243722163 mohr circle new

Upload: christian5bravo-2

Post on 01-Jun-2018

230 views

Category:

Documents


2 download

TRANSCRIPT

  • 8/9/2019 243722163 Mohr Circle New

    1/18

    Use arrow keys on your keypad

    or click the mouse to navigate

    through the presentation

  • 8/9/2019 243722163 Mohr Circle New

    2/18

    When a set of co-planer external forces and moments act on a body,

    the stress developed at any point ‘P’ inside the body

    can be completely defined by the two dimensional state of stress:

    sx = normal stress in X direction,

    sy = normal stress in Y direction, and

    txy = shear stress which would be equal but opposite in

    X (cw) and Y (ccw) directions, respectively.

    The 2D stress at point P is described by a box drawn with its faces perpendicular to X

    & Y directions, and showing all normal and shear stress vectors (both magnitude and

    direction) on each face of the box. This is called the stress element of point P.

    Two dimensional state of stress, and the stress element

    X

    Y

    F1 F2 

    F3 F4 

    Fn 

    MM

    P

    Stress

    Element

    sxsx X

    txycw

    Y

    sy

    sy

    txy

    txy

    ccw

    txy 

    txy   t  x  y

    sx 

      t  x  y

    sy 

    sy 

    P sx 

  • 8/9/2019 243722163 Mohr Circle New

    3/18

    The stress formulae that we have learnt thus far, can determine the 2D stresses

    developed inside a part, ONLY ALONG A RECTANGULAR AXIS SYSTEM X -Y, that

    is defined by the shape of the part.

    For example, X axis for a cantilever beam is parallel to its length,

    and Y axis is perpendicular to X.

    For a combined bending and axial

    loading (F1, F2 etc.) of this cantilever

    beam:

    the normal and shear stress at a point

    P, can be determined using the

    formulae, such as,

    sx= Mv/I+P/A,

    txy

    =VQ/(Ib). 

    Note that, these formulae can only determine stresses parallel to X and Y

    axis, and the stress element is aligned with X-Y axis.

    The question is, what would be the values of normal and shear stresses at

    the same point P, if the stresses are measured along another rectangular

    axis system U-V, rotated at an angle f  with the X-Y axis system ?

    X

    Y

    F1

    F2P

    txy 

    txy 

      t  x  y

    sx 

      t  x

      y

    sy 

    sy 

    P sx 

    X

    Y f

  • 8/9/2019 243722163 Mohr Circle New

    4/18

    f

    txy X

    Y

    txy 

      t  x  y

    sx 

      t  x  y

    sy 

    sy 

    sx 

    Xf

    F

    Knowing the 2D stresses at point P along XY coordinate system,

    we want to determine the 2D stresses for the same point P, when measured

    along a new coordinate system UV,

    which is rotated by an angle f with respect to the XY system.

    The Problem is: given sx, sy, txy and f,

    can we determine su

    , sv

    , tuv

     ?

    X

    F1 Y

    F2PX

    Y

    f

    F2P

  • 8/9/2019 243722163 Mohr Circle New

    5/18

    1. We cut the stress

    element by an arbitraryplane at an angle f. This

    plane is normal to u-axis

    txy 

    sx 

      t  x  y

    sy 

    f

    sx 

    txy X

    Y

    txy 

      t  x  y

    sx 

      t  x  y

    sy 

    sy 

    f

    f

    Lsinf 

       L  c  o  s   f 

    txy(LBsinf) 

    sx(LBcosf) 

      t  x  y   (

       L   B  c  o  s   f   )

    sy(LBsinf) 

    f

    2. To maintain static equilibrium,

    let the internal normal and shear

    stresses su & tuv, respectively

    are developed on the cut plane

    3. Let, L be the length

    of the cut side. Then

    the other two sides are

    Lsinf & Lcosf

    4. If the thickness of the

    element is B, then the force

    acting on each face of the

    element will be equal to the

    stress multiplied by the area

    of the face. 

    THIS IS HOW WE CAN ACHIEVE THAT

  • 8/9/2019 243722163 Mohr Circle New

    6/18

    txy(LBsinf) 

    sx(LBcosf) 

      t  x  y

       (   L   B  c  o

      s   f   )

    sy(LBsinf) 

    f

    f

    f

    f

    f

    f

    Equating forces in u-direction:

    suLB = sxLBcos2f + syLBsin

    2f + 2txyLBsinfcosf 

    Or, su = sxcos2f + sysin

    2f + 2txysinfcosf ………..(1) 

    Equating forces in v-direction:

    tuvLB = txyLBcos2f - txyLBsin

    2f - sxLBsinfcosf+ syLBsinfcosf

    Or,t

    uv

     =

    t

    xy

     cos

    2

    f

     - sin

    2

    f

    ) – 

    s

    x

    -

    s

    y

    )

     

    sin

    f

    cos

    f

     ……. 2) 

    5. Forces

    acting on the

    faces = force xarea

    6. Resolving

    each force in u

    & v directions

    CONTINUING

  • 8/9/2019 243722163 Mohr Circle New

    7/18

    Replacing the square terms of trigonometric

    functions by double angle terms and rearranging :

    Equations 3, 4 & 5 gives us the 2D stress

    values, if measured along U-V axis which isat an anglef

    from X-Y axis.

    Since both sets of stresses refer to the

    stress of the same point, the two sets of

    stresses are also equivalent.

    )5.......(2sin2cos22

    ,

    ,

    )4(....................2sin2

    2cos

    cossincossin)sin(cos

    )3(..........2sin2cos22

    2sin)2cos1(2

    )2cos1(2

    cossin2sincos

    v

    yx

    yx

    22

    u

    22

    u

    f t f s s s s 

    f s s 

    f t 

    f f s f f s f f t t 

    f t f 

    s s s s 

    f t f s 

    f s 

    f f t f s f s s 

     xy

     y x y x

     xy

     xyuv

     xy

     y x y x

     xy

     y x

     xy y x

    that  shownbecanit thenaxisvtheto

    lar  perpendicu planeabyelement  stressthecut weif   Also

    --

    -+

    -

    --

    +--

    +

    -

    +

    +

    +-++

    ++

    txy X

    Y

    txy 

      t  x  y

    sx 

      t  x  y

    sy 

    sy 

    f

    X

    f

  • 8/9/2019 243722163 Mohr Circle New

    8/18

  • 8/9/2019 243722163 Mohr Circle New

    9/18

    f t f s s s s 

    f s s 

    f t t 

    f t f s s s s 

    2sin2cos22

    2sin2

    2cos

    2sin2cos22

    v

    yx

    u

     xy

     y x y x

     xyuv

     xy

     y x y x

    ---+

    --

    +-

    ++

    Mohr’s circle

    implements these three equations

    by a graphical aid, which simplifies

    computation and visualization of thechanges in stress values (su, sv & tuv)

    with the rotation angle f of the

    measurement axis. 

    Mohr circle is plotted on a rectangular coordinate system

    in which the positive horizontal axis represents positive

    (tensile) normal stress (s), and the positive vertical axis

    represents the positive (clockwise) shear stress (t).

    Thus the plane of the Mohr circle is denoted as s-t 

    plane. 

    In this s-t plane, the stresses acting on two faces of the

    stress element are plotted.

    txy

    Y

    sx

    sy

    sx

    sytxy

    X

    txy

    sxsx Xcw

    txy

    Y

    sy

    sytxy

    ccw

    s-s

    t

    -t

    For a stress element

    Y faces have stress:

    (sy,-txy)

    x faces have stress:(sx & txy)

  • 8/9/2019 243722163 Mohr Circle New

    10/18

    X

    1. Start by drawing the original stress element

    with its sides parallel to XY axis, and show the

    normal and the shear stress vectors on the

    element.

    2. Draw the s-t rectangular axis and label them.3. On the s-t plane, plot X with normal and

    shear stress values of sx and txy, and Y with

    values sy and –txy.4. Join X and Y points by a straight line, which

    intersects the horizontals

     axis at C. C

    denotes the average normal stress

    savg=(sx+sy)/2 .5. The line CX denotes X axis, and line CY

    denotes Y axis in Mohr circle. Name them.

    6. Draw the Mohr circle using C as the center,

    and XY line as the diameter.

    7. To find stress along the new UV axis system,

    draw a line UV rotated at an angle 2   from

    the XY line. CU line denotes U axis, and CV

    denotes V axis.

    8. The normal and shear stress values of the

    points U and V on the s-t plane denote the

    stresses in U and V directions, respectively.

    9. This way we can find stresses for an element

    rotated at any desired angle f .

    Y

    sx

    txy

    sy

    sx

    sytxy

    X

    Normal stress

    axis (s) 

       S   h  e  a  r  s   t  r

      e  s  s

      a  x   i  s   (  t   )

    -s 

      t  x  y

    Y(sy,-txy)

    sxsy

    savg(sx+sy)/2 

      t  x  y

    C

    su

      t  u  v

    sv

      t  u  v

    -t 

    DRAWING MOHR CIRCLE

  • 8/9/2019 243722163 Mohr Circle New

    11/18

    Y

    sxtxy

    sy

    sx

    sy

    txy

    X

    f t f s s s s 

    f s s 

    f t t 

    f t f s s s s s 

    2sin2cos

    22

    2sin2

    2cos

    2sin2cos22

    v

    yx

    u

     xy

     y x y x

     xyuv

     xy y x y x

    --

    -+

    --

    +-

    ++

    X

    f t f s s 

    f t 

    f s s 

    f  f  

    f  

    2sin2cos2

    )2sin2cos2

    (

    )2sin2sin2cos2(cos

    )22cos(

     xy

     y x

     xy y x

    aaa

    a

    a

    +-

    +-

    +

    -

    -s 

      t  x  y

       S   h  e  a  r  s   t  r  e  s  s  a  x   i  s   (  t   )

    Y(sy,txy)

    sxsy

    Normal Stress axis (s) 

    savg(sx+sy)/2 

    f s s 

    f t 

    f s s 

    f t 

    f  f  

    f  

    2sin2

    2cos

    )2sin2

    2cos(

    )2sin2cos2cos2(sin

    )22sin(

     y x

     xy

     y x xy

    aaa

    a

    a

    --

    --

    -

    -PROOF

  • 8/9/2019 243722163 Mohr Circle New

    12/18

    Y(sy,-txy)

    sxsy

    savg-s 

    -t 

    txy

    txy

    X (sx,txy)

    Similarly, if the XY axis line is

    rotated by an angle 2   ‘ to make

    it vertical, then the shear stress

    maximizes and the element will

    have normal stress = savg andMaximum shear stress = tmax 

    In the Mohr circle, for a rotation

    of 2  angle, the XY axis line

    becomes horizontal. In therotated axis s1-s2, the shear

    stress vanishes.

    The element will have only

    normal stresses s1 & s2, and s1 

    being the maximum normal

    stress. s1 & s2 are called thePrincipal normal stresses. tmax

    Principal Normal Stressess

    1

      s

    2

    ,

    and Max Shear Stresstmax 

    x

    Y

    ’ 

    s2 s1

    2’ 

    (savg,tmax)

    (savg,-tmax)

  • 8/9/2019 243722163 Mohr Circle New

    13/18

    2

     x y

    avg 

    s s s 

    +

    2

    2

    2

     x y

     xy Rs s 

    t -

    +

    1  2

    2 tan  xy

     x y

    t  

    s s 

      -

    1

    2

    max

    avg 

    avg 

     R

     R

     R

    s s 

    s s 

    +

    -

    x

    Y

    f

    Y

    sxtxy

    sy

    sx

    sy

    txy X

    Formulea for Principal Normal Stresses & Max Shear Stress

    X (sx,txy)

    Y(sy,-txy)

    sxs2 s1

    sy

    savg

    tmax

    2 -s 

    -t 

    2’ txy

    txy

    (savg,tmax)

    (savg,-tmax)

    Maximum shear

    stress element

    Principal normal

    stress element

         2902   -

  • 8/9/2019 243722163 Mohr Circle New

    14/18

    Determining su, sv & tuv 

    Given sx, sy, txy & f 

    X

    Y

    sx

    txy

    sy

    sx

    sytxy

    X

    -s 

      t  x  y

    Y(sy,-txy)

    sxsy

    savg(sx+sy)/2 

      t

      x  y

    C

    su

      t  u  v

    sv

      t  u  v

    -t 

    2:   y xavg C 

    s s s 

    +

    2

    2

    2  xy

     y x R Radius   t 

    s s +

     

      

        -

     

     

     

     -

      -

     y x

     xy

    s s 

    t  

    2tan2   1

    )22sin(   f  s s    -+   Ravg u

    )22(   f  s s    --   Sin Ravg v

    )22(   f  t    -   Cos Ruv

  • 8/9/2019 243722163 Mohr Circle New

    15/18

    Y

  • 8/9/2019 243722163 Mohr Circle New

    16/18

    Y

    X

    5,000 psi

    20,000 psi20,000 psi

    4,000 psi

    4,000 psi

    X (20k,5k)

    Y(-4k,-5k)

    20k

    s2 -5k s121k-4k 8k

    tmax

    22.6 s -s 

    -t 

    o 67.4 5k

    5k

    (8k,13k)

    (8k,-13k)

    For a stress element with

    1. Draw the stress element along XY axis.

    2. Draw the s-t axes for mohr circle

    3. Plot point X for sx=20K, txy=5k

    4. Plot point Y for sy= -4K, txy=-5k

    5. Draw line XY and show X & Y axes.

    6. Draw the circle with XY as the diameter

    20 48

    2 2

     x y

    avg 

    k k k psi

    s s s 

    +   -

    o

     y x

     xy6.22)417.0(tan

    420

    52tan

    2tan2   111

     

      

     

    +

     

     

     

     

    -   ---

    s s 

    t  

     Kpsi R   13max   t 

      sx=20,000 psi,

    sy= -4000 psi, and

    txy= 5000 psi.

    Draw the Mohr Circle and, draw two stress elements

    properly oriented for (i) the principal normal stresses,

    and (ii) max shear stresses element.

    oo

    o

    4.676.2290

    2902

    -

    -        kpsi Ravg    211381   ++ s s 

    kpsi Ravg    51382   --- s s 

    kpsi R  xy y x

    135

    2

    )4(20

    2

    2

    2

    2

    2

    +

     

     

     

        --+

     

     

     

        -   t 

    s s 

    This completes the Mohr circle. Next, the stress elements

    Y

  • 8/9/2019 243722163 Mohr Circle New

    17/18

    Y

    X

    5,000 psi

    20,000 psi20,000 psi

    4,000 psi

    4,000 psi

    X (20k,5k)

    Y(-4k,-5k)

    20k

    s2 -5k s121k-4k 8k

    tmax

    22.6 s -s 

    -t 

    o 67.4 5k

    5k

    (8k,13k)

    (8k,-13k)

    11.3

    x

    Y

    33.7 

    The principal normal stress axis

    will be rotated CW

    Draw the principal stress axis

    11.3o

     CW from XY axis.Show the principal stresses.

    o3.112

    6.22 

    The tmax axis will be

    rotated CCW

    Draw the tmax stress axis33.7o CCW from XY axis.

    Show the the stresses.

    o7.332

    4.67 

    PRINCIPAL NORMAL STRESS ELEMENT

    STRESS ELEMENT FOR tMAX 

    That completes the drawing of

    the two stress elements

  • 8/9/2019 243722163 Mohr Circle New

    18/18

    This ends the

    presentationand thanks for watching it