2500% excess heat 65-el-boher

Upload: jaferrero

Post on 02-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 2500% excess heat 65-El-Boher

    1/54

    1

    EXCESS HEAT IN ELECTROLYSIS EXPERIMENTS AT

    ENERGETICS TECHNOLOGIES

    I. Dardik, T. Zilov, H. Branover, A. El-Boher, E. Greenspan,B. Khachatorov, V. Krakov, S. Lesin, and M. Tsirlin

    Energetics Technologies Ltd.

    Omer, [email protected]

    Presented at the11 th

    International Conference on Cold Fusion, ICCF-11Marseilles, France

    November 1 - 6, 2004

    mailto:[email protected]:[email protected]
  • 8/10/2019 2500% excess heat 65-El-Boher

    2/54

    2

    CONTENTS1. Presentation objective

    2. SuperWaves

    used for driving the cell3. Review of glow discharge experiments

    4. Description of ET electrolytic cells5. Pd Cathode and its pretreatment

    6. Excess heat obtained7. Excess tritium

    8. Material analysis

  • 8/10/2019 2500% excess heat 65-El-Boher

    3/54

    3

    PRESENTATION OBJECTIVES

    1. Review of SuperWave

    principles2. Review of Glow Discharge Experiments

    3. Description of 3 ET electrolytic cell experimentsthat resulted in significant excess heat generation:

    Experiment #

    56

    64a

    64b

    Cycle

    4 1 2

    Loading time (s)

    80

    5

    16

    Excess heat (EH) (%)

    80

    2500

    1500Duration of EH (h)

    300

    17

    80

    Excess energy (EE) (MJ)

    3.1

    1.1

    4.6

    Specific* EH (W/g Pd)

    11

    71

    62

    Specific* EE (KeV/Pd atom)

    13.5

    4.8

    20 (24.8)

    * - pertaining to effective part of cathode ( 6 x 0.7 cm )

  • 8/10/2019 2500% excess heat 65-El-Boher

    4/54

    4

  • 8/10/2019 2500% excess heat 65-El-Boher

    5/54

    5

    Operator

    Parameters

    set up

    Superwave

    form signalgeneration usingLabView

    software

    Current amplifierExperimental

    system

    Lowcurrent

    EC are driving by SuperWaves

  • 8/10/2019 2500% excess heat 65-El-Boher

    6/54

  • 8/10/2019 2500% excess heat 65-El-Boher

    7/54

    7

    ))](sinA1)((sinAt)[1(sin)(F 22

    212

    102

    02 t t At ++=

    )))](sinA1)((sinA1)((sinAt)[1(sin)(F 32

    322

    212

    102

    03 t t t At +++=

  • 8/10/2019 2500% excess heat 65-El-Boher

    8/54

    8

    Glow Discharge CellCooling WaterOutput

    Cooling Water Input

    +

    Ground

    Tungsten Wire

    Palladium Layer

    D+

    Plasma

    100 mm

    20 mm

    StainlessSteel Body

    Conceptual Design

  • 8/10/2019 2500% excess heat 65-El-Boher

    9/54

    9

    Cell Assembly

  • 8/10/2019 2500% excess heat 65-El-Boher

    10/54

    10

    ETG-1

    0

    10

    20

    30

    40

    50

    60

    70

    80

    0 2 4 6 8 10 12 14

    Time,h

    E n e r g y

    , k J

    Ein Eout Ex ( Excess Energy = Eout - Ein )

    Experimental Results with thin Palladium film (about1 m) on Stainless Steel Body

    ETG-1

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 2 4 6 8 10 12

    Time, h

    P o w e r , W

    Pin Pout

    DC

    WavesWaves

    Shut Down

    Maximum Excess Power = 3.7 x Input Power

    Total Excess Energy = 6.7 x Input Energy

  • 8/10/2019 2500% excess heat 65-El-Boher

    11/54

    11

    Experimental Results with thick Palladium foil (100 m)

    ETG-2

    -20

    0

    20

    40

    60

    80100

    120

    140

    160

    180

    200

    220

    240260

    280

    10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

    Time,h

    E

    n e r g y , k J

    Ein Eout Ex(Excess Energy=Eout-Ein)

    ETG-2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

    Time,h

    P o w e r , W

    Pin Pout

    Maximum Excess Power = 0.8 x Input Power

    Total Excess Energy = 0.8 x Input Energy

  • 8/10/2019 2500% excess heat 65-El-Boher

    12/54

    12

    Glow Discharge Experiment Cell ETG-2-18

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460

    Time, h

    P o w e r ,

    W

    -150

    -100

    -50

    0

    50

    100

    150

    C O P E

    , %

    Pin Pout COPE=(Pout-Pin):Pin x 100%

    Excess Heat Generation during 20 days

  • 8/10/2019 2500% excess heat 65-El-Boher

    13/54

    13

    Energy Production from Cell ETG-2-18

    0

    500

    1000

    1500

    2000

    2500

    0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460

    Time,h

    E n e r g y , k

    J

    Ein Eout Eex

    Excess Energy during 20 days

  • 8/10/2019 2500% excess heat 65-El-Boher

    14/54

    14

    Energy Output after shutting down of GD Cel l ETG-3-22

    0

    1020

    30

    4050

    60

    7080

    90

    0 2 4 6 8Time, hr

    E , k

    J

    Heat After Death

    Thermal Energy Stored in GD Cell SS body (m*c p

    * T)

    Eout

  • 8/10/2019 2500% excess heat 65-El-Boher

    15/54

    15

    A AC

    T4T5

    Teflon

    AluminaAluminum

    Recombiner

    Electrolyte

    ET Electrolytic Cell

    EC is inside a Teflon beaker that is placed inside an isoperibolic calorimeter

    0.1M LiOD

    in low tritium content D 2

    O (230 ml)

  • 8/10/2019 2500% excess heat 65-El-Boher

    16/54

  • 8/10/2019 2500% excess heat 65-El-Boher

    17/54

    17

    Cathode & Pre-treatment

    50 m Pd foil, prepared by

    Dr. Vittorio Violante (ENEA Frascatti, Italy)

    Annealed at 870o

    C in vacuum for 1h

    Etched:

    -

    in Nitric Acid 65-67%; 1 min

    -

    in Aqua Regia

    1:1 water solution; 1 min

    Rinsed:

    - D 2

    O four times

    -

    Ethanol 95% twice-

    Ethanol Absolute once

    Dried:

    in vacuum at ambient temperature for 24 h

    6 0 m m

    7 mm

  • 8/10/2019 2500% excess heat 65-El-Boher

    18/54

    18

    05

    10152025

    30354045505560657075

    0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

    Delta T

    P o w e r

    Typical Calibration Curve for Electrolytic Cell Calorimeter

  • 8/10/2019 2500% excess heat 65-El-Boher

    19/54

    19

    Block diagramPC

    Analyzing,displaying, printout

    LCR

    Amplifier Temperatures (5)Current,Voltage

    Cathode resistance

    Wave form

    Current Superwave

    Cell

    Water bath

    Temperature

    Data Logger

    Measured Parameters:

    -

    Input Current

    - Input Voltage

    - Wall Temperatures

    T 4

    and T 5

    -

    Resistance of cathode

    for monitoring loading(four probe AC method)

  • 8/10/2019 2500% excess heat 65-El-Boher

    20/54

    20

    Study of Influence of Modulations on Loading

    1st level of modulation Constant parametersChangeableparameters

  • 8/10/2019 2500% excess heat 65-El-Boher

    21/54

    212nd

    level of modulationChangeableparameters Constant parameters

    Study of Influence of Modulations on Loading

  • 8/10/2019 2500% excess heat 65-El-Boher

    22/54

    223rd

    level of modulationChangeableparameters Constant parameters

    Study of Influence of Modulations on Loading

  • 8/10/2019 2500% excess heat 65-El-Boher

    23/54

    23

    1st

    levelof modulation

    2nd

    level of modulation

    3rd

    level of modulation

    Of-line RR 0 versus time for Foil N056 (Dr.Violante)

    1.

    Study of Influence of Modulations on Loading

  • 8/10/2019 2500% excess heat 65-El-Boher

    24/54

    24

    Of-line RR 0 versus time for Foil N056 (Dr.Violante)

    2.

    Study of Influence of Modulations on Loading

  • 8/10/2019 2500% excess heat 65-El-Boher

    25/54

    25Of-line RR 0 versus time for Foil N056 (Dr.Violante)

    3.

    Study of Influence of Modulations on Loading

  • 8/10/2019 2500% excess heat 65-El-Boher

    26/54

    26

    Diagram loading versus level of modulation

    1.6

    1.65

    1.7

    1.75

    1.8

    1.85

    1 2 3 3 2 1 1 2 3 3 2 1 2 3 2 1 2 3 3

    Level of modulation

    C u r r e n

    t d e n s i

    t y , m

    A / c m

    2

    010

    20

    30

    40

    50

    60

    R R 0

    RR0 j

    Foil N056 (Dr.Violante )

    Study of Influence of Modulations on Loading

  • 8/10/2019 2500% excess heat 65-El-Boher

    27/54

    27

    Diagram loading versus level of modulation

    1.7

    1.75

    1.8

    1.85

    1.9

    1.95

    2

    1 2 3 3 2 1 1 2 3 3 2 1 2 3 2 1 2 3 3 3 3

    Level of Modulation

    R R

    0

    0

    10

    20

    30

    4050

    60

    70

    80

    90

    100

    C u r r e n

    t d e n s

    i t y , m

    A / c m

    2RR0 j

    Foil N051 (Dr.Violante )

    Study of Influence of Modulations on Loading

  • 8/10/2019 2500% excess heat 65-El-Boher

    28/54

    28

    Excess Power; Exp. # 56

    Excess Power of up to ~3.5 watts; Average ~2.7 watts for ~300 h

    300 h

    Average Pout ~6.9 watts

    Average Pinet

    ~3.9 watts

    COPE=(Pout-Pinet):Pinet

    (6.9-3.9):3.9

    0.8

  • 8/10/2019 2500% excess heat 65-El-Boher

    29/54

    29

    Excess Energy; Exp. # 56

    Excess energy of ~3.1 MJ

  • 8/10/2019 2500% excess heat 65-El-Boher

    30/54

    30

    Excess Power; Exp. # 64a

    Pout=K T

    Pinet=Iin*Vin

    P dis

    Excess Power of up to 34 watts; Average ~20 watts for 17 h

    17 h

    Average Pinet

    ~0.74 watts

    Average Pout ~20 watts

    COPE=(Pout-Pinet):Pinet

    (20-0.74):0.74

    25

  • 8/10/2019 2500% excess heat 65-El-Boher

    31/54

    Temperature Evolution Exp # 64a

  • 8/10/2019 2500% excess heat 65-El-Boher

    32/54

    32

    Temperature Evolution, Exp. # 64a

    A AC

    T 4T 5

    T 1

    T 2

    T 3

    T4

    T5Tbath

  • 8/10/2019 2500% excess heat 65-El-Boher

    33/54

    33

    T=T 4

    -T5

    Average Current Density = 7.09 mA/cm 2

    Cell Voltage, V

    Current & Voltage; EXP. # 64a

  • 8/10/2019 2500% excess heat 65-El-Boher

    34/54

    34Loading is relatively low (~0.8)

    R/Ro & Power; EXP. # 64a

  • 8/10/2019 2500% excess heat 65-El-Boher

    35/54

    35

    Excess Power; Exp. # 64b

    Excess Power of up to 32 watts; Average ~12 watts for 80 h

    COPE=(Pout-Pinet):Pinet

    (12-0.72):0.72

    15

    Average Pout ~12 watts

    Average Pinet

    ~0.72 watts

    80 h

  • 8/10/2019 2500% excess heat 65-El-Boher

    36/54

    36Excess energy of ~4.6 MJ

    Excess Energy; Exp. # 64b

    Energy production from Cell ETE-4-64, second run

    0.00E+00

    5.00E+05

    1.00E+06

    1.50E+06

    2.00E+06

    2.50E+06

    3.00E+06

    3.50E+06

    4.00E+06

    4.50E+06

    5.00E+06

    0 10 20 30 40 50 60 70 80 90 100

    Time, h

    E n e r g y ,

    J o u

    l e

    Ein Eout Ex=Eout-Ein

    T t E l ti E # 64b

  • 8/10/2019 2500% excess heat 65-El-Boher

    37/54

    37

    A AC

    T 4T

    5

    T 1

    T 2

    T 3

    Temperature Evolution, Exp. # 64b

    T4T5

    Tbath

  • 8/10/2019 2500% excess heat 65-El-Boher

    38/54

    38

    T, Current Density & Voltage ; EXP. # 64b

    T=T 4

    -T5

    Average Current Density = 8.37 mA/cm 2

    Cell Voltage, V

  • 8/10/2019 2500% excess heat 65-El-Boher

    39/54

    39

    R/Ro & Power; Exp. # 64b

    Loading relatively low (~0.8)

  • 8/10/2019 2500% excess heat 65-El-Boher

    40/54

    40

    Excess Tritium in # 64

    Tritium concentration measured at end of #64 analysis ~ 250% of

    reference

    ~625 cm 3

    of D 2

    O has been added to make-up for evaporation; initial

    inventory was 230 cm 3

    Assuming TDO/D 2

    O evaporation rate ~ 1.0 Estimated T effective concentration ~ 750%

    This amount of tritium corresponds to

  • 8/10/2019 2500% excess heat 65-El-Boher

    41/54

    41

    Material Analysis

    Diagnostics:

    Auger Electron Spectrometry

    Scanning Electron Microscopy-Energy Dispersive

    Spectrometry SEM-EDS

    Transmission Electron Microscopy (TEM) Secondary Ion Mass Spectrometry (SIMS)

  • 8/10/2019 2500% excess heat 65-El-Boher

    42/54

    42

    Material Analysis # 64 vs. 63; SEM-EDS

    Surface of Pd foil after rolling and annealing at 870 0C:

    sample #64 sample #63

    f l l k d

  • 8/10/2019 2500% excess heat 65-El-Boher

    43/54

    43

    View of Typical Black Spot on # 64 and its composition

    SEM-EDS

    Element Wt % At % ____________________________ C 35.77 52.48O 26.19 28.84

    Na 4.92 3.77Al 0.43 0.28Si 1.05 0.66Pt 0.39 0.04S 1.44 0.79

    Cl 10.68 5.31Pd 2.55 0.42K 11.07 4.99Ca 5.52 2.43Total 100.00 100.00

    _____________________________

  • 8/10/2019 2500% excess heat 65-El-Boher

    44/54

    44

    AES profiles of Pd, C, O and Cl

    of Pd foils #63 and # 64

    0 20 40 60 80

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Cl-64

    C-64

    Pd-64

    O-63

    Cl-63

    C-63

    Pd-63

    A t . p a r t s

    Depth, A 0

    After etching in Aqua Regia

  • 8/10/2019 2500% excess heat 65-El-Boher

    45/54

    45

    Sample 64. SIMS depth profiling.

    0 100 200 300 400 500 600

    102

    103

    104

    105

    Pd

    C

    Pt

    CNO

    S

    D

    H

    Total

    C o u n t s

    Depth, A 0

    Sp ti l distrib tion of selected isotopes me s red b SIMS in #64

  • 8/10/2019 2500% excess heat 65-El-Boher

    46/54

    46

    Spatial distribution of selected isotopes measured by SIMS in #64 a

    D, b -

    32S, c -

    total isotopes content, d -

    195Pt.Scale bar -

    30 m.

    ab

    c d

  • 8/10/2019 2500% excess heat 65-El-Boher

    47/54

    47

    The dislocations in Pd foils after annealing.

    #63 #643x1010 , cm -2 6x1010 , cm -2

    Dislocation density

    TEM

  • 8/10/2019 2500% excess heat 65-El-Boher

    48/54

    48

    Plastic deformation of Pd foil caused by D2 absorption.Planes of sliding (111) are visible.

    Sample #64

  • 8/10/2019 2500% excess heat 65-El-Boher

    49/54

    49

    The area that is shown in the previous picture by an arrow.

  • 8/10/2019 2500% excess heat 65-El-Boher

    50/54

    50

    Sample #56

    Contact area Working area

  • 8/10/2019 2500% excess heat 65-El-Boher

    51/54

    51

    Brittle destruction of Pt Wire Sample #64

  • 8/10/2019 2500% excess heat 65-El-Boher

    52/54

    52

    Summary of Material Analysis

    Pd surface is covered at least with two types of impurities. The

    first

    one is a lubricant used at a rolling process with Pd during plasticdeformation of the metal. The second one is a result of adsorption of

    air components by Pd surface.

    The lubricant stains are of various sizes and configurations andpresent on surface of all samples before and after the electrolysis.

    Annealing at 850 0

    does not fully remove the lubricant's componentsfrom Pd surface.

    The density of dislocations and the average size of grains in sample #64 are twice higher, than in the reference sample.

    Nuclear reaction product can not be detected on surface zone due tohigh concentration of impurities. No He measurement has been

    attempted.

  • 8/10/2019 2500% excess heat 65-El-Boher

    53/54

    53

    SUMMARY

    Significant amount of excess heat has been generated in 3 experimentsusing 2 Pd foils.

    Dardiks modified SuperWaves have been used for current drive in all thethree experiments.

    The average current density was relatively low:

    < 10 mA/cm 2

    The maximum excess power was

    2500% . This range of excess power issuitable for commercial applications (although the operating temperatureswere too low for such applications).

    The maximum excess energy generated with a single Pd foil is

    5.7 MJ .

    This corresponds to a specific energy of

    24.8 KeV

    per Pd atom.

    The highest average power density obtained is

    ~70 W/g Pd (versus 20 to 50W/g U in commercial fission reactors).

    SUMMARY ( t )

  • 8/10/2019 2500% excess heat 65-El-Boher

    54/54

    54

    SUMMARY (cont.)

    Significant increase in the tritium concentration in the electrolyte has beenobserved. However, the amount of tritium produced is negligible ascompared with the excess energy generated.

    No measurement of He has been attempted.

    The Pd cathode surface was contaminated by what appears to be lubricantfrom the roller used for pre-treatment as well as impurities adsorbed from

    the air.