3d swirl flow reactor technology

Upload: sb-ali

Post on 18-Oct-2015

153 views

Category:

Documents


0 download

TRANSCRIPT

  • Laboratory for Chemical Technology, Ghent Universityhttp://www.lct.UGent.be

    3D swirl flow reactor technology for pyrolysis processes:

    computational fluid dynamics study

    Carl M. Schietekat, Marco M. Van Goethem, Kevin M. Van Geem, Guy B. Marin

    1

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

  • 0.8

    1

    1.2

    0 0.25 0.5 0.75 1

    T

    /

    T

    a

    v

    g

    r/D [-]

    0.8

    1

    1.2

    0 0.25 0.5 0.75 1

    T

    /

    T

    a

    v

    g

    r/D [-]

    Non uniform radialtemperature

    Non uniform radialtemperature

    Coke layerCoke layer

    Coke formation during steam cracking

    2

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

    2

    3D reactor technology

    Better heat transfer =

    less cokes / more flow

    Better heat transfer =

    less cokes / more flow

    Higher pressure drop=

    Lower olefins selectivity?

    Higher pressure drop=

    Lower olefins selectivity?

    More uniform radialtemperature

    More uniform radialtemperature

  • Swirl Flow Tube design

    3

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

    * Veryan Medical Limited: BioMimics 3DTM

    Arteries are helically twisted

    better crossmixing

    Less accumulation of fattydepositis on artery wall

    for tubular chemical reactors: heat transfer, uniform cross-section

    for stent design:

    patented in 2011 for use in cracking furnaces

    helical centerline

  • Outline

    Experimental set-up

    Model validation

    Swirl decay after SFT

    Effect of tube bend

    4

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

  • Experimental set-up

    5

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

    compressor

    flow metermanometer

    thermocouple

    static mixer

    thermocouple

    test tube steam jacket

    - 3 test tubes:

    - 14 pressure experiments (adiabatic)- 14 temperature experiments (last 2m heated with steam jacket)

    SFT-MSFT-M

    SFT-HSFT-H

    STRAIGHTSTRAIGHT

    A [m] P [m]

    x x

    0.0061 286.2

    0.0083 217.8

  • Experimental data processing

    Darcy-Weisbach equation:

    =

    2

    Heat transfer to fluid:

    = =

    !" =

    6

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

  • Tube surface roughness

    7

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

    #$$ %, , '(

    * N.H. Chen, Ind. Eng. Chem. Fundam., 18 (1979) 296-297297.

    min,- .,/01 ,#$$ % , , '(

    ,/012

    34

    % = 13.49:

    ; , '( =#$$ 13.4 10>?, , '(

    #$$ 0, , '(

  • Outline

    Experimental set-up

    Model validation

    Swirl decay after SFT

    Effect of tube bend

    8

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

  • CFD Model

    9

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

    Turbulence: Reynolds Stress Model Enhanced wall treatment (Wolfstein)

    Material properties: ideal gas cp, , k temperature polynomials

    Computational Fluid Dynamics FLUENT 13.0 Gambit 2.4.6

    Extrusion cross section

    Twall = 373.15K

    Pout = 101325 Pamass flow inlet

    Boundary conditions:

    >23 106 cells

  • Pressure drop experiments

    10

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

    Relative error = 3.2%Relative error = 3.2%

  • Velocity magnitude axial position

    11

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

    SFT-MSFT-M

    Re = 2 104Re = 2 104

  • Velocity field: effect of Re

    12

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

    Re [103]

    0 m 1m 2m 3m 4m

    115

    22

    SFT-MSFT-M

  • Velocity field: effect geometry

    13

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

    0 m 1m 2m 3m 4m

    SFT-HSFT-H

    SFT-MSFT-M

    Re = 2 104Re = 2 104

  • Wall shear stress

    14

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

    Pa

    Pa

    SFT-HSFT-H

    SFT-MSFT-M@ = 9 ABAC

  • 2 turns

    W

    a

    l

    l

    s

    h

    e

    a

    r

    s

    t

    r

    e

    s

    s

    [

    P

    a

    ]

    W

    a

    l

    l

    s

    h

    e

    a

    r

    s

    t

    r

    e

    s

    s

    [

    P

    a

    ]

    W

    a

    l

    l

    s

    h

    e

    a

    r

    s

    t

    r

    e

    s

    s

    [

    P

    a

    ]

    Azimuthal coordinate [rad]

    W

    a

    l

    l

    s

    h

    e

    a

    r

    s

    t

    r

    e

    s

    s

    [

    P

    a

    ]

    Wall shear stress along axial direction

    15

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

    1 turn

    4 turns 10 turns

    SFT-MSFT-M

    Azimuthal coordinate [rad]

    D

  • Temperature experiments

    16

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

    Relative error = 12.6%Relative error = 12.6%General overpredictionGeneral overprediction

  • Temperature field

    17

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

    Re [103]

    0 m 0.5m 1m 1.5m 2m

    111

    22

    K

    SFT-MSFT-M

  • Cross sectional uniformity

    18

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

    SFT-MSFT-M

    SFT-HSFT-H

    STRAIGHTSTRAIGHT Re = 6 104Re = 6 104

    EF = , HIJ 34 ,

    HI

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    0.04

    2.1 2.6 3.1 3.6

    C

    o

    e

    f

    f

    i

    c

    i

    e

    n

    t

    o

    f

    V

    a

    r

    i

    a

    t

    i

    o

    n

    [

    -

    ]

    Axial position in straight tube [m]STRAIGHT SFT-M SFT-H

    more uniform cross sectional temperature profilemore uniform cross sectional temperature profile

  • Heat flux

    19

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

    SFT-MSFT-M

    1 helix 2helix 4helix

    Azimuthal coordinate [rad]

    Azimuthal coordinate [rad]

    Azimuthal coordinate [rad] Azimuthal coordinate [rad]

    Azimuthal coordinate [rad] Azimuthal coordinate [rad]

    H

    e

    a

    t

    f

    l

    u

    x

    [

    k

    W

    /

    m

    ]

    W

    a

    l

    l

    s

    h

    e

    a

    r

    s

    t

    r

    e

    s

    s

    [

    P

    a

    ]

  • Outline

    Experimental set-up

    Model validation

    Swirl decay after SFT

    Effect of tube bend

    20

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

  • Swirl number

    21

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

    ratio tangentialto axial momentum

    K = LMNOPQRSLMOTQR

    ratio tangentialto axial momentum

    K = LMNOPQRSLMOTQR

    2m4m2m

    SFT-MSFT-M

    SFT-HSFT-H

  • Swirl decay

    22

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

    D

    SFT-MSFT-M

    0.0 16.7 m/s

    4.00m 4.50m 5.00m 5.50m 6.00m

    A

    z

    i

    m

    u

    t

    h

    a

    l

    o

    f

    f

    s

    e

    t

    c

    o

    s

    X

    D

    Y

    R

    a

    d

    i

    a

    l

    o

    f

    f

    s

    e

    t

    [

    m

    ]

    Axial position [m] Axial position [m]

  • Outline

    Experimental set-up

    Model validation

    Swirl decay after SFT

    Effect of tube bend

    23

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

  • Velocity vectors in bend

    24

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

    [] 0 90 180

    Re = 2 104Re = 2 104

    SFT-MSFT-M

    STRAIGHTSTRAIGHT

    Z

  • Conclusions

    25

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

    Experimental: SFT enhances heat transfer with limited increase of the pressure drop

    CFD: good agreement for Fanning friction factor.

    Nu number slight overprediction

    Swirl flow is fully developed after 7-10 pitches. A helical low velocityand high temperature zone is created near the tube wall

    Temperature uniformity in a cross section is improved

    Swirl exponential decays at 0.3-0.6 m-1 depending on Re

    Swirl flow is lost after a straight bend for Re < 20 103

    SFT: promising technology for application in steam crackers

  • Acknowledgments

    FWO-Vlaanderen

    The Long Term Structural Methusalem Funding

    STEVIN Supercomputer Infrastructure

    LCT @ UGent: Amit Mahulkar, David Van Cauwenberge, Georges Verenghen, Nick Vandewiele, Thomas Dijkmans

    26

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

  • Glossary

    SFT: Swirl Flow Tube, a tube has a helicalcenterline. The helix amplitude is smaller than orequal to the tube radius.

    Swirl flow: a whirling or eddying flow of fluid. Swirl number: ratio of tangential over axial

    momentum transfer Wall shear stress: component of stress coplanar

    with the wall. It is the product of the viscosity andthe derivative of axial speed to radial coordinate.

    27

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

  • Heat transfer processing

    28

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

  • Heat transfer processing

    29

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

  • Wall shear stress in Swirl Decay

    30

    Chemreactor-XX, Luxembourg, Luxembourg, 05/12/2012

    SFT-MSFT-M

    Azimuthal coordinate [rad]Axial coordinate [m]

    W

    a

    l

    l

    s

    h

    e

    a

    r

    s

    t

    r

    e

    s

    s

    [

    P

    a

    ]