2008

    RF-MEMS PZT Switch

    Structural layer:Monocrystalline Silicon / SiN

    Actuator:

    Lead zirconate titanate (PZT)

    Transmission line(gold)

    Image source: Saharil, KTH

    Ph t i MEMS I t ti f G A IC

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    38/65

    Frank Niklaus, December 8, 2008

    0.7 mGaAsFilm

    4-inchSilicon

    Wafer

    Photonic MEMS: Integration of GaAs on ICs

    Adh i W f B di i K

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    39/65

    Frank Niklaus, December 8, 2008

    Gluing two (wafer) surfaces together

    Adhesive Wafer Bonding is Key

    Semiconductor Wafer

    Semiconductor Wafer

    Glue

    Working Principles of Adhesives

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    40/65

    Frank Niklaus, December 8, 2008

    Contact between two solidsurfaces.

    Contact between a solidsurface and a liquid.

    Working Principles of Adhesives

    Polymer Adhesives

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    41/65

    Frank Niklaus, December 8, 2008

    Polymer Adhesives

    Polymers can transform from a liquid into

    a solid state by:1. Drying (solvents or water evaporate)

    2. Heating and cooling (thermoplastic polymers)3. Curing (chemical reaction forming larger molecules,

    thermosetting polymers) e.g. mixing of two components heating UV-light illumination

    Suitable Polymer Adhesives

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    42/65

    Frank Niklaus, December 8, 2008

    Suitable Polymer Adhesives

    Thermosetting polymers BCB (Dow Chemical), chemically stable,

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    43/65

    Frank Niklaus, December 8, 2008

    Deposition of Thin Polymer Layers

    Alternative polymer deposition techniques are:

    spraying, evaporation, screen printing, stamping, electro

    deposition, lamination, etc.

    Standard technology

    Wide thickness range of

    coatings (0.1 m to 50 m) Very uniform coatings

    Wafer

    LiquidPolymer

    Spin Coating

    Adhesive Wafer Bonding Process

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    44/65

    Frank Niklaus, December 8, 2008

    Adhesive Wafer Bonding Process

    Adhesive wafer bonding in commercial bond equipment.

    Bend Pin

    Wafer 1

    Wafer 2

    Bond Fixture

    VacuumBond Chamber

    Clamps

    Spacers

    Adhesive Wafer Bonding Process

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    45/65

    Frank Niklaus, December 8, 2008

    Adhesive Wafer Bonding Process

    Adhesive wafer bonding in commercial bond equipment.

    Bend PinTop Chuck

    Force

    HOT

    Wafer 1

    Wafer 2Wafer 2

    Bond Fixture

    VacuumBond Chamber

    HOT

    Important Bonding Parameters

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    46/65

    Frank Niklaus, December 8, 2008

    Important Bonding Parameters

    Polymer adhesive (no outgassing and no dryingadhesives).

    Bonding pressure.

    Reflow time during bonding.

    Wafer thickness.

    Atmosphere in the bond chamber.

    Level of polymerisation (cross-linking) before bonding (forthermosetting polymers).

    Relation between wafer topography features and polymerthickness.

    Influence of Wafer Topography on Void Formation

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    47/65

    Frank Niklaus, December 8, 2008

    Influence of Wafer Topography on Void Formation

    H.D. Rowland et al. 2005

    Image source: KTH-MST

    Cross-Linking and Viscosity of BCB Dependent on Time and Temperature

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    48/65

    Frank Niklaus, December 8, 2008

    g y p p

    Image source: Dow

    Keyed Alignment in Adhesive Bonding

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    49/65

    Frank Niklaus, December 8, 2008

    Keyed Alignment in Adhesive Bonding

    Image source: Lee, Niklaus 2006

    Outline

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    50/65

    Frank Niklaus, December 8, 2008

    Outline

    What is heterogeneous wafer-level 3D MEMS integration?

    Heterogeneous 3D integration of MEMS and ICs

    3D IC integrated MEMS platforms with via-last approach.

    3D IC integrated MEMS platforms with via-first approach.

    IC compatible wafer-level MEMS packaging

    Heterogeneous 3D Integration Using Via-First Approach

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    51/65

    Frank Niklaus, December 8, 2008

    Device Layer 1

    Wafer 1

    Device Layer 2

    Wafer 2

    El. Contacts/Vias

    Device Layer 1

    Wafer 1

    Device Layer 2

    Wafer 2

    (a) El. via deposition prior to bonding. (b) Wafer bonding incl. via formation.

    Advantages:

    Simple process with via formation

    during bonding (cost efficient).

    Complete device preparation priorto bonding possible.

    Face-to-face and face-to-back

    wafer bonding possible.

    Disadvantages:

    Need for wafer-to-wafer alignment.

    Limitation in via-size reduction and

    potential yield issues.

    Possible air-gap between wafers.

    Heterogeneous 3D Integration Using Via First Approach

    Image source: Modified from RPI, USA

    Wafer Bonding for Via-First Approach

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    52/65

    Frank Niklaus, December 8, 2008

    Wafer Bonding for Via First Approach

    Device Layer 1

    Wafer 1

    Device Layer 2

    Wafer 2

    El. Contacts/Vias

    Device Layer 1

    Wafer 1

    Device Layer 2

    Wafer 2

    Metal via bonding and parallel

    adhesive or direct bonding:=> R&D mainly focused on 3D-ICs

    E.g. parallel metal and adhesive bond (RPI)

    and parallel metal and direct bond (Ziptronix).

    => R&D for IC integrated MEMS not known.

    High requirements on surface planarity.

    Sensitive to particles.

    Metal via bonding with optional

    adhesive support structures:

    => Extensive R&D for 3D IC integrated

    MEMS ongoing (e.g. IBM Zrich, universities).

    Device Layer 1

    Wafer 1

    Device Layer 2

    Wafer 2

    El. Contacts/Vias

    Device Layer 1

    Wafer 1

    Device Layer 2

    Wafer 2

    Image source: Modified from RPI, USA

    IBMs Millipede Data Storage

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    53/65

    Frank Niklaus, December 8, 2008

    p g

    Arrays of membrane tips that can create pits with a side length ofabout 10 nm using heating of the polymer surface.

    4000 tips on a 6.4 mm x 6.4 mm area can store the data of 25 DVD.

    Vettinger, 2002

    Manufacturing of the Millipede Read-Write Head

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    54/65

    Frank Niklaus, December 8, 2008

    g p

    Vettinger, 2002

    Transferred Read-Write Cantilevers

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    55/65

    Frank Niklaus, December 8, 2008Vettinger, 2002

    Outline

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    56/65

    Frank Niklaus, December 8, 2008

    What is heterogeneous wafer-level 3D MEMS integration?

    Heterogeneous 3D integration of MEMS and ICs

    3D IC integrated MEMS platforms with via-last approach.

    3D IC integrated MEMS platforms with via-first approach.

    IC compatible wafer-level MEMS packaging

    Room-Temperature Wafer-Level Hermetic Sealing of Cavities

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    57/65

    Frank Niklaus, December 8, 2008

    (a) (c)

    (b)

    (a) (c)

    (b)

    Overlap bondingarea (black lines)

    Sealing ring onwafer 2

    Sealing ringson wafer 1

    Overlap bondingarea (black lines)

    Sealing ring onwafer 2

    Sealing ringson wafer 1

    a. Wafer 2

    Wafer 1

    SealSealing Ringsdefining a cavity

    Wafer 1

    Sealed cavities

    Cold welding atoverlapping areas

    Wafer 2

    Wafer 1

    Sealed cavities

    Cold welding atoverlapping areas

    Wafer 2

    1 .

    2 .

    Decharat, 2007

    Localized Adhesive Wafer Bonding Process

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    58/65

    Frank Niklaus, December 8, 2008

    Polymer depositionSilicon Wafer

    Photoresist

    Polymer Adhesive

    Silicon Wafer

    Silicon Wafer

    Top Wafer

    Adhesive wafer bonding

    Lithographic patterning

    of the polymer (using

    photoresist mask anddry etching)

    Localized Adhesive Wafer Bonding

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    59/65

    Frank Niklaus, December 8, 2008

    Silicon Wafer

    Glass Wafer

    Oberhammer, 2001

    Top View

    Wafer-level Packaging of MEMS

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    60/65

    Frank Niklaus, December 8, 2008Oberhammer, 2003

    Wafer-Level Fabrication of Cavities for MEMS Packaging

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    61/65

    Frank Niklaus, December 8, 2008

    Potentially cheaper

    than chip packaging.

    Protects devicesduring dicing.

    Packages need tobe hermetic (gas-tight).

    Polymers are permeable

    to moisture.

    Casco Nobel, 1992

    Polymer Molecules

    H2O

    Wafer-Level Hermetic Sealing of Cavities

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    62/65

    Frank Niklaus, December 8, 2008

    Wafer 1

    Wafer 2 (Capping Wafer)Adhesive

    Wafer 1

    Sealed Cavity

    Wafer 1

    Diffusion Barrier(e.g. Silicon Nitride or Metal)

    (1)

    (2)

    (3)

    Fabrication ofcavities

    Dicing and etching

    of top wafer

    Deposition of adiffusion barriermaterial

    Hermetically Sealed Cavity

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    63/65

    Frank Niklaus, December 8, 2008

    PECVD SiN as

    aditional diffusionbarrier material hasbeen tested

    He leak tests showsignificantly less Heabsorbtion of sealedcavities as

    compared to nonsealed cavities

    Oberhammer, 2002

    Summary

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    64/65

    Frank Niklaus, December 8, 2008

    Adhesive and direct wafer bonding techniques are being used

    for integrating MEMS and ICs.

    Via-first and via-last platforms are being used with focus

    currently on arrayed MEMS such as micro-mirror, IR

    bolometer and AFM tip arrays.

    Heterogeneous integration should also be attractive for IC

    integrated inertia sensor, pressure sensors and microphones.

  • 7/31/2019 3D_Integration_Publishable_Faun.pdf

    65/65

    Frank Niklaus, December 8, 2008

    Thank You For

    Your Attention !