264-773-1-pb

Upload: naza-renko

Post on 04-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 264-773-1-PB

    1/10

    Characterizationofa0.14m

    SubmicronNMOSwith

    SilvacoTCADSimulatorYeapKimHo1*,IbrahimAhmad2andMuhammadSuhaimiSulong3

    1DepartmentofPhysicalSciences,ElectricalandElectronics,

    UniversitiTunkuAbdulRahman.2DepartmentofElectrical,Electronics,andSystemsEngineering,

    UniversitiKebangsaanMalaysia.3FacultyofElectricalandElectronicsEngineering,

    UniversitiTunHusseinOnnMalaysia.

    *Corresponding email: [email protected]

    Abstract

    A0.14mNMOSwassimulatedusingATHENAandATLASmodulesfrom

    TCADsimulator.Theelectricalcharacteristicsofthesubmicrondevicewere

    studied.Constanteldscalingwasappliedtothefollowingparameters:the

    effective channel length, the density of the ion implantation for threshold

    voltage(VTH)adjustment,andthegateoxidethickness(TOX).Additional

    techniquesimplementedtoavoidshortchanneleffectsinsubmicrondeviceswereshallowtrenchisolation(STI),sidewallspacerdeposition,lightlydoped

    drain(LDD)implantation,andretrogradewellimplantation.Theresultsshow

    thatretrogradewellimplantationallowedthehighestdensityofthedopantto

    fallbelowthesurfaceofthesubstrate.Withtheapplicationofsidewallspac-

    erandLDDimplantation,alighterdopedregionwascreatedbeyondthen+

    drain/sourcejunction.Asthelayersofmetallizationincreases,itwasobserved

    thatdraincurrent(ID)increasedaswell.TheimportantparametersforNMOS

    weremeasuredandvalidated.

    Keywords:sidewallspacer,LDD,retrogradewell,metallization

    1

    JournalofScienceandTechnology

  • 7/30/2019 264-773-1-PB

    2/10

    1 INTRODUCTION

    ThedensityofachipinMOSVLSI(VeryLargeScaleIntegration)hasbeen

    growingtremendously for thepastfewdecades. Oneofthereasonsis due

    mainlytosizereductionofatransistor.

    Startingoffwith50minthe1960s,thegatechannelofatransistor

    hasshrunktolessthan0.18min2000(HongXiao2001).Inthispaper,a

    0.14mNMOSwassimulatedand studied.Thedevice fabricationprocess

    wasrstsimulatedusingtheATHENAmodulefromtheSilvacoVirtualWafer

    Fab(VWF)TCADtools.Theelectricalpropertieswerethenvalidatedwiththe

    ATLASmodule.

    The performance of a 0.14 m NMOS, which falls within thesubmicronregimes,maybeseverelyaffectedbyshortchanneleffects.Thus,

    besidesapplyingconstanteld scalingon theeffectivechannel length(Lg),

    gateoxidethickness(TOX),andthresholdvoltage(VTH)adjustimplantation,

    additional fabrication techniques have been implemented. Shallow Trench

    Isolation (STI), sidewall spacer deposition, Lightly Doped Drain (LDD)

    implantation,andretrogradewellimplantationweresomeofthetechniques

    appliedtoensureproperoperationofthedevice(Slisheretal.2006).

    2 SIMULATION PROCESS WALKTHROUGH

    Thesimulationprocesscanbeclassiedinto5differentphases.Theyarewell

    formation,deviceisolation,transistormaking,andinterconnection(HongXiao

    2001). Initially,apwellistobeformedinthep-typesinglecrystalsilicon

    (Si)wafer. Screen oxideis grownon the surfaceofthe substrate. This is

    followedbyahighenergyimplantation.Thewaferistiltedandrotatedwhen

    theimplantationprocessisperformed.

    Theobjectiveofgrowingalayerofscreenoxideandtiltingthewafer

    istominimizechannelingeffect;whereas,rotatingthewaferistominimize

    shadowing effect. Soon after p well is formed, annealing and drive-in is

    performedtorepairthelatticedamage(HongXiao2001).

    Next,STIisemployedtoisolateneighbouringdevices.Alayerofpad

    oxideisrstgrownviadryoxidation.SiliconNitride(Si3N4)isthendeposited

    usingLiquidPlasmaChemicalVaporDeposition(LPCVD).Padoxideactsas

    astressbufferwhichavoidscracksonSi3N4;whereas,Si3N4actsasamaskforetching.Photoresistisdepositedandphotolithographyisappliedtodene

    theactiveregionofthedevice.Subsequently,Si3N4andpadoxideareetched.

    Afterthephotoresistisstripped,ReactiveIonEtching(RIE)is implemented

    toform trenchesat the2sidesof the active region. Athinlayerofbarrier

    oxideis grownin the trenches.Thetrenches are lledupwithoxideusing

    2

    JournalofScienceandTechnology

  • 7/30/2019 264-773-1-PB

    3/10

    Tetra-Ethyl-Oxy-Silane (TEOS)CVD process. The layerof barrier oxide

    prevents impurities from diffusing into the substrate during TEOS CVD

    process(HongXiao2001).Theoxideatthesurfaceofthesubstrateisremoved

    usingChemicalMechanicalPolishing(CMP)process.STIiscompletedafter

    annealingisperformedandSi3N4maskandpadoxideareetched.

    Gate oxide is grown via dry oxidation. VTH adjust implantation

    is then performed, afterwhich, the substrate undergoes annealing. Next,

    polysilicongateis formedbydepositingandetchinga layerofpolysilicon.

    The substrate is, again, annealed. LDD is then implanted to suppress hot

    electroneffect(HongXiao2001).Subsequently,Si3N4isdepositedviaCVD

    process.SidewallspacersareformedbyetchingtheSi3N4lm.Sourceanddrainjunctionsareimplantedonthe2sidesoftheactiveregionsandannealing

    processisappliedtoactivatethedopants.Assoonasthebasicstructureofan

    NMOSiscompleted,alayeroftitaniumisdepositedonthesubstratesurface.

    RapidThermalAnnealing(RTA)isthenemployedtoformsilicideonthegate.

    Atransistorisfabricatedsoonaftertheunreactedtitaniumisetched.

    Interconnections in between transistors are to be performed with

    metallization. A layer of Boron Phosphor Silicate Glass (BPSG) is rst

    depositedtoformPremetalDielectric(PMD).PMDactsasaninsulatorfor

    multilevelinterconnection(Quirk2001).Afterannealing,BPSGisetchedto

    formsource/draincontacts.Therstlevelofmetallizationisdevelopedby

    depositing and etching aluminum (Al) on the contacts.An almost similar

    procedureistobeperformedonthesecondlevelofinterconnection.Anotherlayer of BPSG, known as Intermetal Dielectric (IMD) (Quirk 2001) is

    deposited.ThesimulationprocessiscompletedwhentheredundantIMDis

    etched.AsummaryoftheparametersusedinNMOSfabricationisshownin

    Table1.

    3 SIMULATION RESULTS AND DISCUSSION

    A. The 0.14 m NMOS

    Figure1showsthecompletecrosssectionofNMOS.Asclearlyshownby

    thedopantdensitydistributions,retrogradewelltechniquehasresultedinthe

    highestdopantdensityconcentratedacertaindepthbelowthesurfaceofthe

    substrate.Itcanalsobeobservedthat,LDDimplantationformedarelatively

    lighterndopedregionrightbeneaththesidewallspacers.

    B. Retrograde Well

    Ascomparedtoconventionalwellformation, inwhich, thehighestdopant

    densityliesatthesurfaceofthesubstrate,retrogradewellsusehighenergy

    implantationtoplacethehighestdopantdensityatacertaindesiredsubstrate

    3

    JournalofScienceandTechnology

  • 7/30/2019 264-773-1-PB

    4/10

    depth.Figure2showstheboronconcentrationversusthesubstratedepthof

    thesimulated0.14mNMOS.

    4

    JournalofScienceandTechnology

  • 7/30/2019 264-773-1-PB

    5/10

    Asthechannellengthreduces,thedepletionregionencompassesthe

    drainjunctiontendstoextendsfarthertowardsthesource.Atatime,ifthe

    depletionregionsofbothdrainandsourcejunctionsmerge,aspuriouscurrent

    pathisinevitablyformed.Thegatevoltagewillhavelostitscontroloverthe

    currentowinbetweenthe2junctions.Suchphenomenonisknownaspunch

    through(Sze1988).

    Anincreaseofdopingconcentrationinthesubstrateusingretrograde

    wellimplantationallows thedepletionregionsdrain/source junctionsto be

    scaleddown.Hence,punchthroughcanbeavoidedwhenthedepletionre-

    gionsstayatareasonabledistanceapart.

    Figure1.0.14mNMOS.

    Figure2.Borondensityversussubstratedepthofa0.14mNMOS.

    5

    JournalofScienceandTechnology

  • 7/30/2019 264-773-1-PB

    6/10

    C. LDD Implantation

    When the dimension of the device shrinks and the supply voltage remain

    constant,theelectriceldgeneratedinthesubstratewillincrease.Asaresult,

    theelectronsalongthechannelmightgainsufcientenergytobeinjectedonto

    thegateoxide.Thechargingofthegateoxidecauseslongtermdegradationon

    thedevice.Suchissueisknownashotelectroneffect(Sze1988).

    In order to avoidthe electronsfrom gaining sufcient energy,the

    electriceldalongthedrainregionistobereduced.Onewayofdoingsois

    toimplantalighterndopantsurroundingthen+drain/sourceimplants.As

    showninFigure3,thenetdopingofLDDimplantationbeneaththesidewall

    spacersisrelativelyshallowcomparedtothedrain/sourceimplants.

    D. NMOS Parameters

    ImportantparameterssuchasVTH,TOX,andLgaremeasuredandextracted

    fromtheATLASmodule. Theparameters arecomparedwith thestandard

    parameters published by International Technology Roadmap for

    Semiconductor(ITRS)andBerkeleyPredictiveTechnologyModel(BPTM)

    (Berkeley2006). Sinceonlythestandardparametersfor 70nm,0.10m,

    0.13m,and0.18mNMOSdevicewerepublishedinITRSandBPTM,

    polynomial regression technique (using MATLAB tools) was applied to

    acquire the required parameters for a 0.14 m NMOS. Table 2 shows a

    comparisonbetweentheparametersextractedfromATLASandthestandard

    parametersobtainedusingpolynomialregression.ItcanbeobservedthattheparametersextractedfromtheATLASmodulefallwithinthetolerancerange

    ofthestandardparametersobtainedthroughregressiontechnique.Therefore,

    thesimulationresultsarevalidated.

    E. Electrical Characteristics

    The ID-VD and ID-Vgelectrical characteristics curves were plotted using

    ATLASmodule.

    Figure 4 and 5 shows the NMOS ID-VD relationshipsbefore and

    after metallization 2; whereas, Figure 6 and 7 shows the NMOS ID-Vg

    relationshipsbeforeandaftermetallization2.ThedifferencesinIDbefore

    and after second level interconnection were compared. The results are

    summarizedinTable3and4.

    6

    JournalofScienceandTechnology

  • 7/30/2019 264-773-1-PB

    7/10

    Figure3.LDDImplantation.

    Figure4.NMOSID-VDrelationshipbeforemetallization2isdeposited.

    7

    JournalofScienceandTechnology

  • 7/30/2019 264-773-1-PB

    8/10

    Figure5.NMOSID-VDrelationshipaftermetallization2isdeposited.

    Figure6.NMOSID-Vgrelationshipbeforemetallization2isdeposited.

    As can be seen from Figure 4 to Figure 7, the current- voltage

    characteristic curves remain unchanged even though a second layer of

    metallizationhasbeendepositedontothedevice.

    Nevertheless, ID increases after metallization 2. Since power

    consumption is directly proportional to ID, the simulation shows that by

    increasingthelevelofmetallization,powerconsumptiontendtoincreaseas

    well.

    8

    JournalofScienceandTechnology

  • 7/30/2019 264-773-1-PB

    9/10

    Figure7.NMOSID-Vgrelationshipaftermetallization2isdeposited.

    Table3ComparisonofIdbeforeandafterLevel2MetallizationinId-VdNMOS

    Graph.

    Table4ComparisonofIdbeforeandafterLevelMetallizationinId-VgNMOS

    Graph.

    4 CONCLUSION

    A0.14msubmicronNMOShasbeensuccessfullysimulatedandvalidated.

    The result shows that retrograde well technique controls the highest

    concentration dopant at certain depth of the substrate; whereas, LDD

    implantation reduces the concentration of n dopant beneath the sidewall

    spacers.Thesetechniquesareeffectiveinminimizingshortchanneleffects.

    The current-voltage characteristic curves also show that as the level of

    interconnectionincreases,IDincreasesaswellwhichshouldresultinhigher

    powerconsumption.

    9

    JournalofScienceandTechnology

  • 7/30/2019 264-773-1-PB

    10/10

    REFERENCES

    [1] Berkeley. (2006).Berkeley Predictive TechnologyModel (BPTM).

    http://www-device.eecs.berkeley.edu/~ptm.

    [2] Chen,C.K.,Chen,C.L.,Gouker,P.M.,Wyatt,P.W.,Yost,D.R.,

    Burns,J.A.,V.Suntharalingam,Fritze,M.andKeast,C.L.(2001).

    FabricationofSelfAligned90nmFullyDepletedSOICMOSSLOT

    FETs.IEEEElectronDeviceLetters.Vol.22(7).pp.345-347.

    [3] Hong Xiao. (2001). Introduction to SemiconductorManufacturing

    Technology.NewJersey:PrenticeHall.

    [4] Ponomarev,Y.V.,Stolk,P.A.,Dachs,C.J.J.,andMontree,A.H.

    (2000). A 0.13 m Poly-SiGe Gate CMOS Technology for Low- VoltageMixedSignalApplications. IEEETrans. ElectronDevices.

    Vol.47(7).pp.1507-1513.

    [5] Quirk, M. & Serda, J. (2001). Semiconductor Manufacturing

    Technology.NewJersey:PrenticeHall.

    [6] Slisher,D.K.,Filippi,R.G.,Storaska,D.W.andGay,A.H.(2006).

    ScalingofSiMOSFETsforDigitalApplications.http://nina.ecse.rpi.

    edu/shur/advanced/examples

    [7] Sze,S.M.(1988).VLSITechnology.SecondEdition.NewYork:Mc

    GrawHill.

    10

    JournalofScienceandTechnology