26 griesbach p

Upload: imran-javed

Post on 05-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 26 Griesbach P

    1/25

    ABF-SCJM

    JDG 12/19/2005

    MIT Lincoln Laboratory

    Adaptive Beamforming Techniques for

    Sidelobe Control and Mitigation ofNonstationary Interference

    JAM

    JAM

    Jacob D. GriesbachGerald Benitz

    MIT Lincoln Laboratory

    June 7th, 2005This work is sponsored by the Air Force, under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions and

    recommendations are those of the authors, and are not necessarily endorsed by the United States Government.

  • 7/31/2019 26 Griesbach P

    2/25

    MIT Lincoln LaboratoryABF-SCJM 2 of 25

    JDG 12/19/2005

    Adaptive Beamforming Motivation

    Adaptive Beamforming (ABF) suppresses interference to improve SINR

    Low sidelobe beams benefit clutter suppression techniques and requirefewer ABF DOFs to mitigate sidelobe jamming

    Allow nulling to track inter-CPI interference motion

  • 7/31/2019 26 Griesbach P

    3/25

    MIT Lincoln LaboratoryABF-SCJM 3 of 25

    JDG 12/19/2005

    Lincoln Multi-Mission ISR Testbed(LiMIT)

    System Parametersfor GMTI Mode

    System Parametersfor GMTI Mode

    9.72 GHz

    180 MHz

    2,000 Hz

    56 ms

    8

    48 cm

    18 cm

    Center Freq.

    Bandwidth

    PRF

    CPI

    Rx Subarrays

    Horiz. Aperture

    Vert. Aperture

    Boeing 707

    Ft. Huachuca, AZ

    N

    8 km

    25 km

    NAimpoint

    Aircraft

    Noise Jammer20-30 dB JNR

  • 7/31/2019 26 Griesbach P

    4/25

    MIT Lincoln LaboratoryABF-SCJM 4 of 25

    JDG 12/19/2005

    LiMIT GMTI Processing

    Receiver /Front-End

    8 Receive-Only PRIs provide ABF training data before and after CPI

    LiMIT-tuned 2-Parameter Power-Variable-Training STAP algorithm1

    LiMIT aperture transmits with a uniform taper that results in multiple Doppler-wrapped clutter ridges

    STAP algorithm uses phase to select training samples from modeled clutter ridge

    Will not cancel residual interference left over from ABF

    Adaptive beamforming goals

    Mustsuppress unwanted interference

    Low sidelobe beams from ABF help STAP suppress secondary clutter ridges

    Must also form a beamset that covers clutter to be mitigated by STAP

    CFARDetect

    DopplerProcessing

    STAP(Adaptive)

    BeamformingParam.

    EstimateCluster Track

    RO ROTransmit / Receive Data (96 PRIs)

    8 Receive-Only PRIs 8 Receive-Only PRIs

    1G. Benitz, J.D. Griesbach, C. Rader, Two-Parameter Power-Variable Training STAP, Proceedings of the 38th

    Asilomar conference on signals, systems, and computers, Pacific Grove, CA, Nov. 7-10, 2004, pp. 2359-2363

  • 7/31/2019 26 Griesbach P

    5/25

    MIT Lincoln LaboratoryABF-SCJM 5 of 25

    JDG 12/19/2005

    Outline

    Colored Noise Loading for Low Sidelobes

    Constrained DBU for stable tracking of jammer motion

    Data Results

    Conclusion

  • 7/31/2019 26 Griesbach P

    6/25

    MIT Lincoln LaboratoryABF-SCJM 6 of 25

    JDG 12/19/2005

    Low Sidelobe Beamforming

    Conventional

    B

    eamforming

    (CBF)

    Hv x

    Channel

    Data (x)

    Steering

    Vector (v)

    Output

    Beam Data

    CBF

    withSVtap

    er

    Hv Dx

    Channel

    Data (x)

    Steering

    Vector (v)

    Output

    Beam Data

    Dv

    Taper

    ( )H

    =D D

    CBF optimally maximizes SNR to a given v

    Sidelobes are controlled (not data adaptive)

    Does not necessarily suppress strong or mainbeam interference sources

  • 7/31/2019 26 Griesbach P

    7/25

    MIT Lincoln LaboratoryABF-SCJM 7 of 25

    JDG 12/19/2005

    Low Sidelobe Adaptive Beamforming

    Adaptive

    Be

    amforming

    (ABF)

    1H v R x

    Channel

    Data (x)

    Steering

    Vector (v)

    Output

    Beam Data

    ABF

    withSVtap

    er

    1H v D R x

    Channel

    Data (x)

    Steering

    Vector (v)

    Output

    Beam Data

    Dv

    Taper

    ABF optimally maximizes SINR to a given v

    Sidelobes are not necessarily controlled (data adaptive)

    Can suppress strong or mainbeam interference sources

  • 7/31/2019 26 Griesbach P

    8/25

    MIT Lincoln LaboratoryABF-SCJM 8 of 25

    JDG 12/19/2005

    Colored Noise Loading

    Idea: Optimally suppress sidelobes+interference, by modelingexternal sidelobe interference in data covariance

    L

    clf

    clf

    Parameters:

    = Loading Level

    = Loading Frequencyclf

    L

    ( )1 2

    ( ) ( ) ( ) ( )

    cl

    H H H

    cl

    f

    L d = + v vR D v v v v D

    ( )diag=vD v

    1( )cl

    = +w R R v

    Steering

    Vector (v)

    1( )Hcl

    +v R R xChannel

    Data (x)

    Output

    Beam Data

  • 7/31/2019 26 Griesbach P

    9/25

    MIT Lincoln LaboratoryABF-SCJM 9 of 25

    JDG 12/19/2005

    Sidelobe Jamming Comparison

    ABF Tapered SV

    Using a tapered steering

    vector works with

    sidelobe jamming:

    Colored noise loading

    also works well withsidelobe jamming:

    ABF + CNL

  • 7/31/2019 26 Griesbach P

    10/25

    MIT Lincoln LaboratoryABF-SCJM 10 of 25

    JDG 12/19/2005

    Mainbeam Jamming Comparison

    ABF Tapered SV

    TSV ABF does not

    appropriately model

    steering vector:

    Mainbeam jamming

    causes CNL ABF totrade-off jammer &

    sidelobe suppression:

    ABF + CNL

  • 7/31/2019 26 Griesbach P

    11/25

    MIT Lincoln LaboratoryABF-SCJM 11 of 25

    JDG 12/19/2005

    ABF Colored Noise Loading

    1. Let u1- u

    kdenote eigenvectors ofR that have eigenvalues, 2 > T

    ev2. Let C denote linear constraints such that CHw = c

    =C v 1=c (MVDR constraint)3. Solve

    ( ) ( )( )

    11 1H

    cl cl

    = + +w R R C C R R C c (Constrained LS)

    ABF + CNL

    Inequality Constrained ABF

  • 7/31/2019 26 Griesbach P

    12/25

    MIT Lincoln LaboratoryABF-SCJM 12 of 25

    JDG 12/19/2005

    Inequality Constrained ABFColored Noise Loading

    1. Let u1- u

    kdenote eigenvectors ofR that have eigenvalues, 2 > T

    ev2. Let C denote linear constraints such that CHw = c

    =C v 1=c (MVDR constraint)3. Solve

    ( ) ( )( )

    11 1H

    cl cl

    = + +w R R C C R R C c (Constrained LS)

    2 2

    1 11

    T

    i j

    =

    c

    ?

    i j = C v u u

    The ABF now prioritizes the interference above sidelobes by

    ensuring the interference is adequately suppressed

    4. Check eigenvector inequality constraints

    [ ]1 2 21

    1 1T

    H

    k

    k

    <

    u u w

    5a. If all constraints are satisfied done

    5b. If not add unmet constraints to constraint matrix

    6. Go to step 3

    Constrained ABF + CNL

  • 7/31/2019 26 Griesbach P

    13/25

    MIT Lincoln LaboratoryABF-SCJM 13 of 25

    JDG 12/19/2005

    Outline

    Colored Noise Loading for Low Sidelobes

    Constrained DBU for stable tracking of jammer motion

    Data Results

    Conclusion

  • 7/31/2019 26 Griesbach P

    14/25

    MIT Lincoln LaboratoryABF-SCJM 14 of 25

    JDG 12/19/2005

    Derivative Based Updating (DBU)

    DBU2 allows an ABF to track a spatially moving jammer Weight vector changes linearly in slow time

    where kdenotes the relative pulse index throughout the CPI andn indexes fast-time (range)

    An augmented covariance matrix is computed

    An adaptive solution is formed for the center of the CPI

    DBU may also be applied in frequency for wideband jamming

    1 1k

    , , , ,2

    , , , , ,

    1

    H H

    k n k n k n k nH H

    k n k n k n k n k n

    kk kKN

    =

    x x x x

    Rx x x x

    1

    =

    0w v

    Rw 0

    Augmented steering

    vector with k= 0

    CPI center weight vector

    Weight vector derivative

    0

    2

    ,1

    ,

    minH

    H

    k k n

    k n=

    w v

    w xSolvesuch

    that 0kk= +w w w

    2S.D. Hayward, Adaptive beamforming for rapidly moving arrays, in CIE International Conference Proceedings,Oct. 1996, pp. 480--483

    DBU Effects

  • 7/31/2019 26 Griesbach P

    15/25

    MIT Lincoln LaboratoryABF-SCJM 15 of 25

    JDG 12/19/2005

    DBU Effects(Example Simulation)

    Conventional ABF

    Spatially

    MovingJammer

    DBU

    k= -1

    k= 0

    k= 1

    Inter-CPI Gain

    Variation

    Spatially

    MovingJammer

    C t i d DBU

  • 7/31/2019 26 Griesbach P

    16/25

    MIT Lincoln LaboratoryABF-SCJM 16 of 25

    JDG 12/19/2005

    Constrained DBU

    Constrain DBU result to have constant gain throughout CPI Ensure unit gain on target (MVDR constraint)

    Ensure derivative is orthogonal to center weight vector(new constraint)

    Optimal solution now given by

    01

    H

    =

    w v

    w 0

    00

    H

    =

    w 0

    w v

    =

    v 0C

    0 v[ ]1 0

    T=c

    ( )1

    0 1 1H

    =

    wR C C R C c

    w

    0k k= +w w w

    2

    ,1

    ,

    minH

    k

    H

    k k n

    k n

    =

    w v

    w x

    C t i d DBU R lt

  • 7/31/2019 26 Griesbach P

    17/25

    MIT Lincoln LaboratoryABF-SCJM 17 of 25

    JDG 12/19/2005

    Constrained DBU Results

    Conventional DBU Constrained DBU

    k= -1

    k= 0

    k= 1

    Constraining the weight derivative to be orthogonal to the

    steering vector provides a gain invariant solution Holds gain fixed for steering vector direction

    May disrupt sidelobes

    Constrained DBU with

  • 7/31/2019 26 Griesbach P

    18/25

    MIT Lincoln LaboratoryABF-SCJM 18 of 25

    JDG 12/19/2005

    Constrained DBU withColored Noise Loading

    Constrained DBU modifications for colored noise loading Add colored noise loading covariance to augmented covariance

    Add eigenvector inequality constraints to prioritize jammers oversidelobes

    Constrained DBU

    k= -1

    k= 0

    k= 1

    Constrained DBU w/ CNL

    2

    11

    1 1cl cl

    kK

    k kK K

    =

    R R

    =

    v 0 u

    C 0 v

    2

    11 0

    T

    =

    c

    O tli

  • 7/31/2019 26 Griesbach P

    19/25

    MIT Lincoln LaboratoryABF-SCJM 19 of 25

    JDG 12/19/2005

    Outline

    Colored Noise Loading for Low Sidelobes

    Constrained DBU for stable tracking of jammer motion

    Data Results

    Conclusion

    Ft Huachuca GMTI Displays

  • 7/31/2019 26 Griesbach P

    20/25

    MIT Lincoln LaboratoryABF-SCJM 20 of 25

    JDG 12/19/2005

    Ft. Huachuca GMTI Displays

    SAR Image (1m resolution)

    Range/Doppler Detection

    Range/Doppler Cluster

    Range/Angle Localization

    GPS Ground Truth

    Jammer Angle

    07/24/04 CPI# 98045687

    GMTI Movie

  • 7/31/2019 26 Griesbach P

    21/25

    MIT Lincoln LaboratoryABF-SCJM 21 of 25

    JDG 12/19/2005

    GMTI Movie

    Range/Doppler Detection

    Range/Doppler Cluster

    Range/Angle Localization

    GPS Ground Truth

    Jammer Angle

    Desired Beams JammingAngles

    07/24/04 CPI# 98045687 98047507

    Selected Frames

  • 7/31/2019 26 Griesbach P

    22/25

    MIT Lincoln LaboratoryABF-SCJM 22 of 25

    JDG 12/19/2005

    Selected Frames

    Doppler Aliased

    Clutter Filling in

    Jammer Null

    Close-In

    Detection

    07/24/04 CPI# 98046337 & 98046437

    Tapered Steering Vector (TSV) Comparison

  • 7/31/2019 26 Griesbach P

    23/25

    MIT Lincoln LaboratoryABF-SCJM 23 of 25

    JDG 12/19/2005

    p g ( ) p30dB Taylor

    TSVUndernulled

    Jammer false

    alarms

    New ABF

    Standard ABF Comparison

  • 7/31/2019 26 Griesbach P

    24/25

    MIT Lincoln LaboratoryABF-SCJM 24 of 25

    JDG 12/19/2005

    Standard ABF Comparison

    New ABFReg. ABF

    Sidelobe

    False Alarms

    Conclusions

  • 7/31/2019 26 Griesbach P

    25/25

    MIT Lincoln LaboratoryABF-SCJM 25 of 25

    JDG 12/19/2005

    Conclusions

    Propose two ABF modifications

    Colored noise loading for low sidelobes with inequalityconstraints to ensure mainbeam interference suppression

    Constrained DBU for constant aimpoint gain withnonstationary interference

    Both techniques may be utilized together to form a robust

    ABF algorithm Demonstrated performance enhancements on data relative to

    standard adaptive beamforming techniques

    May be applied to multi-channel SAR, GMTI, and SONARdata