3. mathematics ii-matrices

57
MATHEMATICS II PAPER MATRICES DISUSUN OLEH : ARISA RISKI (D10011208) PUGUH MERDHIYANTO (D100112014) YUSRON ABDULLATIF RABBANI (D100110029)

Upload: bagus-rizal

Post on 11-Jan-2016

25 views

Category:

Documents


0 download

DESCRIPTION

mathematics 2

TRANSCRIPT

Page 1: 3. Mathematics II-matrices

MATHEMATICS IIPAPER MATRICES

DISUSUN OLEH :

ARISA RISKI (D10011208)

PUGUH MERDHIYANTO (D100112014)

YUSRON ABDULLATIF RABBANI (D100110029)

CIVIL DEPARTMENT ENGINEERING FACULTY

MUHAMMADIYAH UNIVERSITY OF SURAKARTA

2012

Page 2: 3. Mathematics II-matrices

MATRICES

THE ALGEBRA OF MATRICES

A matrix is a rectangular array of numbers. The numbers may be real or complex. It

may be represented as

A = ¿ [a11 a12⋯a1n ¿ ] [a21a22⋯a2 n ¿ ] [⋮¿ ]¿¿

¿

or asA = (aij )m x n

A matrix with m rows and n coloumns is called as m x n matrix and the size

(or dimension) of this matrix is said be m x n.

Two matrices are said to be equal provided they are of the same size and

corresponding elements are equal. For example

[abc ¿ ]¿¿

¿¿

if and only if

a = -1, b = 2, c = 5, d = 7, e = 3 and f = 1.

Definitions A matrix A = (aij)m x n is said to be a

(i) square matrix if m = n

(ii) row matrix if m = 1

(iii) coloumn matrix if n = 1

(iv) null or zero matrix if aij = 0 i and j

(v) diagonal matrix if m = n and aij = 0 i ≠ j

(vi) Scalar matrix if m = n and aij = 0 i ≠ j and aij = i

(vii) Unit or identity matrix if m = n and aij = 0 i ≠ j and aij = 1 i

(viii) Upper (Lower) triangular matrix if m = n and aij = 0 i > j

(aij = 0 i < j)

Page 3: 3. Mathematics II-matrices

A matrix is said to be triangular if it is either lower or upper triangular matrix.

Addition of Matrix. Two matrices A and B can be added if and only they are of the

same size. For instance

[abc ¿ ]¿¿

¿¿

= ¿ [a + pb + qc + r ¿ ]¿¿

¿

Addition is not defined for matrices of different sized.

The additive inverse of a matrix A, denoted by –A, is the matrix whose

elements are the negatives of the corresponding elements of A. for example,

− ¿ [ab ¿ ] [cd ¿ ]¿¿

¿If A and B are two matrices of the same size, then the differences between A

and B is defined by

A – B = A + (-B)

Thus, the substraction is carried out term-by-term. For instance

[abc ¿ ]¿¿

¿¿

Properties of Addition If A, B and C are three matrices of the same size, then

A + B = B + A [Commutative law]

(A + B) + C = A + (B + C) [Associative law]

A + O = O + A [Additive property of zero]

A + (-A) = O

Where O is the null or zero matrix of the same size as that of A.

Scalar Multiplication. If A is a matrix and α is a scalar, then αA is defined as the

matrix obtained by multyplying every element of A by α. For example

3 ¿ [1−25 ¿ ]¿¿

¿

Page 4: 3. Mathematics II-matrices

Properties of Scalar Multiplication If A, B are two matrices of the same size, and α,

β are two scalars, then

(α + β)A = αA + βA

(αβ)A = α (βA)

α (A + B) = αA + αB

Matrix Multiplication

Let A = (aij)m x n and B = (bij) r x s be two matrices. We stay that A and B are

comparable for the product AB if n = r, that is, if the number of coloumns of A is

equal to the number of rows of B.

Definition: Let A = (aij) m x n and B = (bij) m x n be two matrices. Their product AB is

the matrix C = (cij) m x n such that cij = ai1 b1j + ai2 b2j + ai3 b3j + ... + ain bnj for l ≤ i ≤

m, 1 ≤ j ≤ p. note that cij, the element of AB, has been obtained by multiplying ith

row of A, namely (ai1 ai2 ai3 ... ain)

With the jth column of B, namely

[b1 j¿ ] [b2 j ¿ ] [b3 j ¿ ] [. ¿ ] [. ¿ ] [. ¿ ] ¿¿

¿¿ = ( b1, b2j ... bnj)

Where A denotes the transpose of matrix A.

Properties of Matrix Multiplication

If A = (aij) m x n, B = (bij) n x p and C = (cij) p x q then

1. (AB) C = A (BC) [Associative law]

2. AIn = ImA = A

3. AB may not be equal to BA

4. k(AB) = (kA)B = A (kB) where k is a scalar.

5. If A is a square matrix, then

Am An = Am+n m, n N

(Am)n = Amn m, n N.

Page 5: 3. Mathematics II-matrices

6. If A is an invertible matrix then

(A-1 B A)m = A-1 Bm A.

and A-m = (A-1)m m N.

TRANSPOSE OF A MATRIX

Definition: Let A = (aij)m x n be a matrix. The transpose of A, denoted by A’ or by A’

is the matrix A’ = (bij)n x m where bij = aji i and j.

By A we mean a matrix B = (bij) m x n where bij = a ij where a denotes conjugate of

a and by A* we mean.

A¿ = (A ) ' = ( A ' )Properties of Transpose of Matrix

1. (A + B)’ = A’ + B’

2. (kA)’ = kA’ where k is a scalar.

3. (AB)’ = B’ A’ [Reversal law]

4. If A is an invertible matrix, then (A-1)’ = (A’)-1

ADJOINT AND INVERSE OF A MATRIX

Let A = (aij)n x n be square matrix. The adjoint of A is defined to be the matrix adj. A

= (bij) n x n where

bij = Aji

where Aji is the cofactor of (j, i)th element of A.

Properties of Adjoint

1. A (adj A) = (adj A) A = |A| I n

2. adj(kA) = kn-1 (adj A)

3. adj(AB) = (adj B) (ajd A)

Page 6: 3. Mathematics II-matrices

Definiton: A square matrix A is said to be singular if |A| = 0 and non-singular if

|A| ≠ 0.

Definition: Inverse of a square matrix A = (aij)n x n is the matrix B = (bij)n x n such that

AB = BA = In.

Infact A−1 = 1

|A|( adj . A )

Properties of Inverse

1. inverse of a matrix if it exists is unique.

2. AA-1 = A-1 A = In

3. (A-1)-1 = A

4. (kA)-+ = k-1 A-1 if k ≠ 0.

5. (AB)-1 = B-1 A-1 [reversal law]

6. For a matrix A = ¿ (ab ¿ )¿

¿¿

adj A = ¿ (d−b ¿ ) ¿

¿¿

and A−1 = 1

ad − bc¿ (d−b ¿ ) ¿

¿¿ if ad - bc ≠ 0

7. If A is a triangular matrix, then A-1 if it exists is a triangular matrix of the same

kind.

Infact if A = ¿ (a11 00¿ ) (a21a22 0 ¿)¿¿

¿ and a11a22a33 ≠ 0, then

A−1 = 1a11 a22 a33

¿ (a22 a33 00 ¿) (−a21 a33 a33 a11 0 ¿)¿¿

¿

Where A13 = cofactor of (1, 3)th element in i.e. A13 = ¿

|a21a22 ¿|¿¿

¿

8. If A = diag (1, 2, ..., n) then A-1 exists if i ≠ 0 i and

Page 7: 3. Mathematics II-matrices

A-1 = diag (1-1, 2

-1, ..., n-1)

Also, Am = diag ( λm , λ2

m .. . λnm ) if m N.

9. If a square matrix A satisfies the equation a0 + a1x + a2 x+2+ + ... ar xr = 0,

then A is invertible if a0 ≠ 0 and its inverse is given by

A−1 = 1a0

[a1 I + a2 A + .. . + ar A r−1 ]

SOME DEFINITIONS AND RESULT

A square matrix is said to be symmetric if A’ = A and skew symmetric if A’ = - A.

A square matrix A is Hermitian if A* = A and skew Hermitian if A* = -A.

Result

1. The main diagonal elements of a skew symmetric matrix are zeros, i.e.a:: = 0

i

2. Determinant of a skew-symmetric matrix of odd order is zero and determinant

of a skew-symmetric matrix of even order is a perfect square.

3. Every square matrix can be written uniquely as a sum of symmetric and a skew

symmetric matrix, i.e. if A is a square matrix, then there exists a symmetric

matrix P and a skew symmetric matrix Q such that

Infact

P = 12

(A + A ' ) and Q = 12

( A − A ' )

4. For every square matrix A, matrices A + A’, AA’ and A’A are symmetric and

matrices A – A’ and A’ – A are skew symmetric.

A square matrix is said to be orthogona if AA’ = A’A = I.

A is said to be unitary if A*+A = I.

Result 1. If A is an orthogonal matrix, then |A| ≠ 0. Infact |A| = ± 1. And A , A’,

A* are also orthogonal.

2. If A and B are two orthogonal matrices, then AB and BA are both

orthogonal matrices.

Page 8: 3. Mathematics II-matrices

A square matrix A is said to be a nilpotent matrix if there exist a positive integer m

such that Am = O.

The least positive integer m satisfying the condition Am = O is called the index of

the nilpotent matrix.

A square matrix A is said to be idempotent matrix if A2 = A and is said to be

involutory if A2+ = I.

If A = (aij) n x n is a square matrix, the trace of A denoted by tr (A) is sum of all the

main diagonal elements, i.e.

tr (A) = a11 + a22 + ... ann

RANK OF A MATRIX

If A = (aij) m x n is a matrix, and B is its submatrix of order, r, then |B|, the

determinant is called as r-rowed minor of A.

Definiton Let A = (aij) m x n be a matrix. A positive integer r is said to be rank of A if

(i) A possesses at least one r-rowed minor which is different from zero; and

(ii) Every (r + 1) rowed minor of A is zero.

From (ii), it automatically follows that all minors of higher order are zeros.

Result The rank of a matrix does not change when the following elementary row

operations are applied to the matrix.

(a) Two rows are interchanger (Ri Rj)

(b) A row is multiplied by a non-zero constant, (Ri kRi, with k ≠ 0)

(c) a constant multiple of another row is added to a given row (Ri Ri + kRj)

where i ≠ j.

note: The arrow means “replaced by”.

Note that the application of these elementary row operations does not change a

singular matrix to a non-singular matrix or a non-singular matrix to a singular

matrix. Therefore, the order of the largest non-singular square submatrix is not

affected by application of any of the elementary row operations. Thus, the rank of a

matrix does not change by application of any the elementary row operations.

Page 9: 3. Mathematics II-matrices

A matrix obtained from a given matrix by applying any of the elementary row

operations is said to be equivalent to it. If A and B are two equivalent matrices, we

write A ~ B.

Note that if A ~ B, then (A) = (B).

By using the elementary row operations, we shall try to transform the given matrix

in the following form

(1∗¿∗¿ ) (01∗¿ ¿ ) (001∗¿ ) ( . .. .¿ ) ( . .. .¿ ) ( . . .. ¿ ) ¿¿

¿¿where * stands for zero or non-zero element. That is, we shall try to make aii as 1

and all the elements below aii as zero.

We illustrate the above procedure by the following illustration.

Illustration: Find the rank of the matrix

A = ¿ (2−31¿ ) (357 ¿ ) ¿¿

¿Solution

Step 1: As a first step we must get a 1 in the first column of A. For this we

substract Row 1 from the Row 2.

(2−31 ¿ ) (357 ¿ ) ¿¿

¿¿

Page 10: 3. Mathematics II-matrices

Step 2: We must get a 1 in the upper left corner. For this we interchange Row 1 and

Row 2.

(2−31 ¿ ) (186 ¿ ) ¿¿

¿¿Step 3: We must get zeros at the two remaining two places in the first column. For

this we multiply R1 by – 2 and add it to R2 and multiply R1 by – 5 and add it to R3.

(186 ¿ ) (2−31 ¿ ) ¿¿

¿¿

(186 ¿ ) (0−19−11 ¿ ) ¿¿

¿¿Step 4: We must have 1 in the second column. This 1 should not be in the first

column. Also, you should not be tempted to use R1 to obtain this 1. For if we try to

use R1. Then two zeroes obtained in the first column will be destroyed. We multiply

R2 by – 2 and add it to R3.

0 38 22 - R2

(186 ¿ ) (0−19−11 ¿ ) ¿¿

¿¿Step 5: We now obtain a 1 at the (2, 2)th place. For this we interchange R2 and R3.

(186 ¿ ) (0−19−11 ¿ ) ¿¿

¿¿Step 6: We must get a zero at (3, 2)th place. For this we multiply R2 by 19 and add

it to R3.

(186 ¿ ) (010 ¿ ) ¿¿

¿¿

Page 11: 3. Mathematics II-matrices

This matrix is in the desired triangular form. Recall if A ~ B then (A) = (B).

Thus, rank of the given matrix A is equal to the rank of the matrix.

B = ¿ (186 ¿ ) (010¿ )¿¿

¿Hance, (A) = 3.

Remark

After obtaining 1 at (1, 1)th place and zeros at the remaining places in the first

column, forget the first row. Do not use the first row. Do not use the first row to

manipulate elements in the second or any other column. If you try to do so the

zeros in the first column will be destroyed.

After obtaining 1 at (2, 2)th place and zeros at the remaining places in the

second column, forget the second row. Do not use it for manipulating elements

in the remaining columns. The same remark applies to the remaining columns.

If A is a non-regular matrix of order n x n, then e (A) = n.

SYSTEM OF LINEAR EQUATIONS

Let us consider the following m linear equations in n unknowns:

a11 x1 + a12 x2 + ... + a1n xn = b1

a21 x1 + a22 x2 + ... + a2n xn = b2

.

.

.

am1 x1 + am2 x2 + ... + amn xn = bm

where b1, b2, ... bm are not all zero.

Page 12: 3. Mathematics II-matrices

The m x n matrix

(a11 a12…a1n ¿ )(a21 a22⋯a2n ¿ ) (. . .¿ ) ( . .. .¿ ) ( . .. ¿ ) ¿¿

¿¿ is called the coefficient matrix

of the system of linear equations. Using it, we can now write these equations as

follows:

(a11a12⋯a1n ¿ )(a21 a22⋯a2n ¿ ) (. . .¿ ) ( . .. .¿ ) ( . .. ¿ ) ¿¿

¿¿We can abbreviate the above matrix equation to AX = B, where

A = ¿ (a11 a12⋯a1n ¿ ) (a21a22⋯a2n ¿ ) ( .. .¿ ) ( . .. . ¿ ) (. . .¿ )¿¿

¿and

X = ¿ ( x1 ¿ )( x2¿ ) ( .¿ ) ( . ¿ ) (. ¿ ) ¿¿

¿By a solution of (1) we mean a set of values x1, x2, ..., xn such that (1) reduces to an

identity.

The augmented matrix for system of equations.

AX = B

Page 13: 3. Mathematics II-matrices

is the matrix (A/B). This matrix is obtained by adding (n + 1)th column to A. the

elements of column are the constants b1, ..., bm.

Result The system of equations

a11 x1 + a12 x2 + … a1n xn = b1

a21 x1 + a22 x2 + … a2n xn = b2 …(1)……………………………………

am1 x1 + am2 x2 + … amn xn = bn

is consistent (that is, possesses a solution) if and only if the coefficient matrix.

A = ¿ (a11 a12⋯a1n ¿ ) (a21a22⋯a2n ¿ ) (⋯⋯⋯⋯¿ ) ¿¿

¿and the augmented matrix

(A | B) =

(a11 a12⋯a1n | b1 ¿) (a21a22⋯a2 n | b2 ¿) (⋯⋯⋯⋯ | ⋯¿ ) ¿¿

¿¿have the same rank.

We split the remaining result in two cases.

Case 1. If the system of equations in (1) is consistent and m ≥ n, then

(i) if (A) = (A | B) = n, then the system of equations has a unique solution,

(ii) if (A) = (A | B) = r < n, then the (n – r) unknowns are assigned

arbitrary values and the remaining r unknowns can be found in terms of those (n –

r) unknowns which have already been assigned values.

Case 2. If the system of equations in (1) is consistent and m < n, then

(i) if (A) = (A | B) = m, then (n – m) unknowns can be assigned arbitrary

values and the values of the remaining m unknowns can be found in terms of those

(n – m) unknowns which have already been assigned values.

(ii) if (A) = (A | B) = r < m then (n – r) unknowns can be assigned arbitrary

values and the values of the remaining r unknowns can be found in terms of those

(n – r) unknowns which have already been assigned values.

Page 14: 3. Mathematics II-matrices

Finding Inverse by Elementary Row Operations

To find inverse of a square matrix A we begin with be augmented matrix [A | In]. If

a sequence of elementary row operations transforms this matrix to [In | B], then B is

A-1. However, if at any step we obtain all zeros in a row on the left of the vertical

line, the matrix A is not invertible.

SOLUTION OF A SYSTEM OF EQUATION AX = B

Unique Solution

The system of equation

AX = B

has a unique solution if |A| ≠ 0 and it is given by X = A-1 B

Infinite Number of Solution

If |A| = 0 , and (Adj A)B = 0, the system has infinite number of solutions.

No Solution

If |A| = 0 and (Adj A)B ≠ 0, the system of equations has no solution.

SOLUTION OF A SYSTEM OF HOMOGENEOUS LINEAR EQUATIONS

AX = 0

The system

AX = 0

has a unique solution if |A| ≠ 0 and it is the trivial solution viz.

x1 = x2 = … = xn = 0

If |A| = 0 , the system has infinite number of solutions.

Also if AX = 0 has at least one non-zero solutions, then |A| = 0 .

Page 15: 3. Mathematics II-matrices

The following Tree diagram is helpful.

Solved Examples

Example 1

If

[14 ¿ ] ¿¿

¿¿, y < 0 then x – y + z is equal to

(a) 5 (b) 2 (c) 1 (d) -3

Ans (a)

Solution By the equality of two matrices, x = 1, y2 = 4, z = 2

x = 1, y = -2, z = 2 as y < 0.

x – y + z = 1 + 2 + 2 = 5

Example 2

If

A = [1−23 ] , B = ¿ [2 ¿ ] [−3 ¿ ]¿¿

¿, then AB is equal to a

System of equations

is consistent

System of equations

is consistent

Infinite number

of solution

Trival solution

(A) = (A |

B)

(A) = (A |

B)|A| = 0|A| ≠ 0

B = 0 B ≠ 0

AX =

B

Page 16: 3. Mathematics II-matrices

(a)

[2¿ ] [−3 ¿ ]¿¿

¿¿(b)

[2¿ ] [6 ¿ ] ¿¿

¿¿

(c) [26−3 ] (d) none of these

Ans (d)

Solution

A = [1−23 ] , B = ¿ [2 ¿ ] [−3 ¿ ]¿¿

¿

Example 3

If A = ¿ [−i 0¿ ]¿

¿¿, then A’ A is equal to

(a) I (b) –iA (c) – I (d) iA

Ans (c)

Solution We have

A ' A = ¿ [−i0 ¿ ]¿¿

¿

Example 4

If Aα = ¿

[cos α sin α ¿ ]¿¿

¿, then Aα Aβ is equal to

(a) Aα + Aβ (b) Aα

β

(c) Aα− A β (d) none of these

Solution We have

Aα A β = ¿[cos α sin α ¿ ]¿

¿¿

= ¿ [cos α cos β −sin α sin β cos α sin β + sin α cos β ¿ ]¿¿

¿

Page 17: 3. Mathematics II-matrices

= ¿ [cos (α + β ) sin (α + β ) ¿ ]¿¿

¿

Example 5

Let A and B be two 2 x 2 matrices. Consider the statements.

(i) AB = O A = O or B = O

(ii) AB = I2 A = B-1

(iii) (A + B)2 = A2 + 2AB + B2

Then

(a) (i) is false, (ii) and (iii) are true

(b) (i) and (iii) are false, (ii) is true

(c) (i) and (ii) are false, (iii) is true

(d) (ii) and (iii) are false, (i) is true

Ans (b)

Solution (i) is false.

IfA = ¿ [01¿ ]¿

¿¿

then

AB= ¿ [00 ¿ ]¿¿

¿

Thus, AB = 0 A = O or B = O

(iii) is false since matrix multiplication is not communicative.

(ii) is true as product AB is an identity matrix, if B is inverse of the matrix A.

Example 6

If A − 2B = ¿ [15 ¿ ]¿

¿¿ and

2 A − 3B = ¿ [−25 ¿ ]¿¿

¿, then matrix B is equal to

(a)

[−4−5 ¿ ]¿¿

¿¿(b)

[06 ¿ ] ¿¿

¿¿(c)

[2−1 ¿ ] ¿¿

¿¿(d)

[6−1¿ ]¿¿

¿¿

Solution We have

B = (2 A − 3 B ) − 2 (A − 2 B ) = 2 ¿ [−4−5 ¿ ]¿¿

¿

Page 18: 3. Mathematics II-matrices

Example 7

If A and B two are 3 x 3 matrices, then which one of the following is not true:

(a) (A + B)’ = A’ + B’ (b) (AB)’ = A’ B’

(c) det (AB) = det (A) det (B) (d) A (adj A) = |A| I 3

Ans (b)

Solution If A and B are two 3 x 3 matrices, then

(AB)’ = B’A’ [Reversal Law]

and not (AB)’ = A’B’.

Example 8

If A = ¿ [cos φ−sin φ ¿ ]¿

¿¿, then

(a) A is an orthogonal matrix (b) A is a symmetric matrix

(c) A is a skew symmetric matrix (d) none of these

Ans (a)

Solution We have

= ¿ [cos φ−sin φ ¿ ]¿¿

¿

= ¿ [cos2 φ + sin2 φ cos φ sin φ − sin φ cos φ ¿ ]¿¿

¿

= ¿ [10 ¿ ]¿¿

¿

Similarly, A’ A = I2

Thus, A is an orthogonal matrix.

Example 9

Matrix [12 ] ¿¿

is equal to

(a) [122 ] (b) [23 ]

Page 19: 3. Mathematics II-matrices

(c) [22 ] (d) none of these

Ans (c)

Solution We have

[12 ] ¿¿= [12 ] ¿ [−2 + 10 ¿ ]¿

¿¿

= [8 + 14 ] = [22 ]

Example 10

If A = ¿ [5−13 ¿ ]¿

¿¿

, then (AB)’ is equal to

(a)

[78 ¿ ]¿¿

¿¿(b)

[−78 ¿ ]¿¿

¿¿

(c)

[78 ¿ ]¿¿

¿¿(d) none of these

Ans (c)

Solution A = - A’

A is a skew symmetric matrix

diagonal elements are zeros

x = 0, y = 0

x + y = 0

Example 12

If

A = ¿ [a2abac ¿ ] [ abb2bc ¿ ]¿¿

¿ then the product AB is

equal to

(a) O (b) A (c) B (d) I

Page 20: 3. Mathematics II-matrices

Solution We have

AB = ¿ [0− abc + abc a2 c + 0− a2 c−a2 b + a2 b + 0 ¿ ] [0 − b2 c + b2 cabc + 0− abc−ab2 + ab2 + 0 ¿ ]¿¿

¿

Example 13

If A is an orthogonal matrix, then A-1 equals

(a) A (b) A’

(c) AA’ (d) none of these

Ans (b)

Solution By definition, A square matrix A is said to be orthogonal if

AA’ = A’A = I

A-1 = A’

Example 14

If A is an invertible matrix and B is an orthogonal matrix, of the order same as that

of A, then C = A-1 BA is

(a) an orthogonal matrix (b) symmetric matrix

(c) skew symmetric matrix (d) none of these

Ans (d)

Solution

Let B = ¿ [cos (π / 2 ) sin (π / 2 ) ¿ ] ¿

¿¿

and A = ¿ [13 ¿ ]¿

¿¿

Note that B is an orthogonal matrix.

C = A−1 BA = ¿ [1−3 ¿ ]¿¿

¿

= ¿ [3 10¿ ]¿¿

¿

Page 21: 3. Mathematics II-matrices

Note that C is neither symmetric, nor skew symmetric and nor orthogonal.

Example 15

Let E (α ) = ¿ [cos2 α cos α sin α ¿ ]¿

¿¿

if and differs by an odd multiply of

/2, then E () E () is a

(a) null matrix (b) unit matrix

(c) diagonal matrix (d) orthogonal matrix

Ans (a)

Solution We have

E (α ) = ¿ [cos2 α cos α sin α ¿ ]¿¿

¿

= ¿ [cos α cos β cos (α − β ) cos α sin β cos (α − β ) ¿ ] ¿¿

¿

As and differ by an odd multiple of /2, - = (2n +1) /2 for some integer n.

Thus, cos [ (2 n + 1 ) π /2 ] = 0

E () E () = O

Example 16

If

[21¿ ]¿¿

¿¿ then matrix A equals

(a)

[75 ¿ ]¿¿

¿¿(b)

[21¿ ]¿¿

¿¿(c)

[71¿ ]¿¿

¿¿(d)

[53 ¿ ]¿¿

¿¿

Ans (a)

Solution

If XAY = I, then A = X-1 Y-1 = (YX)-1

In this caseYX = ¿ [−32¿ ]¿

¿¿

Page 22: 3. Mathematics II-matrices

A = ¿ [85 ¿ ]¿

¿¿

Example 17

The matrix A satisfying

A ¿ [15 ¿ ]¿¿

¿ is

(a)

[32¿ ]¿¿

¿¿(b)

[3−16 ¿ ]¿¿

¿¿(c)

[3−16 ¿ ]¿¿

¿¿(d)

[3−3 ¿ ]¿¿

¿¿

Ans (b)

Solution We know that if AC = B, then A = BC-1

A = ¿ [3−1¿ ]¿

¿¿

= ¿ [3−1 ¿ ] ¿¿

¿

Example 18

If product of matrix A with

[11 ¿ ]¿¿

¿¿ is

[32¿ ]¿¿

¿¿, then A-1 is given by

(a)

[0−1¿ ]¿¿

¿¿(b)

[0−1¿ ]¿¿

¿¿

(c)

[01¿ ]¿¿

¿¿(d) none of these

Ans (c)

Solution If AB = C, then B-1 A-1 = C-1

A-1 = BC-1

HereA ¿ [11 ¿ ]¿

¿¿

A−1= ¿ [11¿ ]¿

¿¿

Page 23: 3. Mathematics II-matrices

= ¿ [11 ¿ ]¿¿

¿

Page 24: 3. Mathematics II-matrices

Example 19

If A and B are two skew symmetric matrices of order n, then

(a) AB is a skew symmetric matrix

(b) AB is a symmetric matrix

(c) AB is a symmetric matrix if A and B commute

(d) none of these

Ans (c)

Solution We are given

A’ = -A and B’ = - B

Now, (AB)’ = B’ A’ = (-B) (-A) = BA

= AB if A and B commute

Example 20

Which of the following statements is false:

(a) If |A| = 0 , then |adj A|= 0

(b) Adjoint of a diagonal matrix of order 3 x 3 is a diagonal matrix

(c) Product of two upper triangular matrices is a upper triangular matrix

(d) adj (AB) = adj (A) adj (B)

Ans (d)

Solution We have

adj (AB) = adj (B) adj (A)

and not adj (AB) = adj (A) adj (B)

Example 21

If A and B are symmetric matrices, then AB – BA is a

(a) symmetric matrix (b) skew symmetric matrix

(c) diagonal matrix (d) null matrix

Ans (b)

Solution We are given A’ = A, B’ = B

Now (AB – BA)’ = (AB)’ – (BA)’

Page 25: 3. Mathematics II-matrices

= B’ A’ – A’ B’

= BA - AB

= - (AB – BA)

i.e. (AB – BA)’ = - (AB – BA)

Hence AB – BA is a skew symmetric matrix.

Example 22

If D = diag (d1, d2, …, dn) where d1 ≠ 0, for I = 1, 2, …, n, then D-1 is equal to

(a) D (b) 2D

(c) diag (d1−1 , d2

−1 , .. . , dn−1) (d) Adj D

Ans (c)

Solution See Theory

Example 23

The inverse of a symmetric matrix (if it exists) is

(a) a symmetric matrix (b) a skew symmetric matrix

(c) a diagonal matrix (d) none of these

Ans (a)

Solution Let A be an invertible a symmetric matrix.

We have AA-1 = A-1 A = In

(AA-1)’ = (A-1 A)’ = (In)

(A-1)’ A’ = A’ (A-1)’ = In

(A-1)’ A= A (A-1)’ = In

(A-1)’ = A-1 [inverse of a matrix is unique]

Example 24

The inverse of a skew symmetric matrix (if it exists) is

(a) a symmetric matrix (b) a skew symmetric matrix

(c) a diagonal matrix (d) none of these

Ans (b)

Page 26: 3. Mathematics II-matrices

Solution We have A’ = - A

Now AA-1 = A-1 A = In

(AA-1)’ = (A-1 A)’ = (In)’

(A-1)’ A’ = A’ (A-1)’ = In

(A-1)’ (-A) = (-A) (A-1)’ = In

Thus, (A-1)’ = - (A-1) [inverse of a matrix is unique]

Example 25

The inverse of a skew symmetric matrix of odd order is

(a) a symmetric matrix (b) a skew symmetric matrix

(c) diagonal matrix (d) does not exist

Ans (d)

Solution Let A be a skew symmetric, matrix of order n. By definition

A’ = -A

|A '| = |− A|

|A| = (- 1)n |A|

|A| = - |A| [∵ n is odd ]

2 |A| = 0

|A| = 0

A-1 does not exist.

Example 26

If A is an orthogonal matrix, then |A| is(a) 1 (b) -1 (c) ± 1 (d) 0

Ans (c)

Solution As A is an orthogonal matrix,

A’ A = AA’ = In

|A ' A| = |A A '| = |I n|

Page 27: 3. Mathematics II-matrices

|A '| |A|= 1

|A| |A| = 1

|A|2 = 1 |A| = ± 1

Example 27

If

A = ¿ [102¿ ] [51 x ¿ ] ¿¿

¿ is a singular matrix, then x is equal to

(a) 3 (b) 5 (c) 9 (d) 11

Ans (c)

Solution As A is a singular matrix

|A| = 0

|100 ¿||51 x − 10 ¿|¿¿

¿¿[using C3 C3 – 2 C1]

|1 x − 10 ¿|¿¿

¿¿= 0 -1 – x + 10 = 0

x = 9.

Example 28

The value of x for which the matrix

A = ¿ [2/ x−12 ¿ ] [1 x2 x2 ¿ ] ¿¿

¿is singular is

(a) ± 1 (b) ± 2

(c) ± 3 (d) none of these

Ans (a)

Page 28: 3. Mathematics II-matrices

Solution We have

|A|= ( 2x ) ¿|x2 x2¿|¿

¿¿

= 2x

(0 ) + 2 − 2 x2 + 2 ( 1x − x)=

2 x (1 − x2) + 2 (1 − x2)x

=2 ( x + 1 )2 (1 − x )

x

Now, |A| = 0 x = ± 1

Example 29

If square matrix A is such that 3A2 + 2A2 + 5A + I = O, then A-1 is equal to

(a) 3A2 + 2A + 5I (b) – (3A2 + 2A + 5I)

(c) 3A2 – 2A – 5I (d) none of these

Solution We have

A (3A2 + 2A + 5I) = - I

A-1 = - (3A2 + 2A + 5I) [ Inverse of a matrix is unique]

Example 30

If A is a square matrix such that A2 + I = 0, then A equals

(a)

[10 ¿ ]¿¿

¿¿(b)

[ i0 ¿ ]¿¿

¿¿(c)

[12¿ ]¿¿

¿¿(d)

[−10 ¿ ]¿¿

¿¿

Ans (b)

Solution We have

[ i0 ¿ ]¿¿

¿¿

[ i0 ¿ ]¿¿

¿¿ =

[−10 ¿ ]¿¿

¿¿

Example 31

Let A, B, C be three square matrices of the same order, such that whenever AB =

AC then B = C, if A is

Page 29: 3. Mathematics II-matrices

(a) singular (b) non-singular

(c) symmetric (d) skew-symmetric

Ans (b)

Solution If A is non-singular, A-1 exists.

Thus, AB = AC A-1 (AB) = A-1 (AC)

(A-1 A) B = (A-1 A) C IC

B = C

Example 32

If the product of the matrix

B = ¿ [264 ¿ ] [101 ¿ ]¿¿

¿ with a matrix A has inverse

C = ¿ [−101 ¿ ] [113 ¿ ]¿¿

¿, then A-1 equals

(a)

[−3−55 ¿ ] [09 14 ¿ ]¿¿

¿¿(b)

[−355 ¿ ] [009 ¿ ]¿¿

¿¿

(c)

[−3−5−5 ¿ ] [002 ¿ ] ¿¿

¿¿(d)

[−3−3−5 ¿ ] [092 ¿ ]¿¿

¿¿Ans (c)

Solution We have (BA)-1 C A-1 B-1 = C A-1 = CB

A−1 = ¿ [−101 ¿ ] [113 ¿ ]¿¿

¿

Page 30: 3. Mathematics II-matrices

Example 33

If w is a complex cube root of unity, then the matrix

A = ¿ [1 w2w ¿ ] [w2w 1¿ ]¿¿

¿ is a

(a) singular matrix (b) non-singular matrix

(c) skew symmetric matrix (d) none of these

Ans (a)

Solution We have

|A|= ¿ [1w2 w ¿ ] [w2 w 1¿ ]¿¿

¿[using C1 C1 + C2 + C3]

= ¿|0 w2 w ¿||0w 1 ¿|¿¿

¿ A is a singular matrix.

Example 34

If

A = ¿ [012 ¿ ] [123 ¿ ] ¿¿

¿ and

A−1 = ¿ [1 /2−1/21/2¿ ] [−43 y ¿ ]¿¿

¿, then

(a) x = 1, y = -1 (b) x = -1, y = 1

(c) x = 2, y = - ½ (d) x = ½, y = ½

Ans (a)

Solution We have

[100 ¿ ] [010 ¿ ]¿¿

¿¿

Page 31: 3. Mathematics II-matrices

= ¿ [10 y + 1 ¿ ] [012 ( y + 1) ¿ ] ¿¿

¿

1 – x = 0, x – 1 = 0, y + 1 = 0, y + 1 = 0, 2 + xy = 1

x = 1, y = -1

Example 35

If A = ¿ [01 ¿ ]¿

¿¿

then A4 is

(a)

[10 ¿ ]¿¿

¿¿(b)

[11 ¿ ]¿¿

¿¿

(c)

[00 ¿ ]¿¿

¿¿(d)

[01¿ ]¿¿

¿¿

Ans (a)

Solution We have

A2= ¿ [01¿ ]¿¿

¿

A4= A2 A2 = II = I

Example 36

If A = ¿ [3−4 ¿ ]¿

¿¿, then An (where n N) is

(a)

[3n−4n ¿ ] ¿¿

¿¿(b)

[n + 25 − n ¿ ] ¿¿

¿¿

(c)

[3n (−4 )n ¿ ] ¿¿

¿¿(d) none of these

Ans (d)

Solution We have

Page 32: 3. Mathematics II-matrices

A2 = ¿ [3−4 ¿ ]¿¿

¿

For n = 2, none of (a), (b), (c) match with the actual answer.

Thus, answer is (d).

Example 37

If A and B are two matrices such that AB = B and BA = A, then A2 + B2 is equal to

(a) 2AB (b) 2BA

(c) A + B (d) AB

Solution We have

A2 + B2= (BA)2 + (AB)2

= (BA) (BA) + (AB) (AB)

= (B (AB) A + A (BA) B

= B (BA) + A (AB)

= BA + AB = A + B

Example 38

If

A = ¿ [201 ¿ ] [213 ¿ ] ¿¿

¿, then A2 – 5A + 6I is equal to

(a)

[1−1−3¿ ] [−1−1−10¿ ]¿¿

¿¿(b)

[11−5¿ ] [−1−14 ¿ ]¿¿

¿¿(c) 0 (d) I

Ans (a)

Solution

A2 = ¿ [201 ¿ ] [213 ¿ ]¿¿

¿Now, A2 – 5A + 6I

Page 33: 3. Mathematics II-matrices

= ¿ [5−12¿ ] [9−25¿ ]¿¿

¿

= ¿ [5 − 10 + 6−1−+ 02− 5 + 0 ¿ ] [9− 10 + 0−2− 5 + 65 − 15 + 0 ¿ ]¿¿

¿

= ¿ [1−1−3 ¿ ] [−1−1−10 ¿ ] ¿¿

¿

Example 39

The inverse of the matrix

A = ¿ [100 ¿ ] [a 10 ¿ ] ¿¿

¿ is

(a)

[100 ¿ ] [−a 10 ¿ ]¿¿

¿¿(b)

[100 ¿ ] [−a 00 ¿ ]¿¿

¿¿

(c)

[100 ¿ ] [−a 00 ¿ ]¿¿

¿¿(d) none of these

Ans (a)

Solution Using the formula for inverse of a 3 x 3 triangular matrix given in

theory, A-1 is the matrix given in (a).

Example 40

If

A = ¿ [3−34 ¿ ] [2−34 ¿ ]¿¿

¿ then A-1 is

(a) A (b) A2 (c) A3 (d) A4

Ans (c)

Page 34: 3. Mathematics II-matrices

Solution To show that A-1 = B AB = I. We have

A2= ¿ [3−34 ¿ ] [2−34 ¿ ]¿¿

¿

A ( A2) = ¿ [3−34 ¿ ] [2−34 ¿ ]¿¿

¿

= ¿ [1∗¿ ¿ ] [−8∗¿ ¿ ]¿¿

¿[need not evaluated the remaining terms as A3 ≠ I3]

Next

A4 = ( A2) ( A2 ) = ¿ [3−44 ¿ ] [0−10 ¿ ]¿¿

¿

= ¿ [100 ¿ ] [010¿ ]¿¿

¿Thus, A-1 = A3

EXERCISES

1. If I = ¿ [10 ¿ ] ¿

¿¿

, then B equals

(a) (cos ) I + (sin ) J

(b) (sin ) I + (cos ) J

(c) (cos ) I – (sin ) J

(d) – (cos ) I + (sin ) J

2. If a matrix A is both symmetric and skew-symmetric, then

(a) A is a diagonal matrix

(b) A is a null matrix

(c) A is a unit matrix

Page 35: 3. Mathematics II-matrices

(d) A is a triangular matrix

3. If A is a skew symmetric of odd order, then |A| equals

(a) 0

(b) -1

(c) 1

(d) none of these

4. If

A = ¿ [50−1 ¿ ] [070 ¿ ]¿¿

¿ then

(a) A is a diagonal matrix

(b) A is symmetric

(c) A is skew symmetric

(d) A is an upper triangular

matrix

5. If A is a square matrix of order 3 such that A2 = 2A, then |A|2 is equal to

(a) 2 |A|

(b) 8 |A|(c) 16 |A|(d) 0

6. If A is a square matrix then which one of the following is not a symmetric

matrix

(a) A + A

(b) AA’

(c) A’ A

(d) A – A’

7. If A = (aij)3 x 3 where aij = i + j, then

(a) A is symmetric

(b) A is skew symmetric

(c) A is a triangular matrix

(d) A is a singular matrix

8. If A = (aij)3 x 3 is a matrix satisfying the equation x3 – 3x + 1 = 0, then

(a) A is a unit matix

(b) A is singular matrix

(c) A is non-singular matrix

(d) none of these

Page 36: 3. Mathematics II-matrices

9. If A and B are two square matrices of the same size, then (A + B) 2 = A2 + 2AB

+ B2 can hold if and only if

(a) AB = BA

(b) AB + BA = O(c) |A B|≠ 0

(d) |A B|= 0

10. If

[ i0 ¿ ]¿¿

¿¿, then X is equal to

(a)

[0−1¿ ]¿¿

¿¿

(b)

[01¿ ]¿¿

¿¿

(c)

[10 ¿ ]¿¿

¿¿

(d) none of these

11. If A = ¿ [0−i ¿ ] ¿

¿¿

, then AB + BA is

(a) null matrix

(b) unit matrix

(c) invertible matrix

(d) none of these

12.

A = ¿ [123 ¿ ] [123 ¿ ]¿¿

¿, then A is a nilpotent matrix of index

(a) 2

(b) 3

(c) 4

(d) 5

13. If A is an unitary matrix, then |A| is equal to

(a) 1

(b) -1

(c) ± 1

(d) none of these

Page 37: 3. Mathematics II-matrices

14. If A = 1

2¿ (−1− √3¿ )¿

¿¿, then A-1 – A2 is equal to a

(a) null matrix

(b) invertible matrix

(c) unit matrix

(d) none of these

15. If C is a 3 x 3 matrix satisfying the relation C2 + C = I, then C-2 is given by

(a) 2 C

(b) 3 C

(c) C

(d) none of these

16. If A, B and C are three square matrices of the same size such that B = CA C -1,

then CA3 C-1 is equal to

(a) B

(b) B2

(c) B3

(d) B9

17. If X is a 2 x 3 matrix such that |X ' X|≠ 0 , and A = I2 – X (X’ X)-1 X’ then A2 is

equal to

(a) A

(b) I

(c) A-1+

(d) none of these

18. The matrix A = ¿ ( p−q ¿ ) ¿

¿¿ is orthogonal if and only if

(a) p2 + q2 = 1

(b) p2 = q2

(c) p2 = q2 + 1

(d) none of these

19. The values of for which the matrix

A = ¿ ( λ 0 λ ¿ ) ( λ 0−λ ¿ ) ¿¿

¿ is orthogonal is

(a) ± 1

(b) ± 1/ √3

(c) ± ½

(d) none of these

Page 38: 3. Mathematics II-matrices

20. The values of a for which the matrix

A = ¿ (aa2− 1−3 ¿) (a + 12 a2 + 4 ¿ )¿¿

¿ is symmetric

are

(a) -1

(b) -2

(c) 3

(d) none of these

21. Let

Ai = ¿(132 ¿ ) (25 t ¿ ) ¿

¿¿, then the value(s) of t for which inverse of At does

not exist.

(a) -2, 1

(b) 3, 2

(c) 2, -3

(d) 3, -1

22. If A = ¿ [a + ib c + id ¿ ]¿

¿¿

, where a2 + b2 + c2 +d2 = 1, then A-1 is equal to

(a)

[a − ib−c + id ¿ ]¿¿

¿¿

(b)

[a − ibc − id ¿ ]¿¿

¿¿

(c)

[a − ib−c − id ¿ ]¿¿

¿¿

(d) none of these

23. If

A = ¿ [ 12 (eix + e−ix ) 12

(eix− e−ix )¿ ]¿¿

¿ then A-1 exist

(a) for all real x

(b) for positive real x only

(c) for negative real x only

(d) none of these

24. If A = ¿ [abb2 ¿ ] ¿

¿¿

, then A2 is equal

Page 39: 3. Mathematics II-matrices

(a) O

(b) I

(c) – I

(d) none of these

25. If A is 2 x 2 matrix such that A2 = O, then tr (A) is

(a) 1

(b) -1

(c) O

(d) none of these

26. If A = ¿ [ab ¿ ]¿

¿¿ such that A satisfies the relation A2 – (a + d) A = O, then

inverse of A is

(a) I

(b) A

(c) (a + d) A

(d) none of these

27. If A = ¿ [32¿ ]¿

¿¿

, then A-1 is

(a)

127¿ [1−26¿ ]¿

¿¿

(b)

127¿ [−1−26 ¿ ]¿

¿¿

(c)

127¿ [1−26¿ ]¿

¿¿

(d)

127¿ [1 26 ¿ ]¿

¿¿

28. If A is a skew Hermitian matrix, then the main diagonal elements of A are all

(a) real

(b) positive

(c) negative

(d) none of these

29. If

A = ¿ [121¿ ] [01−1 ¿ ] ¿¿

¿, then A3 – 3A2 – A – 9I is equal to

(a) O

(b) I

(c) A(d) A2

Page 40: 3. Mathematics II-matrices

30. If

3 A = ¿ [122¿ ] [21−2 ¿ ]¿¿

¿ and AA’ = I, then x + y is equal to

(a) -3

(b) -2

(c) -1

(d) 0

Page 41: 3. Mathematics II-matrices

31. If the system of equations ax + y = 3, x + 2y = 3, 3x + 4y = 7 is consistent, then

value of a is given by

(a) 2

(b) 1

(c) -1

(d) 0

32. If the system of equations x + 2y – 3z = 1, (p + 2) z = 3, (2p + 1) y + z = 2 is

inconsistent, then the value of p is

(a) -2

(b) – ½

(c) 0

(d) 2

33. The system of linear equations x + y + z = 2, 2x + y – z = 3, 3x + 2y + kz = 4

has a unique solution if

(a) k ≠ 0

(b) -1 < k < 1

(c) -2 < k < 2

(d) k = 0

34. If A= ¿ [4 x + 2 ¿ ]¿

¿¿ is an invertible matrix, then x cannot take value

(a) -1

(b) 2

(c) 3

(d) none of these

35. If A and B are two square matrices of the same order, then which of the

following is true

(a) (AB)’ = A’ B’

(b) (AB)’ = B’ A’(c) |AB|= 0 ⇒|A|= 0 and |B|= 0

(d) none of these

36. The values of for which the system of equations x + y + z = 1, ix + 2y + 4z =

, x + 4y + 10z = 2 is consistent, are given by

(a) 1, -2

(b) -1, 2

(c) 1, 2

(d) none of these

Page 42: 3. Mathematics II-matrices

37. If x, y, z are in A.P with common difference d and the rank of the matrix

[45 x ¿ ] [56 y ¿ ]¿¿

¿¿ is 2, then value of d and k are

(a) x, 5

(b) x/2, 6

(c) arbitrary number, 7

(d) x/4, arbitrary number, 7

38. If A and B are two 3 x 3 matrices and |A|≠ 0 , then which of the following are

not true?

(a) |A B|= 0 ⇒ |B|= 0

(b) |A B|≠ 0 ⇒ |B|≠ 0(c) |A

−1|=|A|−1

(d) |A + A|= 2 |A|

39. If A = ¿ [ i−i ¿ ]¿

¿¿

, then A8 equals

(a) 64 B

(b) 32 B

(c) 16 B

(d) 8 B

40. If

A = ¿ (23 − i−i ¿ ) (3 + iπ 7 + i ¿ ) ¿¿

¿, then A is

(a) symmetric

(b) Hermitian

(c) skew Hermitian

(d) none of these

Page 43: 3. Mathematics II-matrices

ANSWERS

1. (a)

2. (b)

3. (a)

4. (d)

5. (b)

6. (d)

7. (d)

8. (c)

9. (a)

10. (b)

11. (a)

12. (a)

13. (d)

14. (a)

15. (b)

16. (c)

17. (a)

18. (a)

19. (d)

20. (d)

21. (c)

22. (c)

23. (a)

24. (a)

25. (c)

26. (d)

27. (c)

28. (d)

29. (a)

30. (a)

31. (a)

32. (a)

33. (a)

34. (d)

35. (b)

36. (c)

37. (c)

38. (d)

39. (a)

40. (b)

Page 44: 3. Mathematics II-matrices

Source :

TATA McGRAW-HILL`S COMPANIES,2005-2006,Complite Mathematics For AIEEE (ALL

INDIAN ENGINEERING ENTRANCE EXAMINATION).