3. methods of the circuit analysis · !topology( equations((r equazioni) (kcl:n-1 equations)...

30
1 B J Department of Electrical, Electronic, and Information Engineering (DEI) University of Bologna 3. Methods of the Circuit Analysis

Upload: hoangnhi

Post on 20-Feb-2019

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

1

B

J

Department  of  Electrical,  Electronic,  and  Information  Engineering  (DEI)  -­ University  of  Bologna

3. Methods of the Circuit Analysis

Page 2: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

-­ Topology  Equations   (r equazioni)

(KCL: n-1 equations)

(KTL: r-n+1 equations)

-­ Element  Equations  (r equations)The  number  of  these  equations  is  equal  to  the  number  of  the  branches  as  they  are  the  equation  modeling  each  element  of  the  circuit,  and  hence  any  branch.  

The  circuit  analysis  problem  is  described  by  2r  equations  in  2r  unknowns.  The  equations  are  the  topology  equations  and  the  element  equations.  The  unknowns  are  the  branch  tensions  and  the  branch  currents.

Circuit with n nodes and r branches

åå

=

=

m r

n r

0v0i

Department  of  Electrical,  Electronic,  and  Information  Engineering  (DEI)  -­ University  of  Bologna

General method

Page 3: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

i1 + i3 + i4 - i6 = 0i2 - i3 - i4 + i5 = 0i6 - i5 = 0- v1 + v2 + v3 = 0- v1 + v2 + v4 = 0v1 - v2 + v5 + v6 = 0

v1 = V0v2 = R2 i2v3 = R3 i3v4 = R4i4 + V1v5 = R5i5v6 = R6i6

Top.Eq.s

Elem.Eq.s

Circuit:    r = 6, n = 4The  circuit  is  described  by  12  linear  non-­homogeneous  equations  and  12  unknowns.  Therefore  it  has  a  unique  solution.      

H = G=E = F_ _ _

ExampleMethods of the Circuit Analysis

••

•B = C_

H = G=E = F_ _ _

DA2

1

5

6

43

Graph

Department  of  Electrical,  Electronic,  and  Information  Engineering  (DEI)  -­ University  of  Bologna

A B C D

H G E F

i1

i2

i6i4

i3

i5

V0

V1R2

R6

R5

R3+-­

• •• •

B = C_

-­+

-

H = G=E = F_ _ _

R4

Page 4: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

Ø General  Method  of  the  Circuit  Analysis:(r  branches,  2r  unknowns,  2r  equations)

Ø Method  of  the  Tension  Substitution:(r  branches,  r  unknowns,  r  equations)

k0,kkk

m k

n k

ViRv

0v0i

+=

=

=

åå

These  equations  are  for  a  generic  element  with  a  resistors  and  a  tension  source

åå

=+

=

m k0,kk

n k

0ViR0i

(n-1) eq.s

(r-n+1) e q.s

r eq.s

(n-1) eq.s

(r-n+1) eq.s

Methods of the Circuit Analysis

Department  of  Electrical,  Electronic,  and  Information  Engineering  (DEI)  -­ University  of  Bologna

Page 5: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

Superposition  Principle:As  a  consequence  of  the  linearity  of  the  equations  which  describe  the  circuit  the  solution  the  equations  of  the  Tension  Substitution  Method  is  given  by  the  branch  currents  expressed  by  a  linear  combination  of  the  independent  sources  of  the  circuit.

ir = Gr1V01 + Gr2V02 + … + GrlV0l + αr,l+1I01 + αr,l+2I02 +…+ αr,gI0g

We  must  stress  that  this  is  only  valid  in  the  linear  case.  In  order  to  be  in  this  case,  the  element  equations  must  be  linear.

V0k and  I0k are  the  input  of  the  circuit,  ir is  an  output.    Usually  the  source  voltages  and  source  currents  are  the  inputs  of  the  circuit.  The  branch  voltages  and  branch  currents  are  the  outputs.

The  superposition  principle  states  that  a  branch  current  is  the  algebraic  sum  of  the  currents  through  the  branch  due  to  each  independent  source  acting  alone  (the  same  statement  holds  for  a  branch  voltage  also).  

Methods of the Circuit Analysis

Page 6: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

As two inputs contribute to the operation of this circuit , their two contributions are considered separately to calculate the outputs (branch current and voltages). Firstly the circuit with the source V0 and I0 is switched off (I0 = 0 corresponds to an open circuit branch) is analyzed. Afterwards the circuit where V0 is switched (V0 = 0 corresponds to a closed circuit branch) and the only active source is I0.

Calculation of i3: i3 = i3’ + i3”

- To calculate i3’ when I0 = 0:( )

2

BG332BG

eq

010110BG

eq

01

432

4321eq01eq

R'v

'i 'i R 'v

RV

R - V 'i R V ' v RV

- 'i

RRR

RRRR R dove 0 V 'iR

=Þ=

=+=Þ=

úû

ùêë

é+++

+==+

02

toteq

2

BG30

toteq

"4

toteqBG

Beq

Aeq

Beq

Aeqtot

eq43Beq

21

21Aeq

IRR

R"v

"i I R i R "v

RR

RRR ;RR R ;

RRRR

R

==Þ=-=

+=+=

+=

•A B C D

H G E F

i1

i2

i6i4i3

i5

V0I0

R1

R4

R3

R2+-­

B

i3’

V0

R1

R4

R3

R2

i1’

G

+-­

B

G

i4”i3”I0

R1

R4

R3

R2

Example

- To calculate i3’’ when V0 = 0:

• •

• •

••

Page 7: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

q The  method  is  based  on  the  node  voltages,  uk (k=  1,2,..,n-­1),  that  are  the  potential  differences  between  each  non-­reference  node  and  the  reference  node  (ground).  Hence  each  node  voltage  is  the  voltage  of  that  node  with  respect  to  the  reference  node  (to  be  chosen).Ø KCL    is  applied  to  each  non-­reference  node  k,  k  =  1,2,…,  n-­1  (figure  above):

i1+i2+….+ih = 0 (1)Ø KTL  is  applied  to  relate  the  node  voltages  to  the  branch  voltages  (figure  below):

vr = uk-uh (2)

Ø The  currents  are  expressed  by  the  element  equations

(3)

Ø By  substituting  eq.  3  into  eq.  1  a  set  of  n-­1  equations  in  n-­1  unknowns  (uk,  for  k=1,2,…,  n-­1)  is  obtained.

Methods of the Circuit Analysis

This method is utilized in the AC regime where Ir , Uk and Zr replaces ir ,vr , and Rr .

r

hk

r

rr R

uuRvi -

==

Nodal Analysis (n-­1    equations,  n-­1  unknowns)

k1h

32

uh

+-­vr

h k

uk0

• •

• •

Page 8: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

Methods of the Circuit Analysis

Ø The  n-­1  node  voltages  are  determined  by  the  solution  of  a  linear  non-­homo-­geneous  system  of  n-­1  equations.  As  the  node  voltages  are  known,  the  branch  currents  are  obtained  from  eq.  3  and  the  branch  voltages  are  derived  from  eq.  2.

Nodal Analysis (n-­1    equations,  n-­1  unknowns)

Step  to  determine  the  node  voltages1.    Define  the  reference  node  and  assign  the  n-­1  node  voltages  which  are  the  voltage  of  the  non-­reference  nodes  with  respect  to  the  reference  one.

2.      Apply  KCL  to  each  non-­reference  node.3.      Apply  KTL  to  relate  the  node  voltages  to  the  branch  voltages.

4. Express  the  branch  currents  in  terms  of  the  node  voltages  through  the  element  equations  and  substitute  them  in  the  cur-­rents  equations  given  by  KCL  in  step  2.  

5.      Solve  the  resulting  simultaneous  equations  to  obtain  the  node  voltages.

k1h

32

uh

+-­vr

h k

uk0

• •

• •

Page 9: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

v2 = u1v3 = u2v4 = u2 - u1i1 = - I1i5 = I2

v2 = R2 i2

v3 = R3 i3

v4 = R4 i4

i1 = - I1i5 = I2

i1 = - I1

i2 = u1 /R2

i3 = u2 /R3

i4 = (u2 - u1) /R4i5 = I2

ïïî

ïïí

ì

=--

+

=+-

-+-

0IRuu

Ru

0IRuu

RuI

24

12

3

2

24

12

2

11

îíì

=-+=+-+

0 i i i 0 i i i i

543

5421

( ) ( )( )î

íì

=++--=-+

24323413

214222142

IRRuRRuRIIRRuRuRR

i1

i4

i3i2

i5

I1

R4

R3R2

0

u1 u2

I2

Example

2. KCL application 3. KTL application

4. Use of element eq.s

ir as function of uk

ir expressed by uk in KCL eq.s

5. Solution of KCL eq.s in ukunknown (2 q.s and 2 unknowns)

1. Reference node definition

••

Department  of  Electrical,  Electronic,  and  Information  Engineering  (DEI)  -­ University  of  Bologna

Page 10: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

i1 i6i4i3

i5

V0I0

R1

R4

R3

R2+-­

0

u1 u2

v1 = u1v3 = u1v4 = u1v5 = u2 - u1v6 = - u2

v1 = V0 + R1 i1

v3 = R2 i3

i4 = - I0v5 = R3i5v6 = R4i6

i1 = (u1 - V0)/ R1

i3 = u1 /R2

i4 = - I0

i5 = (u2-u1)/ R3

i6 = - u2/R4

îíì

==++

0 i - i0 i - i i i

65

5431

( )( )ïî

ïíì

=-+-

+=-++

0uRRuR

VRRIRRRuRRuRRRRRR

23414

032023212211213231

1. Reference node definition

Example

2. KCL application

3. KTL application 4. Use of elem. eq.s ir as function of uk

ir expr. by uk in KCL eq.s5. Solution of KCL eq.s in ukunknown (2 q.s and 2 unknowns)

••

Department  of  Electrical,  Electronic,  and  Information  Engineering  (DEI)  -­ University  of  Bologna

ïïî

ïïí

ì

=+-

=-

--++

0Ru

Ruu

0RuuI

Ru

RVu

4

2

3

12

3

120

2

1

1

01 -

Page 11: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

In  the  circuit  there  are  branches  that    contain  only  voltage  sources  (independent  or  controlled  sources).  For  these  branches  the  currents  cannot  be  expressed  in  terms  of  the  voltages.  A  branch  with  only  a  voltage  source  can  be    incorporated  into  a  closed  surface.  Thereafter  KCL  is  applied  to  this  surface.  This  branch  is  said  supernode.  As  it  results  from  KTL,  the  difference  of  the  node  voltages  at  the  terminals  of  the  source  branch,  is  given  by  the  source  voltage:

uk-uh = V0

ïî

ïíì

==+

=++

032

5432

541

Vu-u0 i-i -i i

0 i i i

• •

i4

i2

R4

R2

0

u2 u3

i3

R3

-+

V0u1i5

R5

i1

R1

By expressing the 5 currents by means of the 3 node voltages, the system of equations is given by three equations with three unknowns which are the node voltages.

Nodal AnalysisSupernode

Department  of  Electrical,  Electronic,  and  Information  Engineering  (DEI)  -­ University  of  Bologna

Page 12: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

When    supernode  contains  the  reference  node  the  voltage  of  the  non-­reference  node  inside  the  supernode  is  given  by  the  source  voltage:

uk = V0ïî

ïí

ì

==+-=++

02

432

541

Vu0 i i i0 i i i

• •

i4R4

0

u2 u3

i3

R3V0

u1i5

R5

i1

R1 +-

i2R2

Nodal AnalysisSupernode

In this case also by expressing the 5 currents by means of the 3 node voltages, the system of equations is given by 3 equations with three unknowns which are the node voltages.

• •

Department  of  Electrical,  Electronic,  and  Information  Engineering  (DEI)  -­ University  of  Bologna

Page 13: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

ïïî

ïïí

ì

=-=-

=+--=++

543

21

5432

521

i9uu02uu

0 ii i i0 10-i i i

i5

0

u2 u3u1

i1 i3

i2

i4

6 Ω-+-+

u4

10A

3 v520V

i1 = u1/2i2 = (u2-u3)/6i3 = u3/4i4 = u4/1i5 = (u1- u4)/3

ïïïï

î

ïïïï

í

ì

-=-

=-

=-

+---

=-

+-

+

3uu9uu

20uu

03uu

1u

4u

6uu

103uu

6uu

2u

4143

21

414332

41321

ïïî

ïïí

ì

=--=-

=--+=--+

0u2u3u20uu

0u8u5,2u2u60u2uu5u

431

21

4321

4321

Example

•••

Department  of  Electrical,  Electronic,  and  Information  Engineering  (DEI)  -­ University  of  Bologna

Page 14: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

Tellegen’s Theoremq The  Tellegen’s theorem  states  that  in  an  insulated  circuit  (not  connect  to  other  circuits  or  networks)  the  algebraic  sum  of  the  power  calculated  for  each  branch  is  equal  to  zero.

q Alternatively  it  can  be  stated  that  the  total  power  delivered  by  the  sources  is  equal  to  the  power  absorbed  by  the  loads.

0 iv 1k

kk =å=

r

Tellegen’s theorem is a consequence of the energy conservation principle. It fulfills the topology equations (KCL and KTL).

Methods of the Circuit Analysis

Department  of  Electrical,  Electronic,  and  Information  Engineering  (DEI)  -­ University  of  Bologna

Page 15: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

• • •AB

C

D

1

2 3

4 5 6

The following quantities are given.i1 = 1; i2 = 2; i3 = 3v4 = 4; v5 = 5; v6 = 6

From KCL: i4 = - i1 - i2 = - 3i5 = i2 - i3 = - 1i6 = i3 + i1 = 4

From KTL: v1 = v4 - v6 = - 2v2 = v4 - v5 = - 1v3 = v5 - v6 = - 1

The quantities given by the problem and those obtained by KCL and KTL verify Tellegen’s theorem.

i1v1 + i2v2 + i3v3 + i4v4 + i5v5 + i6v6 = 0

Example

• • •

Department  of  Electrical,  Electronic,  and  Information  Engineering  (DEI)  -­ University  of  Bologna

Page 16: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

In Out

=Out    F    In

Methods of the Circuit AnalysisTransfer FunctionIn  a  circuit  we  will  distinguish  between  input   and    output.  The  inputs  are  the  independent  current  and  voltage  sources,  also  said  excitations.  The  output  are  the  branch  currents  and  the  tensions  (branch  voltages,  node  voltages  or  any  potential  difference  between  two  nodes).

In  a  linear,  time  independent  circuit  for  an  input-­output  pair  a  transfer  function  (or  network  function)  is  defined.  The  transfer  function  is  the  ratio  between  an  output  and  an  input  when  the  other  excitations,  except  the  one  considered,  are  switched  off.    

Linear,  time-­independent

network

Department  of  Electrical,  Electronic,  and  Information  Engineering  (DEI)  -­ University  of  Bologna

The transfer function can be defined in the time domain [voltages and currents: v(t) and i(t)], in the frequency domain [voltages and currents: �̇� and �̇� ] or in the Laplace transform-domain.

Page 17: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

Methods of the Circuit AnalysisTransfer FunctionIn  a  linear,  time  independent  circuit  for  an  input-­output  pair    the  transfer  function  does  not  depend  on  the  values  assumed  by  the  input  and  the  output.  Therefore  the  transfer  function  does  not  varies  when  those  quantities  are  varying.  This  property  is  a  consequence  of  the  homogeneity  property  of  the  transfer  functions  of  a  linear  circuit.  For  this  property  if  the  input  is  multiplied  for  a  constant,  the  output  results  to  be  multiplied  for  the  same  constant:

Example - linear resistor: v = Ri → kv = R ki (k real constant)

In  a  linear,  time  independent  circuit   the  additivity  property  is  also  fulfilled.  For  this  property  the  output  corresponding  to  the  sum  of  two  inputs  is  equal  to  the  sum  of  the  outputs  corresponding  to  the  separately  applied  inputs:

Example - linear resistor: v1 = Ri1 ; v2 = Ri2

v = Ri = R(i1 + i2) = Ri1 + Ri2 = v1 + v2

Department  of  Electrical,  Electronic,  and  Information  Engineering  (DEI)  -­ University  of  Bologna

Page 18: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

Following  from  the  homogeneity  and  the  additivity  properties,  for  the  superposition  principle  in  a  linear  time  independent  circuit  any  voltage  vr and  any  current  is can  be  expressed  as  a  linear  combination  of  the  p independent  tension  sources  and  the  qindependent  current  sources  :

vr =   αr1 V01 +  αr2 V02 +  ….  +  αrp V0p +  Rr1 I01 +  Rr2 I02 +  ….  +  Rrq I0q

is =  Gs1 V01 +  Gs2 V02 +  ….  +  Gsp V0p +  βs1 I01 +  βs2 I02 +  ….  +  βsq I0q

The  coefficients  αri,  Rrj,  Gsi,  βsj are  the  transfer  functions  of  the  r voltages  and  the  stensions  when    coupled  two  by  two  to  the  p tension  sources  and  the  q current  sources.  The  transfer  functions    αri and  βsj are  dimensionless.    The  Rrj have  the  dimension  of  a  resistance  or  an  impedance  (Ω).  The  Gsi have  the  dimension  of  a  conductance  or  an  admittance  (S  =  1/Ω).

Voltage Gain: αrp = vr

V0p V0i = 0 per i≠pI0j = 0 ∀ j

Transf. Imped.: Rrq = vr

I0q V0i = 0 ∀ iI0j = 0 per j ≠ q

Transf. Admitt.: Gsp = is

V0p V0i = 0 per i≠pI0j = 0 ∀ j

Current Gain: βsq = isI0q V0i = 0 ∀ i

I0j = 0 per j ≠ q

Transfer Function

Department  of  Electrical,  Electronic,  and  Information  Engineering  (DEI)  -­ University  of  Bologna

Page 19: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

Equivalent CircuitsA  circuit  N+N1 is  constituted  by  two  parts,  the  circuit  N  and  the  circuit  N1connected  through  a  port  only.  The  circuit  N  is  linear,  time-­independent,  with  stationary  sources.  The  circuit  N  is  connected  to  the  circuit  N1 through  the  port  AB.    For  a  given  value  the  voltage  v of  the  port  AB  the  current  i flowing  from  A  to  B  through  N  is  determined  by  the  circuit  N  itself.  The  relation  between  v and i,  that  is  the  element  equation  of  the  circuit  N,  can  be  determined.

The  one  port  circuit  N,  characterized  by  i and  v,  can  be  considered  a  two  terminal  element.  This  can  be  done  even  if  the  circuit  N is  constituted  by  many  circuit  elements.  The  relation  between  i and v only  depends  on  N.  The  determination  of  this  relation  is  the  main  problem  of  the  equivalent  circuit  determination.

Methods of the Circuit Analysis

Circuit  N1

A

B

v

iCircuit  NLinear,  time-­independentnetwork  with  stationary  sources

Department  of  Electrical,  Electronic,  and  Information  Engineering  (DEI)  -­ University  of  Bologna

Page 20: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

Equivalent Circuits

The  problem  of  the  equivalent  circuit  determination  is  to  find  an  elementary  circuit,  the  operation  of  which  simulates  the  operation  of  the  circuit  N.  For  this  elementary  circuit,  that  is  the  equivalent  circuit,  at  a  given  voltage  v the  same  current  i flows  through  it  as  it  would  flows  through  the  circuit  N  when  the  voltage  v between  the  terminals  A  and  B  would  be  the  same.    

Methods of the Circuit Analysis

A

B

v

iCircuit  NLinear,  time-­independentnetwork  with  stationary  sources

This  problem  is  solved  by  the  Thévenin’s theorem  and  by  the  Norton  theorem.  

The    equivalent  Thévenin circuit is  constituted  by  the  series  of  an  independent  voltage  source  with  a  resistor.  

The    equivalent  Norton  circuit  is  constituted  by  the  parallel  of  an  independent  current  source  with  a  resistor.

Department  of  Electrical,  Electronic,  and  Information  Engineering  (DEI)  -­ University  of  Bologna

Page 21: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

Consider  an  independent  current  source  connected  to  the  port  AB  of  circuit  N.  Due  to  the  linearity  of  N  the  voltage  v is  given  by  the  linear  combination  of  the  pvoltage  sources  V0i,  the  q current  sources  I0j,  which  are  inside  N,  and  the  current  source  i. The  linear  combination  coefficients  are  the  transfer  functions:

j 0 Ii 0 Veq0 ieq

q

1j0jj

p

1i0iieqeqeq

q

1j0jj

p

1i0iieq

oj0i

iv R v V

I R V V V i R v

I R V i R v

"="==

==

==

==

+=+=Þ

++=

åå

åå

;or:

where a

a

Equivalent CircuitsThévenin’s Theorem

•A

B

v i

Circuit  N

Department  of  Electrical,  Electronic,  and  Information  Engineering  (DEI)  -­ University  of  Bologna

Page 22: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

Therefore  the  following  relation  is  obtained:  

This  relation  is  the  element  equation  that  describes  the  series  between  an  independent  voltage  source  and  a  resistor.  It  defines  the  current  controlled  Thévenin equivalent  circuit.

Thévenin’s theorem:q A linear,  time-­independent  circuit  N  with  a  single  port  in  evidence  is  considered.  The  circuit  is  equivalent  to  an  independent  voltage  source  in  series  with  a  resistor.  The  voltage  of  the  source  is  the  open  circuit  voltage  between  A  and  B.  The  resistor  is  the  equivalent  resistor  seen  from  the  port  AB  when  all  independent  sources  of  N  are  switched  off.  

Thévenin’s Theorem

eqeq V i R v +=

• B

A

v

i

+-

Thévenin’s equivalentcircuit

A

B

v

Circuit  N

Department  of  Electrical,  Electronic,  and  Information  Engineering  (DEI)  -­ University  of  Bologna

Page 23: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

j 0 Ii 0 Veq0 veq

q

1j0jj

p

1i0iieqeqeq

q

1j0jj

p

1i0iieq

oj0i

vi G i I

I V G I I vG i

I V G vG i

"="==

==

==

==

+=+=Þ

++=

åå

åå

;or

where b

b

Norton’s TheoremConsider  an  independent  voltage  source  connected  to  the  port  AB  of  circuit  N.  Due  to  the  linearity  of  N  the  current  i is  given  by  the  linear  combination  of  the  pvoltage  sources  V0i,  the  q current  sources  I0j,  which  are  inside  N,  the  by  the  voltage  source  v.  The  linear  combination  coefficients  are  the  transfer  functions:

•A

B

v

i

+-

Circuit  N

Equivalent Circuits

Department  of  Electrical,  Electronic,  and  Information  Engineering  (DEI)  -­ University  of  Bologna

Page 24: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

eqeq I vG i +=

Norton’s TheoremTherefore  the  following  relation  is  obtained:  

This  relation  is  the  element  equation  that  describes  the  parallel  between  an  independent  current  source  and  a  resistor.  It  defines  the  current  controlled  Norton equivalent  circuit.

Norton’s  theorem.q A  linear,  time-­independent  circuit  N  with  a  single  port  in  evidence  is  considered.  The  circuit  N  is  equivalent  to  a  circuit  element  constituted  by the  parallel  between  an  independent  current  source  and  a  resistor.  The  current  of  the  source  is  the  current    flowing  through  N  when  the  port  AB  is  short  circuited.  The  resistor  is  the  equivalent  resistor  seen  from  the  port  AB  when  all  independent  sources  of  N  are  switched  off.  

Norton’s equivalentcircuit

eq eqi G v I= +

• B

A

v

i

Geq = 1/Req

A

B

i

v

Circuit  N

Page 25: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

When  dependent  sources  are  present  in  the  circuit,  in  order  to  calculate  Req of  the  Thévenin or  the  Norton  circuit  (figure  above,  circuit  where  port  AB  is  consi-­dered),  the  independent  sources  are  switched  off  and  the  dependent  sources  are  left  on.  Req is  expressed  by  the  relation:    

Equivalent CircuitsDependent Sources in Thévenin’s and Norton’s Theorems

where  V0 is  a  voltage  source  connected  to  the  port    considered  for  the  evaluation  of  the  equivalent  circuit.  It  is  used  to  calculate  i0  to  determine  Req(figure  below).      

0

0eq i

V R =

The method described is used to determine Req (for acircuit where dependent sources are present (above figure where the port AB is considered) . Req for the equivalent circuit is Req = V0 /i0 .

• •

I 4Ω

2vx

+-

2Ω 2Ω

6Ωvx

A

B

• •i3

2vx

+-

i02Ω 2Ω

6Ωvx V0+-

A

B

When in a circuit no dependent sources are present and the sources are all independent Req can be calculated from the serie and parallel relations.

Page 26: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

Summary

(2) I vG i :circuit equivalent sNorton'

(1) V i R v:circuit equivalent sThévenin'

eqeq

eqeq

+=

+=

When  eq.  1  is  divided  by  Req,  eq.  2  is  obtained.  When  eq.  2  is  divided  by  Geqeq.  1  is  obtained.    If  Thévenin’s  circuit  is  known,  Norton’s  circuit  specifications  can  be  derived.  Alternatively  when  Norton’s  circuit  is  known,  Thévenin’s  circuit  specifications  can  be  derived.

0G ( GI

V G1 R

0R ( RV

I R1 G

eqeq

eqeq

eqeq

eqeq

eqeq

eqeq

)ifnin n to Thévefrom Norto;

)ifton nin to Norfrom Théve;

¹-==

¹-==

Equivalent Circuits

Department  of  Electrical,  Electronic,  and  Information  Engineering  (DEI)  -­ University  of  Bologna

Page 27: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

Maximum Power Transfer

•B

A

RL

i

+-

RL=Req

P (RL)

RL

P Max

The  Thévenin equivalent  circuit  can  be  used  in  finding  the  maximum  power  which  a  linear  circuit  can  deliver  to  a  load.  

The  entire  circuit  is  replaced  by  the  Théveninequivalent    except  for  the  load  which  is  an  adjustable  load  resistor  RL.  The  power  delivered  to  the  load  is

For  a  given  circuit,  Veq and  Req are  fixed.    By  varying  RL,  the  power  delivered  to  the  load  varies.  The  power  is  small  or  large  for  small  or  large  values  of  RL.  The  maximum  power  transfer  theorem  states  that:

q Maximum  power  is  transferred  to  the  load  when  the  load  resistance  equal  the  Théveninequivalent  resistance  .

2

eq2L L

eq L

Vp R i R

R Ræ ö

= = ç ÷ç ÷+è ø

Department  of  Electrical,  Electronic,  and  Information  Engineering  (DEI)  -­ University  of  Bologna

Page 28: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

( ) ( )( )

( )

eq

2eq

MaxeqL

LLeq

3Leq

LLeq2eq

4Leq

LeqL2

Leq2eq

L

L

R 4V

p R R

0 R2RR

0 RR

R2RRV

RR

RRR2RRV

dRdp

0 dRdp

=Þ=

=-+

Þ=úúû

ù

êêë

é

+

-+=

=úúû

ù

êêë

é

+

+-+=

Þ=

Hence

Maximum Power Transfer

•B

A

RL

i

+-

Req

P (RL)

RL

P Max

To prove the maximum power transfer theorem the following has to be done:

Department  of  Electrical,  Electronic,  and  Information  Engineering  (DEI)  -­ University  of  Bologna

Page 29: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

29

adjustable  load  resistance

resistenza  di  carico  variabile

branch  current corrente  di  ramo

branch  tension tensione di  ramo

element equation equazione    descrittiva  dell’elemento  circuitale

equivalent  circuit circuito  equivalente

general  method  of  the  circuit  analysis

metodo generale  di  analisi    circuitale

input ingresso

load  resistance resistenza  di  carico

maximum  power  transfer  theorem

teorema  di  massimo  trasferimento  di  potenza

method  of  the tensionsubstitution

metodo di  sostituzione  delle  tensioni

network  function funzione  di  rete

nodal  analysis analisi  nodale

node  voltage potenziale  di  nodo

Norton’s  theorem teorema  di  Norton

output uscita

reference  node nodo  di riferimento

resonance  frequency frequenza  di  risonanza

supernode supernodo

superpositionprinciple

principio  di  sovrapposizione  degli  effetti

Tellegen’s theorem teorema  di  Tellegen

Thévenin’sequivalent  circuit

circuito  equivalente  di  Thévenin

Terminology

Department  of  Electrical,  Electronic,  and  Information  Engineering  (DEI)  -­ University  of  Bologna

Page 30: 3. Methods of the Circuit Analysis · !Topology( Equations((r equazioni) (KCL:n-1 equations) (KTL:r-n+1 equations)!Element(Equations((r equations) The$number$of$theseequationsisequal$tothenumber$of$the

30

Terminology

Thévenin’s theorem teorema di  Thévenin

topology  equations equazioni  topologiche

transfer  admittance ammettenza  di  trasferimento

transfer  function funzione  di  trasferimento

transfer  impedance impedemza di  trasferimento  

unknown incognita

voltage  gain guadagno  di  tensione

Department  of  Electrical,  Electronic,  and  Information  Engineering  (DEI)  -­ University  of  Bologna