264_2f/1 using superconductivity in space using superconductivity in space f. cervelli lnf, februry...

27
264_2f/ Using Superconductivity in Using Superconductivity in Space Space F. F. Cervelli Cervelli LNF, Februry 16, LNF, Februry 16,

Upload: peter-cody-cummings

Post on 20-Jan-2016

218 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/1

Using Superconductivity in SpaceUsing Superconductivity in Space

F. CervelliF. Cervelli LNF, Februry 16, 2005LNF, Februry 16, 2005

Page 2: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/2

100 Years of Super Conductivity100 Years of Super Conductivity

Super-Conduction at -270°C(Kammerlingh-Onnes 1911)

Nobel Prizes in:

y01K530_05.ppt

current 1913

J. Barden, L.Cooper, J.SchriefferTheory of Superconductivity

1972

G.Bednorz, A.MüllerHigh temperature Superconductivity

1987

2003 A.A. Abrikosov, V.L. Ginzburg, A.J. LeggettTheory of superconductors and superfluids

H. Kammerlingh-OnnesDiscovery of Superconductivity

I

Normal conduction Wire

Metal atoms oscillate cause friction HEAT

Metals: Pb, Nb, Ti Atoms rest, Cooper pairs ofelectrons move frictionless (Quantum Mech.)

Icurrent

Page 3: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/3

A magnetic

detector is needed to

measure

the charge of

matter/antimatter.

HeHe

Page 4: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/4

It has taken a hundred years to develop the technology of superconductivity for

practical applications:• It is now commonly used in medicine - for example NMR - and cyclotron

for therapy.• It is widely used in recent years for physics research.

• It is used in Tokamak.• Superconducting magnet technology should be developed for Physics

research in Space and for Manned Space Flight.

lb04k026a

Page 5: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/5

Permanent Magnet

B = 0.5 Gauss

Superconducting Magnet

STEP ONE: Develop a Permanent Magnet in Space

1- Stable: no influence from earth magnetic field

2- Safety for the astronauts: No field leak out of the magnet

3- Low weight: no iron

STEP TWO: Develop a Superconducting Magnet in Space

With the same field arrangement as the permanent magnet:

Except it has 10,000 Gauss field = 1 T

There has never been a superconducting magnet in Space,due to the extremely difficult technical challenges

Page 6: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/6y04K409a02K216 Harrison.ppt

It is not possible to quench the coils except by outside heating

Technical achievement Technical achievement to eliminate quench for AMS-02to eliminate quench for AMS-02

Page 7: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/7

For a magnet with long duration For a magnet with long duration without refill and light weightwithout refill and light weight, , use superfluid Heliumuse superfluid Helium

Normal liquid Helium:-268.85°C

Superfluid Helium:-271.35°C

has no surface tension

Indirect cooling with cold heat exchanger

In Space: Cold Heat exchanger cannot be uniformly cooled

In Space: Cold Heat exchanger is uniformly cooled

He

He He

He

He

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

••••••••••••••

Page 8: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/8Y04K615 Harrison

Page 9: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/9

The AMS detector has been under construction for 10 years.The AMS detector has been under construction for 10 years.Final ESA thermal vacuum test of the entire detector in 2006.Final ESA thermal vacuum test of the entire detector in 2006.

ECAL

Page 10: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/10

Page 11: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/11

Superconducting Magnets for Power Generation, NASA

Prof. Samim Anghaie, Director, Innovative Nuclear Space Power and Propulsion Institute, INSPI; University of Florida, Gainesville.

Vapor Core Reactor with MHD power conversion

VASIMR configuration with Vapor Core Reactor System

The vapor core reactor for space applications uses a superconducting magnet for MHD power conversion

y04K118a

Toroidal MagnetPair

Page 12: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/12

Superconducting Magnets for Electric Propulsion (JSC)

VASIMR Isp ~ 10-30 Ksec

High power electric propulsion such as VASIMR and other applied field plasma rockets relies on the technology of superconducting magnets operating in space.

y04K117a

Page 13: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/13

Artificial Gravity for Mars Mission

Page 14: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/14

Page 15: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/15

Page 16: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/16

SC for Manned Space FlightSC for Manned Space Flight

Page 17: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/17

B=0 inside

B 1/R

B=0 inside

B 1/R

a) b)-  the solenoidal configuration is not adequate and must be adopted a toroidal configuration where the field diminishes at the increasing of the radius; 

-   the outer part of the system must be deployed or assembled in space.

electric current

retu

rn o

f th

e el

ectr

ic c

urr

ent

retu

rn o

f th

e el

ectr

ic c

urr

ent

Page 18: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/18

Traditional NASA Design 130 rem

ISS limit: 50 rem/year

Superconducting Technology45 rem30 tons Magnet

or1000 tons of Aluminum

Traditional NASA Mars Reference DesignTraditional NASA Mars Reference Design(using absorbing material for shielding cosmic radiation)(using absorbing material for shielding cosmic radiation)

Used by NASA (JSC) for design studies of costs, technologies and scienceUsed by NASA (JSC) for design studies of costs, technologies and science compared withcompared with

Superconducting Magnet Technology for shielding cosmic radiationSuperconducting Magnet Technology for shielding cosmic radiation

Page 19: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/19

y04K409

No magnetic field

Fe

Magnetic shielding of radiationMagnetic shielding of radiation

No fieldStrong magnetic field

Page 20: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/20

Looking for Technical Solutions (1)

Page 21: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/21

Crewcompartment

7.00 m

6T

Propulsion,Energy and

Live support,

Mars Magnet System - Version (102)

4.5T

2.1T

Superfluid helium vesselThermal radiation shields

Barrel toroid

supports

EndCap

toroid

supports

y05K003bV2

1.00 m

Ø 1

5.0

0 m

Ø 4

.50

m

Propulsion,Energy and

Live support,

with existing AMS-02 technology

Looking for Technical Solutions (2)

Page 22: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/22

'Habitat' (=4m, length 5m): H2O & Toroid shield masses

1

10

100

0 200 400 600 800 1000

K.E. cut [MeV]

mas

s [t

]

H2O shieldToroid R2=4m cold massToroid R2=4m envisaged total mass

8m4mhabitat

Looking for Technical Solutions (3)

Page 23: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/23

Toroidal shield for the 'habitat' (R1=2m): MaxSEP & GCR/year @ solar min

0,01

0,1

1

10

0 1 2 3 4 5magnetic field at R1 [tesla]

rele

ased

en

erg

y [

Gy] R2=3m MaxSEP

R2=4m MaxSEPR2=6m MaxSEPR2=3m Gal.p/year @ SolminR2=4m Gal.p/year @ SolminR2=6m Gal.p/year @ SolminGCR/year @ solar minimum

Toroids of different external radii shielding a ‘Habitat’ volume: energy released by proton in the human body for the MaxSEP and for the galactic protons at solar minimum as a function of the magnetic field intensity at R=R 1

The indication of the level of the unshielded GCR total ‘dose’ is reported for comparison

6m8m12m

4mhabitat

Looking for Technical Solutions (4)

Page 24: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/24

recommendations

cryocooler development

deployable current elements

superconducting magnetic system model

validation by prototypes (expecially for shielding)

study of hybrid solutions

………….. and many other studies

Road Map to the FutureRoad Map to the Future

Page 25: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/25

Page 26: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/26

Shelter: Gal.p vs. MaxSEP dose

0,02

0,03

0,04

0,05

0,06

0,07

0,01 0,1 1 10MaxSEP [Gy]

Gal

.p @

So

l.min

. [G

y/y]

H2O

Toroid

Dose [Gy/year] due to GCR proton component at solar minimum inside the shelter as a function of the residual dose due to the MaxSEP inside the ‘shelter’.

Looking for Technical Solutions (5)

Page 27: 264_2f/1 Using Superconductivity in Space Using Superconductivity in Space F. Cervelli LNF, Februry 16, 2005 LNF, Februry 16, 2005

264_2f/27V= 111.3 m3 = 3932 cuft