2/4/2014phy 770 spring 2014 -- lecture 61 phy 770 -- statistical mechanics 12:30-1:45 pm tr olin 107...

Download 2/4/2014PHY 770 Spring 2014 -- Lecture 61 PHY 770 -- Statistical Mechanics 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth (Olin 300) Course Webpage:

If you can't read please download the document

Upload: karin-webster

Post on 17-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

  • Slide 1
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 61 PHY 770 -- Statistical Mechanics 12:30-1:45 PM TR Olin 107 Instructor: Natalie Holzwarth (Olin 300) Course Webpage: http://www.wfu.edu/~natalie/s14phy770http://www.wfu.edu/~natalie/s14phy770 Lecture 6 -- Chapter 4 Review of Thermodynamics continued 1.Thermodynamics of phase transitions 2.Phase equilibria; Clausius-Clapeyron equation
  • Slide 2
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 62
  • Slide 3
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 63
  • Slide 4
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 64
  • Slide 5
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 65 Thermodynamics of phase equilibria and transitions Initially, focus on one component systems with multiple phases Example: water Phase I: Solid Phase II: Liquid Phase III: Gas
  • Slide 6
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 66 Phase diagram of water (http://www1.lsbu.ac.uk/water/phase.html)http://www1.lsbu.ac.uk/water/phase.html
  • Slide 7
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 67 Comments about phase transitions at constant T and P (or more generally T and Y). G I (T,Y)=G II (T,Y) and I (T,Y)= II (T,Y) Coexistence line defined by Y I-II coexist (T). In this case, the coexistance of three phases is only possible at a point in the Y,T plane. Phase transition can be first order when G has discontinuous first derivatives Phase transition can be second order when G has continuous first derivatives
  • Slide 8
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 68
  • Slide 9
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 69 Thermodynamic description of the equilibrium between two forms phases of a material under conditions of constant T and P
  • Slide 10
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 610 Example of phase diagram :
  • Slide 11
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 611 Phase diagram for water:
  • Slide 12
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 612 piston T,P A B Consider a two phase system at constant T and P Note: A and B denote different phases (previously I and II)
  • Slide 13
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 613 piston T,P A B
  • Slide 14
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 614 P T g A > g B g A < g B
  • Slide 15
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 615
  • Slide 16
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 616 Example liquid solid transition in water G T P constant Liquid Solid Melting T m
  • Slide 17
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 617
  • Slide 18
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 618 More details
  • Slide 19
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 619
  • Slide 20
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 620
  • Slide 21
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 621
  • Slide 22
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 622 Approximate liquid-gas vaporization curve from Clausius- Clapeyron equation: P
  • Slide 23
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 623 The van der Waals equation of state -- More realistic than the ideal gas law; contains some of the correct attributes for liquid-gas phase transitions.
  • Slide 24
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 624 Some motivation for van der Waals equation of state Johannes Diderik van der Waals Ph. D. Thesis written in 1873 (The Netherlands) -- received Nobel Prize in 1910 General potential between two particles:
  • Slide 25
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 625 Substancea (10 -30 eV m 3 )b (10 -30 m 3 ) water9.5550.7 SO 2 11.994.7 CO 2 6.371.3 O2O2 2.3852.9 Ar2.3653.8 N2N2 2.3664.3 H2H2 0.42844.3 4 He0.059739.4 From: Baierlein, Thermal Physics
  • Slide 26
  • 2/4/2014PHY 770 Spring 2014 -- Lecture 626 P/P c V/V c T/T c =1 T/T c >1 T/T c