2gn3gplanningdoc-140716023533-phpapp02.pdf

119
Industrial report iN : RF LINK DESIGN FOR 2G AND 3G Submitted in the practical fulfilment for the award of degree of bachelor of technology in ELECTRONICS AND COMMUNICATION ENGINEERING From MAHARISHI DAYANAND UNIVERSITY (ROHTAK) AT Submitted by: AMBER KHANNA BHUMIKA KATYAL RASHMI KURUP

Upload: guy-pascal-tadomgno

Post on 09-Nov-2015

7 views

Category:

Documents


2 download

TRANSCRIPT

  • Industrial report iN:

    RF LINK DESIGN FOR 2G AND 3G

    Submitted in the practical fulfilment for the award of degree of bachelor of

    technology in

    ELECTRONICS AND COMMUNICATION ENGINEERING

    From

    MAHARISHI DAYANAND UNIVERSITY

    (ROHTAK)

    AT

    Submitted by:

    AMBER KHANNA

    BHUMIKA KATYAL

    RASHMI KURUP

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 1 -

    ACKNOWLEDGEMENT

    I would like to express my gratitude and appreciation to all those who gave me the possibility to

    complete this report. A special thanks to our final year project co-guide at AIRCEL, Mr. Amit

    Mittal and Ms. Uma Reddy, whose help, stimulating suggestions and encouragement, helped

    me to coordinate my project especially in writing this report.

    I would also like to acknowledge with much appreciation the crucial role of the staff of AIRCEL

    INDIA, who gave the permission to use all required equipments, computer systems and the

    necessary material to complete my project.

    I would like to express my sincere thanks and heart full gratitude to Mr. Dipayan Panjafor his

    immense support & guidance whenever needed during the course of my training .I would also

    like to extend my gratitude to the whole staff of Aircel India for providing all the required data

    and information and helping me in the success of the training.

    This work could not have been completed without the indispensable assistance rendered to us by

    Mr. Nitin Tyagi for providing us numerous facilities to study their resources.

    .

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 2 -

    TABLE OF CONTENTS

    Chapter I

    1. Company profile .............................................................................................................. 4

    1.1. Early history and timeline ................................................................................................ 5

    1.2. Core business ...................................................................................................................... 6

    1.3. Key people .......................................................................................................................... 8

    Chapter II

    2. Introduction to mobile communication ......................................................................... 10

    2.1. Basic architecture of GSM ............................................................................................. 11

    2.2. GSM interfaces ................................................................................................................. 22

    Chapter III

    3. Wireless concepts .......................................................................................................... 28

    3.1. Basic definitions for frequency concepts ...................................................................... 32

    Chapter IV

    4. Features of GSM ............................................................................................................ 33

    4.1. Base station identity code ............................................................................................... 35

    Chapter V

    5. Channel concept ............................................................................................................ 37

    5.1. Data services in GSM ....................................................................................................... 39

    Chapter VI

    6. GPRS Architechture .......................................................................................................... 41

    6.1. GPRS network element ................................................................................................... 41

    6.2. Security services in GPRS ................................................................................................ 42

    Chapter VII

    7. Introduction to RF planning .......................................................................................... 44

    7.1. Tools used for RF planning ............................................................................................ 44

    7.2. Basic definition used in RF propagation ...................................................................... 47

    7.3. Propagation losses.. ................................................................................... 49

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 3 -

    Chapter VIII

    8. RF planning procedures ............................................................................................ 54

    8.1. Initial Survay. ................................................................................................................... 55

    8.2. Initial design ..................................................................................................................... 56

    8.3. Selection of sites .............................................................................................................. 57

    Chapter IX

    9. RF planning tools used

    9.1. Mentum Planet ................................................................................................................. 64

    Chapter X

    10. Need of advanced systems ...................................................................................... 79

    10.1. Spread spectrum .............................................................................................. 84

    10.2. WCDMA system............. 87

    11 RF planning for Patna 3G

    11.1 Screen Shots for Planning........................................................................................95

    References

    Reference118

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 4 -

    ABSTRACT

    The project titledRF link design for 2G and 3G is being actively done in the Aircel Limited, Team-RF Planning, as a part of Four months Internship.

    The Internship program consists of RF Planning fundamentals, i.e. how an

    information is transferred from auser equipment to the core mobile networkbased

    on GSM,CDMA,WCDMA, structure of the network, the basic functionality of the

    devices, tools and process and a brief session on planning management. It also

    includes a brief explanation of the live projects undertaken.

    Here we also worked on a simulation software(Mentum Planet, Map Info

    Professional) which acts as a backbone for the radio network in a mobile system.

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 5 -

    COMPANY PROFILE

    Aircel group is an Indian mobile network operator Headquartered in Gurgaon that provides

    wireless voice, messaging and data services in India. It is a joint venture between Maxis

    Communications Berhad of Malaysia, whose current shareholders are the Reddy family of

    Apollo Hospitals Group of India, with Maxis Communications holding a majority stake of

    74%. Aircel commenced operations in 1999 and today is the leading mobile operator in Tamil

    Nadu, Assam, North-East India and Chennai.

    It is Indias fifth largest GSMmobile service provider and seventh largest mobile service

    provider (both GSM and CDMA) with a subscriber base of over 63.35 million, as of December

    2012. It has a market share of 7.33% among wireless operators (includes GSM, CDMA, and

    FWP operators) in the country.

    Aircel has also obtained permission from the Department of Telecommunications (DoT) to

    provide International Long Distance (ILD) and National Long Distance (NLD) telephony

    services. It also has the Largest service in Tamil Nadu.

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 6 -

    EARLY HISTORY AND TIMELINE

    1999:- Started as a Regional Player in Tamil Nadu.

    Aircel started as a regional player in Tamil Nadu in 1999 by Chinnakannan

    Sivasankaran.Soon, it became the leading operator in Tamil Nadu.

    2005:- 74% stake Purchased by Malaysian Telecom Giant Maxis Communication

    Companys Rapid Growing popularity attracted foreign investments

    and Malaysian operator Maxis Communications bought a 74 percent stake in the company in

    2005 from its Indian owner Chinnakannan Sivasankaran.

    2010:- Company bought 3G and Wireless Broadband (BWA)

    In 2010, the company bought 3G and wireless broadband (BWA) spectrum in 13 and 8 circles

    respectively in the 2010 spectrum auction. It paid US$ 1.44 billion ( 79.1 billion) for the 3G

    spectrum and US$ 0.76 billion ( 49.76 billion) for BWA.

    2012:- Test run for 4G in Hyderabad

    November 2012:- 1 million 3G Customers

    December 2012:- 63.35 million 2G customers

    2013:- Expected to launch 4G circle in Chennai.

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 7 -

    Core Business

    Fig. 1 Core Business

    Core Businesses

    2G Telecom Service

    3G Telecom Service

    Wireless Broadband(BWA)

    Aircel Buisness Solutions

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 8 -

    3G Coverage

    Aircel 3G spectrum is present in 13 states:-

    1.) Andhra Pradesh,

    2.) Karnataka,

    3.) Tamil Nadu,

    4.) Kolkata,

    5.) Kerala,

    6.) Punjab,

    7.) Uttar Pradesh (East),

    8.) West Bengal,

    9.) Jammu & Kashmir,

    10.) Bihar,

    11.) Orissa,

    12.) Assam

    13.) North East

    Aircel Business Solutions

    Aircel Business Solutions (ABS), part of Aircel, sells enterprise solutions such as Multiprotocol

    Label Switching Virtual Private Networks (MPLS VPNs), Voice over Internet

    Protocol (VoIP) and managed video services on wireless platforms including WiMAX.

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 9 -

    Key people

    Chief Operating Officer :- Dr. Kaizad Heerjee

    Chief Financial Officer :- Mr. Anup Vikal

    Head Operating Division :- Mr. Jean Pascal

    Annual Revenue

    Aircel generates an annual Revenue of 1.159 billion US Dollars.

    Major Stake Holders

    74% stake by Malaysian Telecom Giant Maxis Communication Behrad.

    26% Stake by Owner of Apollo Hospitals Mr. Reddy

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 10 -

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 11 -

    Introduction

    A connection between two people a caller and the called person is the basic service of all telephone networks. To provide this service, the network must be able to set up and maintain a

    call, which involves a number of tasks: identifying the called person, determining the location,

    routing the call, and ensuring that the connection is sustained as long as the conversation lasts.

    After the transaction, the connection is terminated and (normally) the calling user is charged for

    the service he has used.

    In a fixed telephone network, providing and managing connections is a relatively easy process,

    because telephones are connected by wires to the network and their location is permanent from

    the networks point of view. In a mobile network, however, the establishment of a call is a far more complex task, as the wireless (radio) connection enables the users to move at their own free

    will providing they stay within the network's service area. In practice, the network has to find solutions to three problems before it can even set up a call:

    Fig.2. Information required by a mobile communications network

    In other words, the subscriber has to be located and identified to provide him/her with the

    requested services. In order to understand how we are able to serve thesubscribers, it is

    necessary to identify the main interfaces, the subsystems and network elements in the GSM

    network, as well as their functions.

    Where is thesubscriber

    Who is thesubscriber

    What does thesubscriber want

    Information aboutthe subscriber

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 12 -

    BASIC ARCHITECTURE OF GSM

    Fig3 Basic Architecture of GSM

    The GSM network is called Public Land Mobile Network (PLMN). It is organised in three

    subsystems:

    Base Station Subsystem (BSS)

    Network Switching Subsystem (NSS)

    Network Management Subsystem (NMS)

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 13 -

    Mobile Station (MS)

    In GSM, the mobile phone is called Mobile Station (MS). The MS is a combination of terminal

    equipment and subscriber data. The terminal equipment as such is called ME (Mobile

    Equipment) and the subscriber's data is stored in a separate module called SIM (Subscriber

    Identity Module).

    Therefore, ME + SIM = MS.

    Fig4. Inserting a SIM card in a mobile phone

    From the users point of view, the SIM is certainly the best-known database used in a GSM network. The SIM is a small memory device mounted on a card and contains user-specific

    identification. The SIM card can be taken out of one mobile equipment and inserted into another.

    In the GSM network, the SIM card identifies the user just like a traveller uses a passport to identify himself.

    The SIM card contains the identification numbers of the user and a list of available networks.

    The SIM card also contains tools needed for authentication and ciphering. Depending on the type

    of the card, there is also storage space for messages, such as phone numbers. A home operator

    issues a SIM card when the user joins the network by making a service subscription. The home

    operator of the subscriber can be anywhere in the world, but for practical reasons the subscriber

    chooses one of the operators in the country where he/she spends most of the time.

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 14 -

    SIM

    The SIM is a removable card that plugs into the ME.

    It identifies the mobile subscriber and provides information about the service that the subscriber should receive.

    The SIM contains several pieces of information

    International Mobile Subscribers Identity ( IMSI ) - This number identifies the mobile subscriber. It is only transmitted over the air during initialising.

    Temporary Mobile Subscriber Identity ( TMSI ) - This number also identifies the subscriber. It can be alternatively used by the system. It is periodically changed by the system to protect the

    subscriber from being identified by someone attempting to monitor the radio interface.

    Location Area Identity ( LAI ) - Identifies the current location of the subscriber.

    Subscribers Authentication Key ( Ki ) - This is used to authenticate the SIM card.

    Mobile Station International Standard Data Number ( MSISDN ) - This is the telephone number

    of the mobile.

    Mostof the data contained within the SIM is protected against reading (eg Ki ) or alterations after the SIM is issued.

    Some of the parameters ( eg. LAI ) will be continously updated to reflect the current location of the subscriber.

    The SIM card can be protected by use of Personal Identity Number ( PIN ) password.

    The SIM is capable of storing additional information such as accumulated call charges.

    FULL SIZE SIM CARD

    Fig 5 Full size sim card

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 15 -

    Mobile Station International Subscribers Dialling Number( MSISDN ) :

    Human identity used to call a MS

    The Mobile Subscriber ISDN (MSISDN) number is the telephone number of the MS.

    This is the number a calling party dials to reach the subscriber.

    It is used by the land network to route calls toward the MSC.

    CC = Country code

    NDC = National Destination Code

    SN = Subscriber Number

    International Mobile Subscribers Identity ( IMSI ) :

    Network Identity Unique to a MS

    The International Mobile Subscriber Identity (IMSI) is the primary identity of the subscriber within the mobile network and is permanently assigned to that subscriber.

    The IMSI can be maximum of 15 digits.

    MCC= Mobile Country Code (3 digits)

    MNC=Mobile network Code (2 digits)

    MSIN=Mobile Subscriber Identity Number

    Temporary Mobile Subscribers Identity ( TMSI ) :

    The GSM system can also assign a Temporary Mobile Subscriber Identity (TMSI).

    After the subscriber's IMSI has been initialized on the system, the TMSI can be used for sending messages backwards and forwards across the network to identify the subscriber.

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 16 -

    The system automatically changes the TMSI at regular intervals, thus protecting the subscriber from being identified by someone attempting to monitor the radio channels.

    The TMSI is a local number and is always allocated by the VLR.

    The TMSI is maximum of 4 octets.

    International Mobile Equipment Identity ( IMEI ) :

    IMEI is a serial number unique to each mobile

    Each MS is identified by an International Mobile station Equipment Identity (IMEI) number which is permanently stored in the Mobile Equipment.

    On request, the MS sends this number over the signalling channel to the MSC.

    The IMEI can be used to identify MSs that are reported stolen or operating incorrectly.

    TAC FAC SNR SP

    6 2 6 1

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 17 -

    BASE STATION SUBSYSTEM

    The Base Station Subsystem is responsible for managing the radio network, and it is controlled

    by an MSC. Typically, one MSC contains several BSSs. A BSS itself may cover a considerably

    large geographical area consisting of many cells(a cell refers toan area covered by one or more

    frequency resources). The BSS consists of the following elements:

    BSC Base Station Controller

    BTS Base Transceiver Station

    TRAU Transcoder and Rate Adaptation Unit (sometimes also called TC (Transcoder))

    Fig6. The Base Station Subsystem (BSS)

    Some of the most important BSS tasks are listed in the following:

    Radio path control

    In the GSM network, the Base Station Subsystem (BSS) is the part of the network taking care of

    radio resources, that is, radio channel allocation and quality of the radio connection.

    Synchronisation

    The BSS uses hierarchical synchronisation, which means that the MSC synchronises the BSC,

    and the BSC further synchronises the BTSs associated with that particular BSC. Inside the BSS,

    synchronisation is controlled by the BSC. Synchronisation is a critical issue in the GSM network

    due to the nature of the information transferred. If the synchronisation chain is not working

    correctly, calls may be cut or the call quality may not be the best possible. Ultimately, it may

    even be impossible to establish a call.

    Air- and A-interface signalling

    In order to establish a call, the MS must have a connection throughhe the BSS.

    BTS

    TC

    BSC

    BSC

    TC

    BTS

    BTS

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 18 -

    Connection establishment between the MS and the NSS

    The BSS is located between two interfaces, the air- and the A-interface. The MS must have a

    connection through these two interfaces before a call can be established. Generally speaking, this

    connection may be either a signalling connection or a traffic (speech, data) connection.

    Mobility management and speech transcoding

    BSS mobility management mainly covers the different cases of handovers. These handovers and

    speech transcoding are explained in later sections.

    Let us now have a closer look at each of the individual network elements (BSC, BTS, and

    Transcoder.

    Base Station Controller (BSC) The BSC is the central network element of the BSS and it controls the radio network. It has

    several important tasks, some of which are presented in the following:

    Connection establishment between the MS and the NSS

    All calls to and from the MS are connected through the switching functionality of the BSC.

    Mobility management

    The BSC is responsible for initiating the vast majority of all handovers, and it makes the handover decision based on, among others, measurement reports sent by the MS during a call.

    Statistical raw data collection

    Information from the Base Transceiver Stations, Transcoders, and BSC are collected in the BSC

    and forwarded via the DCN (Data Communications Network) to the NMS (Network

    Management Subsystem), where they are post-processed into statistical views, from which the

    network quality and status is obtained.

    Air- and A-interface signalling support

    In the A-interface, SS#7 (Common Channel Signalling System No. 7) is used as the signalling

    language, while the environment in the air interface allows the usage of a protocol adapted from

    ISDN standards, namely LAPDm (Link Access Protocol on the ISDN D Channel, modified

    version). Between the Base Transceiver Station and the BSC (Abis interface), a more

    standardised LAPD protocol is used. The BSC also enables the transparent signalling connection

    needed between the MSC/VLR and the MS.

    BTS and TRAU control

    Inside the BSS, all the BTSs and TCs are connected to the BSC(s). The BSC maintains the BTSs.

    In other words, the BSC is capable of separating (barring) a BTS from the network and

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 19 -

    collecting alarm information. TRAUs are also maintained by the BSC, that is, the BSC collects

    alarms related to the transcoders.

    Base Transceiver Station (BTS) The BTS is the network element responsible for maintaining the air interface and minimising the

    transmission problems (the air interface is very sensitive for disturbances). This task is

    accomplished with the help of some 120 parameters. These parameters define exactly what kind

    of BTS is in question and how MSs may "see" the network when moving in this BTS area.

    The BTS parameters handle the following major items: what kind of handovers (when and why),

    paging organisation, radio power level control, and BTS identification. The BTS has several very

    important tasks, some of which are presented in the following.

    Fig7.Nokia MetroSite Base Transceiver Station

    Air interface signalling

    A lot of both call and non-call related signalling must be performed in order for the system to

    work. One example is that when the MS is switched on for the very first time, it needs to send

    and receive a lot of information with the network (more precisely with the VLR) before we can

    start to receive and make phone calls. Another example is the signalling required to set up both

    mobile originated and mobile terminated calls. A third very important signalling in mobile

    networks is the need to inform the MS when a handover is to be performed (and later when the

    MS sends a message in the uplink direction telling the network that the handover is completed.

    Later in this chapter, we will have a closer look at all of these different cases.

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 20 -

    Ciphering

    Both the BTS and the MS must be able to cipher and decipher information in order to protect the

    transmitted speech and data in the air interface.

    Speech processing

    Speech processing refers to all the functions the BTS performs in order to guarantee an error-free

    connection between the MS and the BTS. This includes tasks like speech coding (digital to

    analogue in the downlink direction and vice versa), channel coding (for error protection),

    interleaving (to enable a secure transmission), and burst formatting (adding information to the

    coded speech / data in order to achieve a well-organised and safe transmission).

    Fig 8. Speech in the BSS

    Modulation and De-modulation

    User data is represented with digital values 0 and 1. These bit values are used to change one of

    the characteristics of an analogue radio signal in a predetermined way. By altering the

    characteristic of a radio signal for every bit in the digital signal, we can "translate" an analogue

    signal into a bit stream in the frequency domain. This technique is called modulation. In GSM,

    Gaussian Minimum Shift Keying (GMSK) is applied.

    The base station can contain several TRXs (Transceivers), each supporting one pair of

    frequencies for transmitting and receiving information. The BTS also has one or more antennas,

    which are capable of transmitting and receiving information to/from one or more TRXs. The

    antennas are either omnidirectional or sectorised. It also has control functions for Operation and

    Maintenance (O&M), synchronisation and external alarms, etc.

    Speech, 64 kbps

    compression Channel Coding

    = redundancy

    Interleavingand ciphering

    TDMA burst formatting

    GMSKmodulation

    22.8kbit/s

    13kbit/s

    33.8kbit/s

    22.8kbit/sAir

    Interface

    MSC TRAU TRAU BTS

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 21 -

    Fig 9.Omnidirectional and sectorised cells

    Transcoder and Rate Adaptation Unit (TRAU) In the air interface (between MS and BTS), the media carrying the traffic is a radio frequency.

    To enable an efficient transmission of digital speech information over the air interface, the digital

    speech signal is compressed. We must however also be able to communicate with and through

    the fixed network, where the speech compression format is different. Somewhere between the

    BTS and the fixed network, we therefore have to convert from one speech compression format to

    another, and this is where the Transcoder comes in.

    Fig10. Location of Transcoder and Submultiplexer

    Omnidirectional BTS

    f1,f2, f3

    3 sectorised BTS

    2 sectorised BTS

    f2

    f1, f2

    f5, f6

    f1

    f3, f4

    BTSBTS

    BTS

    BTS

    BTS BTS

    A InterfaceA ter Interface

    A ter Interface

    MSC

    SM2M

    TC

    TC

    TC

    TC

    Transcoder andSubmultiplexer (TCSM)

    BSC

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 22 -

    For transmission over the air interface, the speech signal is compressed by the mobile station to

    13 kbit/s (Full Rate and Enhanced Full Rate), 5.6 kbit/s (Half Rate), or 12.2 kbit/s

    (Enhanced Full Rate). However, the standard bit rate for speech in the PSTN is 64 Kbits/s. The

    modulation technique is called "Pulse Code Modulation" (PCM).

    The TRAU thus takes care of the change from one bit rate to another. If the TC is located as

    close as possible to the MSC with standard PCM lines connecting the network elements, we can,

    in theory, multiplex four traffic channels in one PCM channel. This increases the efficiency of

    the PCM lines, and thus lowers the costs for the operator. When we connect to the MSC, the

    multiplexed lines have to be de-multiplexed. For that reason, the Nokia solution of the TRAU is

    called Transcoder and Submultiplexer (TCSM).

    According to the standards, the TRAU functionality can be also implemented at the BSC and

    BTS site. The most common case is the MSC site.

    Another task for the TRAU is to enable DTX (Discontinuous transmission), which is used during

    a call when there is nothing to transmit (no conversation). It is activated in order to reduce

    interference and to save MS battery.

    In the Nokia solution, the submultiplexing and transcoding functions are combined in one piece

    of equipment called TCSM2E (European version) or TCSM2A (American version).

    GSM Interfaces

    One of the main purposes behind the GSM specifications is to define several open interfaces,

    which then limit certain parts of the GSM system. Because of this interface openness, the

    operator maintaining the network may obtain different parts of the network from different GSM

    network suppliers. When an interface is open, it also strictly defines what is happening through

    the interface, and this in turn strictly defines what kind of actions/procedures/functions must be

    implemented between the interfaces.

    The GSM specifications define two truly open interfaces within the GSM network. The first one

    is between the Mobile Station (MS) and the Base Station (BS). This open-air interface is called

    Um. It is relatively easy to imagine the need for this interface to be open, as mobile phones of all

    different brands must be able to communicate with GSM networks from all different suppliers.

    The second interface is located between the Mobile services Switching Centre, MSC and the

    Base Station Controller (BSC). This interface is called the A-interface. The system includes more than the two defined interfaces, but especially the ones within the BSS not totally open.

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 23 -

    Fig 11. Interfaces in GSM

    Following are the specified interfaces:

    Um: MS - BTS (air or radio interface)

    A: MSC BSC Abis: BSC BTS (proprietary interface) Ater: BSC TRAU (sometimes called Asub) (proprietary interface) B: MSC VLR C: MSC HLR D: HLR VLR E: MSC MSC F: MSC EIR G: VLR - VLR.

    BSC

    TC

    BTS

    BTS

    VLR

    (G)MSC

    EIRHLR AC

    Um

    AAter

    Abis

    B C

    D

    VLR

    G

    F

    (G)MSC

    E

    BSS NSS

    BSC

    TC

    BTS

    BTS

    (G)MSC

    Um

    AAter

    Abis

    B C

    D

    VLREIR

    HLR AC

    VLR

    G

    F

    (G)MSC

    E

    BSS NSS

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 24 -

    NETWORKING SWITCHING SUBSYSTEM

    The Network Switching Subsystem (NSS) contains the network elements MSC, GMSC, VLR,

    HLR, AC and EIR.

    Fig12. The Network Switching Subsystem (NSS)

    The main functions of NSS are:

    Call control

    This identifies the subscriber, establishes a call, and clears the connection after the conversation

    is over.

    Charging

    This collects the charging information about a call (the numbers of the caller and the called

    subscriber, the time and type of the transaction, etc.) and transfers it to the Billing Centre.

    Mobility management

    This maintains information about the subscriber's location.

    Signalling

    This applies to interfaces with the BSS and PSTN.

    Subscriber data handling

    This is the permanent data storage in the HLR and temporary storage of relevant data in the

    VLR.

    VLR

    GMSC

    VLR

    MSC

    HLR

    HLR

    AC

    EIR

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 25 -

    Mobile services Switching Centre (MSC)

    The MSC is responsible for controlling calls in the mobile network. It identifies the origin and

    destination of a call (mobile station or fixed telephone), as well as the type of a call.

    The MSC is responsible for several important tasks, such as the following.

    Call control

    MSC identifies the type of call, the destination, and the origin of a call. It also sets up,

    supervises, and clears connections.

    Initiation of paging

    Paging is the process of locating a particular mobile station in case of a mobile terminated call (a

    call to a mobile station).

    Charging data collection

    The MSC generates CDRs, Charging Data Records, which contain information about the

    subscribers usage of the network.

    Gateway Mobile services Switching Centre (GMSC)

    The GMSC is responsible for the same tasks as the MSC, except for paging. It is needed in case

    of mobile terminated calls. In fixed networks, a call is established to the local exchange, to which

    the telephone is connected. But in GSM, the MSC, which is serving the MS, changes with the

    subscribers mobility. Therefore, in a mobile terminated call, the call is set up to a well defined exchange in the subscribers home PLMN. This exchange is called GMSC. The GMSC than interacts with a database called Home Location Register, which holds the information about the

    MSC, which is currently serving the MS. The process of requesting location information from

    the HLR is called HLR Interrogation. Given the information about the serving MSC, the

    GMSC then continues the call establishment process.

    In many real life implementations, the MSC functionality and the GMSC functionality are

    implemented in the same equipment, which is then just called MSC. Many operators use GMSCs

    for breakout to external networks such as PSTNs.

    Visitor Location Register (VLR)

    In the Nokia implementation, Visitor Location Register (VLR) is integrated with the MSC

    cabinet. VLR is a database that contains information about subscribers currently being in the

    service area of the MSC/VLR, such as:

    Identification numbers of the subscribers

    Security information for authentication of the SIM card and for ciphering

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 26 -

    Services that the subscriber can use

    The VLR carries out location registrations and updates. When a mobile station comes to a new

    MSC/VLR serving area, it must register itself in the VLR, in other words perform a location

    update. Please note that a mobile subscriber must always be registered in a VLR in order to use

    the services of the network. Also the mobile stations located in their own networks are always

    registered in a VLR.

    The VLR database is temporary, in the sense that the data is held as long as the subscriber is

    within its service area. It also contains the address to every subscriber's Home Location Register,

    which is the next network element to be discussed.

    Home Location Register (HLR) HLR maintains a permanent register of the subscribers. For instance the subscriber identity

    numbers and the subscribed services can be found here. In addition to the fixed data, the HLR

    also keeps track of the current location of its customers. As you will see later, the GMSC asks for

    routing information from the HLR if a call is to be set up to a mobile station (mobile terminated

    call).

    In the Nokia implementation, the two network elements, Authentication Centre (AC) and

    Equipment Identity Register (EIR), are located in the Nokia DX200 HLR.

    Authentication Centre (AC) The Authentication Centre provides security information to the network, so that we can verify

    the SIM cards (authentication between the mobile station and the VLR, and cipher the

    information transmitted in the air interface (between the MS and the Base Transceiver Station)).

    The Authentication Centre supports the VLR's work by issuing so-called authentication triplets

    upon request.

    Equipment Identity Register (EIR) As for AC, the Equipment Identity Register is used for security reasons. But while the AC

    provides information for verifying the SIM cards, the EIR is responsible for IMEI checking

    (checking the validity of the mobile equipment). When this optional network element is in use,

    the mobile station is requested to provide the International Mobile Equipment Identity

    (IMEI) number. The EIR contains three lists:

    Mobile equipment in the white list is allowed to operate normally.

    If we suspect that mobile equipment is faulty, we can monitor the use of it. It is then placed in

    the grey list.

    If the mobile equipment is reported stolen, or it is otherwise not allowed to operate in the

    network, it is placed in the black list.

    Note that IMEI checking is an optional procedure, so it is up to the operator to define if and

    when IMEI checking is performed. (Some operators do not even implement the EIR at all.)

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 27 -

    Network Management Subsystem (NMS)

    The Network Management Subsystem (NMS) is the third subsystem of the GSM network in

    addition to the Network Switching Subsystem (NSS) and Base Station Subsystem (BSS), which

    we have already discussed. The purpose of the NMS is to monitor various functions and

    elements of the network.

    The functions of the NMS can be divided into three categories:

    Fault management

    Configuration management

    Performance management

    These functions cover the whole of the GSM network elements from the level of individual

    BTSs, up to MSCs and HLRs.

    Fault management

    The purpose of fault management is to ensure the smooth operation of the network and rapid

    correction of any kind of problems that are detected. Fault management provides the network

    operator with information about the current status of alarm events and maintains a history

    database of alarms.

    The alarms are stored in the NMS database and this database can be searched according to

    criteria specified by the network operator.

    Fig13. Fault management

    Configuration management

    The purpose of configuration management is to maintain up-to-date information about the

    operation and configuration status of network elements. Specific configuration functions include

    the management of the radio network, software and hardware management of the network

    elements, time synchronisation, and security operations.

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 28 -

    Fig14. Configuration management

    Performance management

    In performance management, the NMS collects measurement data from individual network

    elements and stores it in a database. On the basis of these data, the network operator is able to

    compare the actual performance of the network with the planned performance and detect both

    good and bad performance areas within the network.

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 29 -

    WIRELESS CONCEPTS Frequency-related specifications of the GSM systems

    Table 1 Frequency -related Specification of GSM

    BASIC DEFINITIONS FOR FREQUENCY CONCEPTS

    1. FREQUENCY: The frequency of a radio wave is the number of times the wave oscillates per second. Frequency is measured in Hertz (Hz), where 1 Hz indicates one oscillation per second

    2.WAVELENGTH:Wavelength () is the length of one complete oscillation and is measured in meters (m). Frequency and wavelength are related via the speed of propagation of wave which is

    3x108

    m/s.

    Lower frequencies, with longer wavelengths, are better suited to transmission over large distances, because they bounce on the surface of the earth and in theatmosphere.

    NOTE:-Due to frequency, a BTS transmitting information at 1800

    MHz with an output power of 10 Watts (W) will cover only

    half the area of a similar BTS transmitting at 900 MHz.

    Wavelength = Speed .

    Frequency

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 30 -

    Higher frequencies, with shorter wavelengths, are better suited to transmission over small distances, because they are sensitive to suchproblems as obstacles in the line of the transmission

    path.

    1. BANDWIDTH: Bandwidth is the term used to describe the amount of frequency range allocated to one application.

    2. CHANNELS: A channel is a frequency or set of frequencies which can be allocated for the transmission, and possibly the receipt, of information.

    Fig 15 Uplink and Downlink on Radio Channel

    (NETWORK to the MS)

    NOTE:-As less power is required to transmit low frequency over a given

    distance, therefore uplink frequencies in mobile systems are always the lower

    band of frequencies this saves valuable battery power of the MSs.

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 31 -

    3. DUPLEX DISTANCE: The use of full duplex requires that uplink and downlink transmissions are separated in frequency by a minimum distance, called duplex distance.

    4. CARRIER SEPARATION: In addition to the duplex distance, every mobile system includes a carrier separation. This is the distance on the frequency bandbetween channels being transmitted

    in the same direction.

    This isrequired in order to avoid the overlapping of information in onechannel into an adjacent channel.

    In GSM the carrier separation is fixed at 200 kHz

    Fig 17 Carrier Separation

    5. FREQUENCY RE-USE :

    These frequency re-use patterns ensure that any frequencies being re-used are located at a sufficient distance apart to ensure that there is little interference between them.

    The term frequency re-uses distance is used to describe the distance between two identical frequencies in a re-use pattern. The lower the frequency re-uses distance, the more capacity will

    be available in the network.

    Fig 16 Duplex Distance

    Fig 18 Frequency Reuse

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 32 -

    6. TRANSMISSION RATE: The amount of information transmitted over a radio channel over a period of time is known as the transmission rate. In GSM the net bit rate over the air interface is

    270kbit/s.

    7. MODULATION METHOD: At a basic level, for a carrier frequency to carry digital information we must be able to modify the carrier waveform in some way so that it represents

    digital one (1) and modify it again so that it represents digital zero (0). This modification process

    is called modulation and there are different methods available.

    The modulation technique used in GSM is Gaussian Minimum ShiftKeying (GMSK) and is a form of phase modulation, or phase shiftkeying as it is called.

    GMSK enables the transmission of 270kbit/swith in a 200KHz channel. This gives a bit rate of 1.3 bit/s per Hz. Thisis a rather low bitrate but acceptable as GMSK

    gives highinterference resistance level.

    ACCESS METHOD: TIME DIVISION MULTIPLE ACCESS (TDMA)

    Most digital cellular systems use the technique of Time Division Multiple Access (TDMA) to

    transmit and receive speech signals.

    With TDMA, one carrier is used to carry a number of calls, each callusing that carrier at designated periods in time. These periods of time are referred to as time slots.

    Information sent during one time slot is called a burst. In GSM, a TDMA frame consists of 8 time slots. This means that aGSM radio carrier can carry 8

    calls.

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 33 -

    Fig. 19 TDMA Downlink Frame

    GSM TRANSMISSION AND RECEPTION

    FIG.20transmission and Reception Process

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 34 -

    FEATURES OF GSM

    INCREASED CAPACITY

    The GSM system provides a greater subscriber capacity than analogue systems.

    GSM allows 25 kHz per user, that is, eight conversations per 200 kHz channel pair (a pair comprising one transmit channel and one receive channel).

    Digital channel coding and the modulation used makes the signal resistant to interference from cells where the same frequencies are re-used (co-channel interference); a Carrier to Interference

    Ratio (C/I) level of 12 dB is achieved, as opposed to the 18 dB typical with analogue cellular.

    This allows increased geographic reuse by permitting a reduction in the number of cells in the reuse pattern.

    AUDIO QUALITY

    Digital transmission of speech and high performance digital signal processors provide good quality speech transmission.

    Since GSM is a digital technology, the signals passed over a digital air interface can be protected against errors by using better error detection and correction techniques.

    In regions of interference or noise-limited operation the speech quality is noticeably better than analogue.

    USE OF STANDARDISED OPEN INTERFACES

    Standard interfaces such as C7 and X25 are used throughout the system. Hence different manufacturers can be selected for different parts of the PLMN.

    There is a high flexibilty in where the Network components are situated.

    IMPROVED SECURITY AND CONFIDENTIALITY

    GSM offers high speech and data confidentiality.

    Subscriber authentication can be performed by the system to check if a subscriber is a valid subscriber or not.

    The GSM system provides for high degree of confidentiality for the subscriber. Calls are encoded and ciphered when sent over air.

    The mobile equipment can be identified independently from the mobile subscriber. The mobile has a identity number hard coded into it when it is manufactured. This number is stored in a

    standard database and whenever a call is made the equipment can be checked to see if it has been

    reported stolen.

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 35 -

    CLEANER HANDOVERS

    GSM uses Mobile assisted handover techique.

    The mobile itself carries out the signal strength and quality measurement of its server and signal strength measurement of its neighbors.

    This data is passed on the Network which then uses sophisticated algorithms to determine the need of handover.

    SUBSCRIBER IDENTIFICATION

    In a GSM system the mobile station and the subscriber are identified separately.

    The subscriber is identified by means of a smart card known as a SIM.

    This enables the subscriber to use different mobile equipment while retaining the same subscriber number.

    ENHANCED RANGE OF SERVICES

    Speech services for normal telephony.

    Short Message Service for point ot point transmission of text message.

    Cell broadcast for transmission of text message from the cell to all MS in its coverage area. Message like traffic information or advertising can be transmitted.

    Fax and data services are provided. Data rates available are 2.4 Kb/s, 4.8 Kb/s and 9.6 Kb/s.

    Supplementary services like number identification , call barring, call forwarding, charging display etc can be provided.

    FREQUENCY REUSE

    There are total 124 carriers in GSM ( additional 50 carriers are available if EGSM band is used).

    Each carrier has 8 timeslots and if 7 can be used for traffic then a maximum of 868 ( 124 X 7 ) calls can be made. This is not enough and hence frequencies have to be reused.

    The same RF carrier can be used for many conversations in several different cells at the same time.

    The radio carrier available are allocated according to a regular pattern which repeats over the whole coverage area.

    The pattern to be used depends on the traffic requirement and spectrum availability.

    Some typical repeat patterns are 4/12, 7/21 etc.

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 36 -

    Fig 21 Frequency reuse pattern

    Cell Global Identity ( CGI ) :

    MCC=Mobile Country Code

    MNC=Mobile Network Code

    LAI=location area identity

    CI=cell identity

    BSIC allows a mobile station to distinguish between neighboring base stations.

    It is made up of 8 bits.

    NCC = National Colour Code( Differs from operator to operator )

    BCC = Base Station Colour Code, identifies the base station to help distinguish betweenCells using the same BCCH frequencies

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 37 -

    NCC = National Colour Code( Differs from operator to operator )

    BCC = Base Station Colour Code, identifies the base station to help distinguish

    between Cells using the same BCCH frequencies

    CHANNEL CONCEPT

    Fig 22. Channel concept

    Physical channel - Each timeslot on a carrier is referred to as a physical channel. Per carrier there

    are 8 physical channels.

    Logical channel - Variety of information is transmitted between the MS and BTS. There are

    different logical channels depending on the information sent. The logical channels are of two

    types

    Traffic channel

    Control channel

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 38 -

    GSM Control Channels

    BCH ( Broadcast channels )Downlink only

    Control Channels

    DCCH(Dedicated Channels)Downlink & Uplink

    CCCH(Common Control Chan)Downlink & Uplink

    Synch.Channels

    RACHRandom

    Access Channel

    CBCHCell Broadcast

    Channel

    SDCCHStandalonededicated

    control channel

    ACCHAssociated

    Control Channels

    SACCHSlow associatedControl Channel

    FACCHFast AssociatedControl Channel

    PCH/AGCH

    Paging/Access grant

    FCCHFrequency

    Correction channel

    SCHSynchronisation

    channel

    BCCHBroadcast

    control channel

    CHANNEL CONCEPT

    Fig 23. GSM control channel

    CCCH Channels (Common Control Channel)

    RACH( Random Access Channel )

    Uplink only

    Used by the MS to access the Network.

    AGCH( Access Grant Channel )

    Downlink only

    Used by the network to assign a signalling channel upon successfull decoding of access bursts.

    PCH( Paging Channel )

    Downlink only.

    Used by the Network to contact the MS

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 39 -

    DCCH Channels (Dedicated Control Channel)

    SDCCH( Standalone Dedicated Control Channel )

    Uplink and Downlink

    Used for call setup, location update and SMS.

    SACCH( Slow Associated Control Channel )

    Used on Uplink and Downlink only in dedicated mode.

    Uplink SACCH messages - Measurement reports.

    Downlink SACCH messages - control info.

    FACCH( Fast Associated Control Channel )

    Uplink and Downlink.

    Associated with TCH only.

    Is used to send fast messages like handover messages.

    Works by stealing traffic bursts.

    Constraints with existing network

    Data Rates too slow about 9.6 kbps

    Connection setup time too long

    Inefficient resource utilization for bursty traffic

    Proves expensive for bursty traffic utilization

    Not efficient method for packet transfers

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 40 -

    DATA SERVICES IN GSM

    1. Data transmission standardized with only 9.6 kbit/s

    advanced coding allows 14.4 kbit/s

    not enough for Internet and multimedia applications

    2. HSCSD (High-Speed Circuit Switched Data)

    already standardized

    bundling of several time-slots to get higher AIUR (Air Interface User Rate)

    (e.g., 57.6 kbit/s using 4 slots, 14.4 each)

    advantage: ready to use, constant quality, simple

    disadvantage: channels blocked for voice transmission

    3. GPRS (General Packet Radio services) A step between GSM and 3G . GPRS is an overlay network over the GSM Allows users to transfer data and make calls at the same time. GPRS employs Packet switching Using free slots only if data packets ready to send (e.g., 115 kbit/s using 8 slots temporarily) Standardized by ETSI in1998, introduction 2000. Support for leading internet communication protocols Billing based on volume of data transferred Utilizes existing GSM authentication and privacy procedures. Advantage: one step towards UMTS, more flexible Disadvantage: more investment needed

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 41 -

    GPRS ARCHITECTURE

    Fig 24 GPRS Architecture

    GPRS Network Elements

    GSN (GPRS Support Nodes)

    GGSN (Gateway GSN)

    interworking unit between GPRS and PDN (Packet Data Network)

    SGSN (Serving GSN)

    supports the MS (location, billing, security)

    GR (GPRS Register)

    user addresses

    SGSN (Serving GSN)

    1. Delivers data packets to mobile stations & vice-versa (via

    2. Gb interface).

    3. Requests user address from GR

    4. Keeps track of individual MSs location i.e. detects and registers new GPRS MS in its serving area

    5. Responsible for collecting billing information

    6. Performs security functions such as access control, Authentication

    7. Connected to MSC and BSC

    8. Packet Routing, Transfer & Mobility Management

    9. Maintaining user profiles.

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 42 -

    GR-GPRS Register

    1. GPRS Register is integrated with GSM- Typically part of HLR

    2. Maintains the GPRS subscriber data and routing information.

    3. Stores current SGSN address.

    4. Stores all GPRS relevant data.

    GGSN(Gateway GPRS Support Node)

    1. Interfaces GPRS backbone network & external packet data networks.

    2. Converts the GPRS packets from SGSN to the PDP format.

    3. Converts PDP addresses change to GSM addresses of the destination user.

    4. Routing info for GPRS users.

    5. Performs address conversion.

    6. Tunnels data to a user via encapsulation.

    7. Transfers data to PDN (e.g. Internet, X.25) using Gi interface.

    8. Transfers data packets to SGSN via IP based GPRS backbone network ( Gn interface).

    9. Many-to- many relations among SGSNs & GGSNs .

    10. Stores the current SGSN address and profile of the user in its location register.

    11. Performs authentication.

    Security Services In GPRS

    1. Authentication

    2. Access control

    3. User information confidentiality

    4. Complete anonymous service is also possible e. g. applied for toll systems that only charge a user via the MS independent of users identity.

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 43 -

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 44 -

    INTRODUCTION TO RF PLANNING

    Designing a cellular system - particularly one that incorporates both Macrocellular and Microcellular networks is a delicate balancing exercise.

    The goal is to achieve optimum use of resources and maximum revenue potential whilst maintaining a high level of system quality.

    Full consideration must also be given to cost and spectrum allocation limitations.

    A properly planned system should allow capacity to be added economically when traffic demand increases.

    As every urban environment is different, so is every macrocell and microcell network. Hence informed and accurate planning is essential in order to ensure that the system will provide both

    the increased capacity and the improvement in network quality where required, especially when

    deploying Microcellular systems.

    RF planning plays a critical role in the Cellular design process.

    By doing a proper RF Planning by keeping the future growth plan in mind we can reduce a lot of problems that we may encounter in the future and also reduce substantially the cost of

    optimization.

    On the other hand a poorly planned network not only leads to many Network problems , it also increases the optimization costs and still may not ensure the desired quality.

    TOOLS USED FOR RF PLANNING

    Network Planning Tool

    CW Propagation Tool

    Traffic Modeling Tool

    Project Management Tool

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 45 -

    Network Planning Tool

    Planning tool is used to assist engineers in designing and optimizing wireless networks by providing an accurate and reliable prediction of coverage, doing frequency planning

    automatically, creating neighbor lists etc.

    With a database that takes into account data such as terrain, clutter, and antenna radiation patterns, as well as an intuitive graphical interface, the Planning tool gives RF engineers a state-

    of-the-art tool to:

    Design wireless networks

    Plan network expansions

    Optimize network performance

    Diagnose system problems

    The major tools available in the market are Planet, Pegasos, Cell Cad.

    Also many vendors have developed Planning tools of their own like Netplan by Motorola, TEMS by Ericsson and so on.

    Propagaton Test Kit

    The propagation test kit consists of

    Test transmitter.

    Antenna (generallyOmni).

    Receiver to scan the RSS (Received signal levels). The receiver scanning rate should be settable so that it satisfies Lees law.

    A laptop to collect data.

    A GPS to get latitude and longitude.

    Cables and accessories.

    Wattmeter to check VSWR.

    A single frequency is transmitted a predetermined power level from the canditate site.

    These transmitted power levels are then measured and collected by the Drive test kit. This data is then loaded on the Planning tool and used for tuning models.

    Commonly Graysons or CHASE prop test kits are used.

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 46 -

    Traffic Modeling Tool

    Traffic modelling tool is used by the planning engineer for Network modelling and dimensioning.

    It helps the planning engineer to calculate the number of network elements needed to fulfil coverage, capacity and quality needs.

    Netdim by Nokia is an example of a Traffic modelling tool.

    Project Management Tool

    Though not directly linked to RF Design Planning, it helps in scheduling the RF Design process and also to know the status of the project

    Site database : This includes RF data, site acquisition, power, civil ,etc.

    Inventory Control

    Fault tracking

    Finance Managemen

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 47 -

    BASIC DEFINATIONS USED IN RF PROPAGATION

    Isotropic RF Source

    A point source that radiates RF energy uniformly in all directions (I.e.: in the shape of a sphere)

    Theoretical only: does not physically exist.

    Has a power gain of unity I.e. 0dBi.

    Effective Radiated Power (ERP)

    Has a power gain of unity i.e. 0dBi

    The radiated power from a half-wave dipole.

    A lossless half-wave dipole antenna has a power gain of 0dBd or 2.15dBi.

    Effective Isotropic Radiated Power (EIRP)

    The radiated power from an isotropic source

    EIRP = ERP + 2.15 dB

    Radio signals travel through space at the Speed of Light

    C = 3 * 108 meters / second

    Frequency (F) is the number of waves per second (unit: Hertz)

    Wavelength () (length of one wave) = (distance traveled in one second)

    (waves in one second)

    = C / F

    If frequency is 900MHZ then

    wavelength = 3 * 108

    900 * 106

    = 0.333 meters

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 48 -

    dB

    dB is a a relative unit of measurement used to describe power gain or loss.

    The dB value is calculated by taking the log of the ratio of the measured or calculated power (P2) with respect to a reference power (P1). This result is then multiplied by 10 to obtain the value in

    dB.

    dB = 10 * log10(P1/P2)

    The powers P1 ad P2 must be in the same units. If the units are not compatible, then they should be transformed.

    Equal power corresponds to 0dB.

    A factor of 2 corresponds to 3dB

    If P1 = 30W and P2 = 15 W then

    10 * log10(P1/P2) = 10 * 10 * log10(30/15)

    = 2

    dBm

    The most common "defined reference" use of the decibel is the dBm, or decibel relative to one milliwatt.

    It is different from the dB because it uses the same specific, measurable power level as a reference in all cases, whereas the dB is relative to either whatever reference a particular user

    chooses or to no reference at all.

    A dB has no particular defined reference while a dBm is referenced to a specific quantity: the milliwatt (1/1000 of a watt).

    The IEEE definition of dBm is "a unit for expression of power level in decibels with reference to a power of 1 milliwatt."

    The dBm is merely an expression of power present in a circuit relative to a known fixed amount (i.e., 1 milliwatt) and the circuit impedance is irrelevant.}

    dBm = 10 log (P) (1000 mW/watt)

    where dBm = Power in dB referenced to 1 milliwatt

    P = Power in watts

    If power level is 1 milliwatt:

    Power(dBm) = 10 log (0.001 watt) (1000 mW/watt)

    = 10 log (1)

    = 10 (0) = 0

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 49 -

    Thus a power level of 1 milliwatt is 0 dBm.

    If the power level is 1 watt

    1 watt Power in dBm = 10 log (1 watt) (1000 mW/watt)

    = 10 (3)

    = 30

    dBm = 10 log (P) (1000 mW/watt)

    The dBm can also be negative value.

    If power level is 1 microwatt

    Power in dBm = 10 log (1 x 10E-6 watt) (1000 mW/watt)

    = -30 dBm

    Since the dBm has a defined reference it can be converted back to watts if desired.

    Since it is in logarithmic form it may also be conveniently combined with other dB terms.

    dBv/m

    To convert field strength in dbv/m to received power in dBm with a 50 optimum terminal

    impedance and effective length of a half wave dipole /

    0dBu = 10 log[(10-6

    )2(1000)(/)2/(4*50)] dBm

    At 850MHZ

    0dBu = -132 dBm

    39dBu = -93 dBm

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 50 -

    PROPAGATION LOSSES

    Reflection

    Occurs when a wave impinges upon a smooth surface.

    Dimensions of the surface are large relative to .

    Reflections occur from the surface of the earth and from buildings and walls.

    Diffraction (Shadowing)

    Occurs when the path is blocked by an object with large dimensions relative to and sharp irregularities (edges).

    Secondary wavelets propagate into the shadowed region.

    Diffraction gives rise to bending of waves around the obstacle.

    Scattering

    Occurs when a wave impinges upon an object with dimensions on the order of or less, causing the reflected energy to spread out orscatter in many directions.

    Small objects such as street lights, signs, & leaves cause scattering

    MULTIPATH

    Multiple Waves Create Multipath

    Due to propagation mechanisms, multiple waves arrive at the receiver

    Sometimes this includes a direct Line-of-Sight (LOS) signal

    Fig 25. Multipath

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 51 -

    Multipath Propagation

    Multipath propagation causes large and rapid fluctuations in a signal

    These fluctuations are not the same as the propagation path loss.

    Multipath causes three major things

    Rapid changes in signal strength over a short distance or time.

    Random frequency modulation due to Doppler Shifts on different multipath signals.

    Time dispersion caused by multipath delays

    These are called fading effects

    Multipath propagation results in small-scale fading.

    FADING

    The communication between the base station and mobile station in mobile systems is mostly non-LOS.

    The LOS path between the transmitter and the receiver is affected by terrain and obstructed by buildings and other objects.

    The mobile station is also moving in different directions at different speeds.

    The RF signal from the transmitter is scattered by reflection and diffraction and reaches the receiver through many non-LOS paths.

    This non-LOS path causes long-term and short term fluctuations in the form of log-normal fading and rayleigh and rician fading, which degrades the performance of the RF channel.

    Fig 26 Fading Graph

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 52 -

    LONG TERM FADING

    Terrain configuration & man made environment causes long-term fading.

    Due to various shadowing and terrain effects the signal level measured on a circle around base

    station shows some random fluctuations around the mean value of received signal strength.

    The long-term fades in signal strength, r, caused by the terrain configuration and man made

    environments form a log-normal distribution, i.e the mean received signal strength, r, varies log-

    normally in dB if the signal strength is measured over a distance of at least 40.

    Experimentally it has been determined that the standard deviation, , of the mean received signal

    strength, r, lies between 8 to 12 dB with the higher generally found in large urban areas.

    RAYLEIGH FADING

    This phenomenon is due to multipath propagation of the signal.

    The Rayleigh fading is applicable to obstructed propagation paths.

    All the signals are NLOS signals and there is no dominant direct path.

    Signals from all paths have comparable signal strengths.

    The instantaneous received power seen by a moving antenna becomes a random variable

    depending on the location of the antenna.

    Fig 27 Rayleigh Fading

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 53 -

    RICEAN FADING

    This phenomenon is due to multipath propagation of the signal.

    In this case there is a partially scattered field.

    One dominant signal.

    Others are weaker.

    Fig 28 Ricean Fading

    RF PLANNING PROCEDURES

    PRELIMINARY WORK

    Propagation tool setup

    Set up the planning tool hardware. This includes the server and or clients which may be UNIX based.

    Setup the plotter and printer to be used.

    Terrain, Clutter, Vector data acquisition and setup

    Procure the terrain, clutter and vector data in the required resolution.

    Setup these data on the planning tool.

    Test to see if they are displayed properly and printed correctly on the plotter.

    Setup site tracking database

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 54 -

    This is done using Project management or site management databases.

    This is the central database which is used by all relevant department, viz. RF, Site acquisition, Power, Civil engineering etc, and avoids data mismatch.

    Load master lease site locations in database

    If predetermined friendly sites that can be used are available, then load this data into the site database.

    Marketing Analysis and GOS determination

    Marketing analysis is mostly done by the customer.

    Growth plan is provided which lists the projected subscriber growth in phases.

    GOS is determined in agreement with the customer (generally the GOS is taken as 2%)

    Based on the marketing analysis, GOS and number of carriers as inputs, the network design is carried out.

    Zoning Analysis

    This involves studying the height restrictions for antenna heights in the design area.

    Set Initial Link Budget

    Link Budget Analysis is the process of analyzing all major gains and losses in the forward and reverse link radio paths.

    Inputs

    Base station & mobile receiver sensitivity parameters

    Antenna gain at the base station & mobile station.

    Hardware losses(Cable, connector, combiners etc).

    Target coverage

    reliabilty.Fade margins.

    Output

    Maximum allowable path loss.

    Initial cell radius calculation

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 55 -

    Using link budget calculation, the maximum allowable path loss is calculated.

    Using Okumura hata emprical formula, the initial cell radius can be calculated.

    Initial cell count estimates

    Once the cell radius is known, the area covered by one site can be easily calculated.

    By dividing the total area to be covered by the area of each cell, a initial estimate of the number of cells can be made.

    INITIALSURVEY

    Morphology Definition

    Morphology describes the density and height of man made or natural obstructions.

    Morphology is used to more accurately predict the path loss.

    Some morphology area definitions are Urban, Suburban, rural, open etc.

    Density also applies to morphology definitions like dense urban, light suburban, commercial etc.

    This basically leads to a number of sub-area formation where the link budget will differ and hence the cell radius and cell count will differ.

    Morphology Drive Test

    This drive test is done to prepare generic models for network design.

    Drive test is done to characterize the propagation and fading effects.

    The objective is to collect field data to optimize or adjust the prediction model for preliminary simulations.

    A test transmitter and a receiver is used for this purpose.

    The received signals are typically sampled ( around 50 samples in 40 ).

    Propagation Tool Adjustment

    The data collected by drive testing is used to prepare generic models.

    For a given network design there may be more than one model like dense-urban, urban, suburban, rural, highway etc.

    The predicted and measured signal strengths are compared and the model adjusted to produce minimum error.

    These models are then used for initial design of the network

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 56 -

    INITIAL DESIGN

    Complete Initial Cell Placement

    Planning of cell sites sub-area depending on clutter type and traffic required.

    Run Propagation Analysis

    Using generic models prepared by drive testing & prop test, run predictions for each cell depending on morphology type to predict the coverage in the given sub-areas.

    Planning tool calculates the path loss and received signal strength using Co-ordinates of the site location, Ground elevation above mean sea level, Antenna height above ground, Antenna

    radiation pattern (vertical & horizontal) & antenna orientation, Power radiated from the antenna.

    Reset Cell Placement( Ideal Sites)

    According to the predictions change the cell placements to design the network for contigious coverage and appropriate traffic.

    System Coverage Maps

    Prepare presentations as follows

    Background on paper showing area MAP which include highways, main roads etc.

    Phase 1 sites layout on transparency.

    Phase 1 sites composite coverage prediction.

    Phase 2 sites layout transparency.

    Phase 2 composite coverage prediction on transparency.

    If more phases follow the same procedure.

    Design Review With The Client

    Initial design review has to be carried out with the client so that he agrees to the basic design of the network.

    During design review, first put only the background map which is on paper. Then step by step put the site layout and coverage prediction.

    Display may show some coverage holes in phase 1 which should get solved in phase 2 .

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 57 -

    SELECTION OF SITES

    Prepare Initial Search Ring

    Note the latitude and longitude from planning tool.

    Get the address of the area from mapping software.

    Release the search ring with details like radius of search ring, height of antenna etc.

    Release search rings to project management

    Visit friendly site locations

    If there are friendly sites available that can be used (infrastructure sharing), then these sites are to be given preference.

    If these sites suite the design requirements, then visit these sites first.

    Select Initial Anchor Sites

    Initial anchor sites are the sites which are very important for the network buildup, Eg - Sites that will also work as a BSC.

    Enter Data In Propagation Tool

    Enter the sites exact location in the planning tool.

    Perform Propagation Analysis

    Now since the site has been selected and the lat/lon of the actual site ( which will be different from the designed site) is known, put this site in the planning tool and predict coverage.

    Check to see that the coverage objectives are met as per prediction.

    Reset / Review Search Rings

    If the prediction shows a coverage hole ( as the actual site may be shifted from the designed site), the surrounding search rings can be resetted and reviewed.

    Candidate site Visit( Average 3 per ring)

    For each proposed location, surveys should carried out and at least 3 suitable site candidates identified.

    Details of each candidate should be recorded on a copy of the Site Proposal Form for that site. Details must include:

    Site name and option letter Site location (Lat./Long)

    Building Height

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 58 -

    Site address and contact number

    Height of surrounding clutter

    Details of potential coverage effecting obstructions or other comments(A, B, C,...)

    Drive Test And Review Best Candidate

    In order to verify that a candidate site, selected based on its predicted coverage area, is actually covering all objective areas, drive test has to be performed.

    Drive test also points to potential interference problems or handover problems for the site.

    The test transmitter has to be placed at the selected location with all parameters that have been determined based on simulations.

    Drive test all major roads and critical areas like convention centers, major business areas, roads etc.

    Take a plot of the data and check for sufficient signal strength, sufficient overlaps and splashes( least inteference to other cells).

    Drive Test Integration

    The data obtained from the drive test has to be loaded on the planning tool and overlapped with the prediction. This gives a idea of how close the prediction and actual drive test data match.

    If they do not match ( say 80 to 90 %) then for that site the model may need tuning.

    Visit Site With All Disciplines( SA, Power, Civil etc )

    A meeting at the selected site takes place in which all concerned departments like RF Engineering, Site acquisition, Power, Civil Engineer, Civil contractor and the site owner is

    present.

    Any objections are taken care off at this point itself.

    Select Equipment Type For Site

    Select equipment for the cell depending on channel requirements

    Selection of antenna type and accessories.

    Locate Equipment On Site For Construction Drawing

    Plan of the building ( if site located on the building) to be made showing equipment placement, cable runs, battery backup placement and antenna mounting positions.

    Antenna mounting positions to be shown separately and clearly.

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 59 -

    Drawings to be checked and signed by the Planner, site acquisition, power planner and project manager.

    Perform Link Balance Calculations

    Link balance calculation per cell to be done to balance the uplink and the downlink path.

    Basically link balance calculation is the same as power budget calculation. The only difference is that on a per cell basis the transmit power of the BTS may be increased or decreased depending

    on the pathloss on uplink and downlink.

    EMI Studies

    Study of RF Radiation exposure to ensure that it is within limits and control of hazardous areas.

    Data sheet to be prepared per cell signed by RF Planner and project manager to be submitted to the appropriate authority.

    Radio Frequency Plan/ PN Plan

    Frequency planning has to be carried out on the planning tool based on required C/I and C/A and interference probabilities.

    System Interference Plots

    C/I, C/A, Best server plots etc has to be plotted.

    These plots have to be reviewed with the customer to get the frequency plan passed.

    Final Coverage Plot

    This presentation should be the same as design review presentation.

    This plot is with exact locations of the site in the network.

    Identification of coverage holes

    Coverage holes can be identified from the plots and subsequent action can be taken(like putting a new site) to solve the problem.

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 60 -

    LINK BUDGET

    Link Budget Analysis is the process of analyzing all major gains and losses in the forward and

    reverse link radio paths.

    Inputs

    Base station & mobile receiver sensitivity parameters

    Antenna gain at the base station & mobile station.

    Hardware losses(Cable, connector, combiners etc).

    Target coverage reliabilty.

    Fade margins

    Output

    Maximum allowed path loss

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 61 -

    LINK BUDGET FOR 1800MHz FREQUENCY

    Terrain Type: Dense Urban Urban Sub Urban Rural

    Uplink

    MS power (dBm) 30 30 30 30

    Base Station Height 18 21 24 30

    MS antenna gain (dB) 0 0 0 0

    Diversity gain (dB) 3 4.5 4.5 3

    Antenna Gain (dBi) 17.5 17.5 17.5 17.5

    Feeder + Jumper loss , (dB) 3 3 3 3

    Sens BTS (dBm) -111 -111 -111 -111

    Allowed Path loss UL 156.5 158 158 156.5

    Downlink

    BTS power (dBm) 43 43 43 43

    Feeder + Jumper loss , (dB) 3 3 3 3

    Antenna Gain (dBi) 17.5 17.5 17.5 17.5

    Sens. MS (dBm) -102 -102 -102 -102

    Body Loss [dB] 2 2 2 2

    Allowed Path loss DL 157.5 157.5 157.5 157.5

    Area coverage probability: 0.95 0.95 0.95 0.9

    Log Normal Fading Marg [dB] 12 10 7 6

    Building/Car Penetration Loss [dB] 24 20 14 9

    Interference margin [dB] 2 2 2 2

    Rayleigh fading margin [dB] 1 1 1 1

    Max Allowed Path loss: [dB] 117.5 125 134 138.5

    A -parameter (1800 MHz) 154.5 153.8 153.8 146.2

    Coverage Range [km]: 0.291 0.512 0.954 2.296

    With Formula 0.291188 0.512263 0.954429 2.295660

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 62 -

    LINK BUDGET FOR 900MHz FREQUENCY

    Terrain Type: Dense Urban Urban

    Sub Urban Rural

    Uplink

    MS power (dBm) 21 23 23 24

    Base Station Height 18 21 24 30

    MS antenna gain (dB) 0 0 0 0

    Diversity gain (dB) 2 2 2 2

    Antenna Gain (dBi) 17.5 17.5 17.5 17.5

    Feeder + Jumper loss , (dB) 3 3 3 3

    Sens BTS (dBm) -111 -111 -111 -111

    Allowed Path loss UL 146.5 148.5 148.5 149.5

    Downlink

    BTS power (dBm) 43 43 43 43

    Feeder + Jumper loss , (dB) 3 3 3 3

    Antenna Gain (dBi) 17.5 17.5 17.5 17.5

    Sens. MS (dBm) -102 -102 -102 -102

    Body Loss [dB] 2 2 2 2

    Allowed Path loss DL 157.5 157.5 157.5 157.5

    Area coverage probability: 0.95 0.95 0.95 0.9

    Log Normal Fading Marg [dB] 12 10 7 6

    Building/Car Penetration Loss [dB] 24 20 14 9

    Interference margin [dB] 2 2 2 2

    Rayleigh fading margin [dB] 1 1 1 1

    Max Allowed Path loss: [dB] 107.5 115.5 124.5 131.5

    A -parameter (900 MHz) 153.8 153.8 153.8 146.2

    Coverage Range [km]: 0.162 0.280 0.519 1.453

    With Formula 0.162411 0.280122 0.518587 1.452728

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 63 -

    RF PLANNING TOOLS USED

    1. Mentum Planet 5.5 2. Map Info Professional

    MENTUM PLANET

    The network of today's wireless operator must evolve to offer advanced data services cost-effectively - and stay one step ahead of the competition.

    New technologies such as LTE, HSPA and WiMAX present new opportunities, but their advanced features, their usage patterns and the need for a cleaner radio channel that can offer

    improved system capacity drive the requirement for innovative RF planning and optimization

    software.

    Better network design practices are generating long-lasting benefits in terms of quality of service and network capacity.

    Mentum Planet is a wireless network planning & optimization software that offers the ability to design better networks through quality engineering solutions for the networks of today and

    tomorrow.

    Mentum Planet 5 - the fifth generation of this software platform - was built to address the complex requirements of wireless broadband technologies for operators, equipment vendors, and

    consulting firms involved in the planning, operation, and optimization of wireless networks.

    The Mentum Planet product family supports most of the commercially deployed wireless standards, including GSM, GPRS, EDGE, WCDMA, HSPA, HSPA+, LTE (TDD and FDD),

    Wi-Fi, WiMAX, cdma2000, EVDO, TDMA, FDMA, DVB-H, TETRA, P25 and generic

    TDMA/FDMA systems using simulcast.

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 64 -

    Step1 :-Initial view of Mentum Planet 5.5 (Fig. 29)

    STEP 2(Fig 30):- Designate a folder to save the project

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 65 -

    STEP 3(Fig 31):- Name the project

    STEP 4(Fig 32):- Select the project technology (GSM)

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 66 -

    STEP 5(Fig 33):-Choose default settings for each entitled technology

    STEP 6(Fig 34):- Choose geodata files that covers all sites

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 67 -

    STEP 7(Fig 35):- Choose the Co-ordinate system to be used

    STEP8(Fig 36):- View of the Clutter Mam for Delhi Region

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 68 -

    STEP 9(Fig 37):-Grid Legend for Delhi Regon Clutter

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 69 -

    STEP 10(Fig 38):-Create a Propogation Model to be Used

    STEP 11(Fig 39):-Specify the Okumura Hata Model Values

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 70 -

    STEP 12(Fig 40):- Define the propagation Models Depending on different clutter

    STEP 13(Fig 41):-Select Place a site Tool as shown

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 71 -

    STEP 14(Fig 42):- Click on the desired location to place a site

    STEP 15(Fig 43):- Edit the Site Properties (select the P- Model)

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 72 -

    STEP 16(Fig 44):- Select FDMA/TDMA Analysis from NETWORK ANALYSIS WIZARD

    STEP 17(Fig 45):-Select Sectors for Analysis

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 73 -

    STEP 18(Fig 46):- Input the Best Sector Assumptions

    STEP 19(fig 47):-Input the Interfernce parameters

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 74 -

    STEP 20(Fig 48):-Input Coverage Parameters

    STEP 21(Fig 49):- Select the layers to be analysed

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 75 -

    STEP 22 (Fig 50):-Click on Finish

    STEP 23(Fig 51):- Prediction generator for sectors of a site

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 76 -

    STEP 24(Fig 52):-Best Signal StrengthAnalyser in Progress

    STEP 25(Fig 53):- Sites Placed

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 77 -

    STEP 26(Fig54):- Prediction for a single site with grid legend

    STEP 27(Fig 55):- Overall Predictions Showing BSSS

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 78 -

    Statistics

    Area Covered in Sq.Km.

    Dense Urban Urban Sub Urban Village

    -200 ~ -85 0 10.316049 6.8341 2.92535

    -85 ~ -80 0.1815 23.3907242 8.1121999 2.59417486

    -80 ~ -75 1.1065 39.0406 9.2772747 1.784025

    -75 ~ -65 64.9478 132.4624481 19.922474 3.994875

    -65 ~ 0 116.202047 122.8879699 14.93 8.620025

    Outside range 0 9.9421 16.25455 10.2271957

    Total Area 182.437847 338.0398912 75.330599 30.1456456

    Area Covered in %

    Dense Urban Urban Sub Urban Village

    -200 ~ -85 0 3.051725334 9.0721435 9.70405492

    -85 ~ -80 0.099485936 6.919515953 10.768798 8.60547124

    -80 ~ -75 0.606507925 11.54911033 12.315414 5.91801889

    -75 ~ -65 35.5999597 39.18544868 26.446722 13.2519139

    -65 ~ 0 63.69404644 36.3530971 19.819303 28.5945941

    Outside range 0 2.941102591 21.577619 33.9259469

  • RF link design for 2G and 3G

    AIRCEL LIMITED P age - 79 -

    No. Of Sites

    Area sq. kms Coverage range(kms.) Area Sites

    Dense Urban 182.43785 0.291 0.16481 1106.956

    Urban 338.0411 0.512 0.510198 662.5688

    Sub urban 86.065175 0.954 1.771313 48.58834

    Rural 32.466025 2.296 10.25988 3.164366

    Others 4437.087425 2.296 10.25988 432.4696

    TOTAL 5076.097575 6.349 22.96609 2253.747

    NEED OF ADVANCED SYSYTEM

    Need for universal standard (Universal Mobile Telecommunication System)

    Support for packet data services

    IP data in core network

    Wireless IP

    New services in mobile multimedia need faster data transmission and flexible utilization of the spectrum

    FDMA and TDMA are not efficient enough

    TDMA wastes time resources

    FDMA wastes frequency resources

    CDMA can exploit the whole bandwidth constantly

    Wideband CDMA was selected for a radio access system for UMTS (1997)

    (Actually the superiority of OFDM was not fully understood by then)

    FREQUENCY ALLOCATION FOR UMTS

    Frequency plans of Europe, Japan and Korea are harmonized US plan is incompatible, the spectrum reserved for 3G elsewhere is currently used for the US 2G

    standards

    IMT-2000 band in Europe:

  • RF link desi