25n 30n 65e75e65e75e65e75e 2010 2011 2012 16 0 height (km) 8 distance (km) 287 0232 0241 0

36
Global Variability of Intense Convection Robert A. Houze, Jr. University of Washington ISSCP at 30, New York, 22 April 2013

Upload: buddy-dixon

Post on 20-Jan-2016

216 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

Global Variability of Intense Convection

Robert A. Houze, Jr.University of Washington

ISSCP at 30, New York, 22 April 2013

Page 2: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

Radars in Space

CloudSat2006-

TRMM1997-

Page 3: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

Epic Floods in Pakistan2010, 2011, 2012

Page 4: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

25N

30N

65E 75E65E 75E 65E 75E

2010 2011 2012

16

0

Hei

ght (

km)

8

Distance (km) 287 0 232 0 241 0

Sindh

TRMM data showing storms producing the floods

Page 5: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

These storms are

Mesoscale Convective Systems

“MCSs”

Page 6: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

Large areasof cold top

Example outbreak of MCSs

Page 7: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

1458GMT 13 May 2004

ConvectivePrecipitation

StratiformPrecipitation

Radar echoes showing the precipitation in the 3 MCSs

Page 8: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

TRMM and CloudSat radars & other data have helped us map

MCS occurrence globally

Page 9: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

Identify each contiguous 3D echo objectseen on radar

Convective component Stratiform component

Extreme characteristicContiguous 3D volume ofconvective echo > 40 dBZ

Top height > 10 km

“Deep convective core” Horizontal area > 1 000 km2

“Wide convective core”

Extreme characteristicContiguous stratiform echo

with horizontal area > 50 000 km2

“Broad stratiform region”

TRMM Radar Distinguishes Convective and Stratiform Components of MCSs

Page 10: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

Continents

Page 11: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

Deep Convective

Cores

BroadStratiform

Regions

JJAS DJF

Wide Convective

Cores

South Asia&SouthAmerica

Page 12: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

Deep Convective

Cores

BroadStratiform

Regions

Wide Convective

CoresAfrica

Page 13: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

Oceans

Page 14: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

TRMM Radar Observations of the MJO over the Indian Ocean

Phase 7

Active Phase Suppressed Phase

Deep Convective

Cores

Broad Stratiform

Rain Areas

Page 15: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

The A-Train Era

Page 16: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

Details learned from field projects

Page 17: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

Basic components

Houze et al. 1989

Anvil Anvil

Raining core

Cold top

Str

atifor

m

Conve

ctiv

e

A-Train sees all of this!

Page 18: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

How A-Train sees the whole MCS

12

3

Page 19: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

The Anvil Problem

Extensively studied

Need to understand how anvil is related to the

raining region

Mesoscale Convective System

Page 20: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

Statistics of anvil width & thickness seen by CloudSat

Yuan and Houze 2010

Africa Indian Ocean

Page 21: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

Yuan, Houze, and Heymsfield 2011

Africa Indian Ocean

Internal structure of MCS anvils

Page 22: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

Combining cloud top and raining cores

Page 23: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

260KClosedcontour Rain

Heavy rain

Identify High Cloud Systems (HCSs)

ConnectedHCSs

SeparatedHCS

Page 24: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

Which HCSs are MCSs?

Yuan and Houze 2010

Page 25: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

PDF of rain amount as a function of raining core properties

Size of raining core

Min

TB

11 o

ver

rain

ing

co

re

2000 km2

220°K

56% all tropical rain

Using these values for “MCS” criteria

Yuan and Houze 2010

Page 26: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

MCSs Over the Whole TropicsSmallest 25% (<12,000 km2)

Largest 25% (>40,000 km2)

“Superclusters”

Yuan and Houze 2010

Page 27: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

Indian Ocean MCSs Contribution to Rainfall by phase of the Madden-Julian Oscillation

Yuan and Houze 2012

Connected MCSs

Separated MCSs

Other high cloud systems

Active Suppressed

Page 28: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

Composite MCS Lightning

Determined from WWLLN

Separated

West PacificEq. Africa Eq. AtlanticArgentina

Connected

Page 29: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

Composite MCS Lightning in the MJO

Separated

SeparatedSUPPRESSED

ACTIVE

Page 30: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

Conclusions• TRMM radar data:

• Deep convection takes on various forms

• Forms controlled by mountain ranges & flow regimes such as the MJO & monsoon

• A-Train data • Show anvils of MCSs• Identifies MCSs globally• Lightning data related to MCSs, e. g.

in MJO• To come: relate to aerosol

observations

Page 31: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

EndThis research was supported by NASA grant NNX10AH70G, NASA

grant NNX10AM28G, and NSF grant AGS-1144105

Page 32: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

CloudSat applied to MCS anvils

Page 33: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

Internal structure of MCS anvils

CVCV

CVCV

Indian Ocean Anvils

Page 34: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

MODIS/AMSR-E identifies cold top

locates the raining coreremainder is anvil

Anvil Anvil

Raining core

Cold top

Page 35: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0

Frequency of MCS anvils over tropics

Yuan and Houze 2010

Page 36: 25N 30N 65E75E65E75E65E75E 2010 2011 2012 16 0 Height (km) 8 Distance (km) 287 0232 0241 0