2.3 system concepts and applications/media/resources/documents...energ y supply transfer, storag e,...

62
Werner Weiss AEE - Institute for Sustainable Technologies (AEE INTEC) A-8200 Gleisdorf, Feldgasse 19 AUSTRIA SYSTEM CONCEPTS AND APPLICATIONS

Upload: phamhanh

Post on 01-Apr-2018

216 views

Category:

Documents


1 download

TRANSCRIPT

Werner WeissAEE - Institute for Sustainable Technologies (AEE IN TEC)A-8200 Gleisdorf, Feldgasse 19AUSTRIA

SYSTEM CONCEPTSAND APPLICATIONS

PLASTIC ABSORBERS

SWIMMING POOL SYSTEM

SWIMMING POOL SYSTEM

SWIMMING POOL SYSTEM

The energy demand of an outdoor pool is mostly influenced by the water temperature.

The largest losses are the surface of the pools.

That is the reason why the size of the absorber area is given as a proportion of the total water surface area.

As a rule of thumb, this should be between 80 and 100% of the pool area for weather conditions in central Europe.

Thermosyphon Systems for Hot Water Preparation

THERMOSYPHON SYSTEM - China

THERMOSYPHON SYSTEMS

INDIRECT SYSTEM

Indirect Thermosyphon System

Source: TONG HUA, China

Thermosyphon Systems – Balcony systems

Thermosyphon Systems – Balcony systems

Thermosyphon Systems – Balcony systems

Domestic Hot Water System with Forced Circulation

Domestic Hot Water System with Forced Circulation

HYDRAULIC SCHEME OF A SOLAR HOT WATER SYSTEM

°C

tank

storage

hot water

cold water

3bar°C/bar

collector area

°C

1

2

3

5

6

7

10

8

4

escape valve

1

fill and empty valve

expansion tank

thermometer

pressure relief valve

thermometer and pressure gaugelock valve

gravity brake

circulation pump

9

8

7

6

5

4

3

2

Solar Combisystems

PreconditionsPreconditions

and and

RequirementsRequirements

Solar Combisystems

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

Total: 1126.91kWh/m²

0,0

0,9

1,8

2,7

3,6

4,5

5,4

6,3

7,2

8,1

9,0

[kWh/m²] Solar-Radiation

0

500

1000

1500

2000

2500

3000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

[kWh/month] Excess irradiation Excess consumption

Usable solar energy Irradiation

Reference consumption

3000

2500

2000

1500

1000

500

0

1

2

3

1

Solar Combisystems

Seasonal variations of the heat demand for space heating and DHW

Solar Combisystems

Hot WaterHot WaterHot water temperature: 60 °C

Cold water: 6 - 12 °C

W a rm w a sse rve rbra uch- Ta ge spro fi l

-40

-30

-20

-10

0

10

20

30

40

50

60

70

3,11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0

Z e it

Tem

pera

tur [

°C]

0

25

50

75

100

125

150

175

200

225

250

275

Zap

fmen

ge [l

/h]

Solar Combisystems

Space HeatingSpace Heating

Flow temperature: 30 - 50 °CReturn temperature: 20 - 40 °C

Demand:• is not always corresponding to the solar

irradiation

• varies in dependence of ambient temperature, passive solar gains and the internal gains of the

building

Solar Combisystems

Designs

ENERGY SUPPLY TRANSFER, STORAGE, CONTROL AND DISTRIB UTION LOAD

M

M

M

S A H1 (H2)

ENERGY SUPPLY TRANSFER, STORAGE, CONTROL AND DISTRIB UTION LOAD

M

H2

S

A H1

ENERGY SUPPLY TRANSFER, STORAGE, CONTROL AND DISTRIB UTION LOAD

M

S A H1 DHW

Solar Combisystems

System using the thermal mass of the building to st ore the heat

E N E R G Y S U P P L Y T R A N S F E R , S T O R A G E , C O N T R O L A N D D IS T R IB U T IO N L O A D

M

M

M

S A H 1 (H 2)

Solar Combisystems

Using the domestic hot water to store the heat

ENERG Y SUPPLY TRANSFER, STO RAG E, CO NTRO L AND D ISTRIB UTIO N LO AD

M

M

S DHW

A

Solar Combisystems

E N E R G Y S U P P L Y T R A N S F E R , S T O R A G E , C O N T R O L A N D D IS T R IB U T IO N L O A D

M

H2

S

A H1

Using the domestic hot water to store the heat

Solar Combisystems

E N E R G Y S U P P L Y T R A N S F E R , S T O R A G E , C O N T R O L A N D D IS T R IB U T IO N L O A D

M

S A H 1 D H W

Using the space heating store to store the heat

Solar Combisystems

From

Complex

Designs…

Solar Combisystems

…to

Compact

Products

Solar Combisystems

Warmwasser

Heizkreis

Kollektor

KW

1996

Warmwasser

Kollektor

KW Heizkreis

1995

0

5

10

15

20

25

30

35

1 2 3

H yd rau lic C o n n ec tio n s

0

0 ,5

1

1 ,5

2

2 ,5

3

3 ,5

4

4 ,5

5

[m²]

1 2 3

S pa ce R e qu ire m en t

0

50

100

150

200

250

[kg]

1 2 3

W eig h t

Optimisation (SOLVIS)

Solar Combisystems

Solar Combisystems

Sizes SystemSytem Sizes of Solar Combisystems in different Euro pean Countries

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Collector Area [m²]

Sto

rage

Vol

ume

[ltr]

Austria

Denmark

France

Germany

Sweden

Italy

Netherlands

Solar Combisystems

Costs of Solar Combisystems in different European C ountries

0

200

400

600

800

1.000

1.200

1.400

1.600

1.800

2.000

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Collector Area [m²]

Sys

tem

Cos

ts [€

/m² c

olle

ctor

are

a]

Inst. incl., Aux. excl., heat delivery excl. - Austria Inst. excl., Aux. excl., heat delivery excl. - Austria Inst. incl., Aux excl., heat delivery excl. - Denmark

Inst. excl., Aux. incl., heat delivery excl. - Germany Inst. excl., Aux. incl., heat delivery excl. - Netherlands Inst. incl., Aux. excl., heat delivery excl. - Italy

Inst. excl., Aux. excl., heat delivery excl. - Italy Inst. incl., Aux. excl., heat delivery excl. - France Inst. excl., Aux. incl., heat delivery incl. - France

Inst. excl., Aux. incl., heat delivery excl. - France Inst. excl., Aux. excl., heat delivery incl. - France Inst. excl., Aux. incl., heat delivery excl. - Sweden

Inst. excl., Aux. excl., heat delivery excl. - Sweden

Germany

Denmark, Sweden, Austria

Solar Combisystems

MULTI FAMILY HOUSES

Market Penetration

1,9 MioHauptwohnsitze

~ 1 ProzentDurchdringung

0

10

20

30

40

50

60

70

80

90

100

110

Geschoßwohnbauten

Pot

enzi

al u

nd M

arkt

durc

hdrin

gung

[%]

.

Geschoß-

wohnbauten

Solutions for Existing Buildings

Development of System Concepts1st Generation - Solar Plant Concepts for MFH(Concept for a small number of flats)

Kollek

torfe

ld

Kessel

KW

KW

Rau

mhe

izung

Trinkwasserspeicher

2nd Generation - Solar Plant Concepts for MFH

Kollekto

rfeld

T2

T3

Energiespeicher

Kessel

Raumheizung

KW

War

mw

ass

er

Bereitschafts- speicher

Zir

kula

tion

Development of System Concepts

3rd Generation - Solar Plant Concepts for MFH

Heat distribution via 2-pipe network Domestic hot water preparation via decentralised storage tanksPreferred concept for row houses (low energy density)

Kollek

torfe

ld

T2

T3

Kessel

Energiespeicher

Kaltwasser

Kaltwasser

Kaltwasser

Warmwasser

Warmwasser

Warmwasser

Boiler

Boiler

Boiler

Kollek

torfe

ld

T2

T3

Kessel

Energiespeicher

Kaltwasser

Kaltwasser

Kaltwasser

Warmwasser

Warmwasser

Warmwasser

� Heat distribution via a 2-pipe network

� Decentralised instant hot water preparation

� Concept for „high energy density) MFH

3rd Generation - Solar Plant Concepts for MFH

Compact Heat Distribution Units

Netz VL

Netz RL

Warmwasser

Kaltwasser

1 Absperrventil2 Rückschlagklappe3 Sicherheitsventil4 Durchflussgesteuerter

Temperaturregler5 Rücklauftemperaturbegrenzer

6 Differenzdruckregler7 Zählerpassstück8 Zonenventil9 Passstück Kaltwasser

1

1

1

1 1

1

1

2 3

4

5

67 8

910°C

45°C

65°C

20 - 40°C

10

10 Zirkulationsbrücke

Heizung VL

Heizung RL

65°C

25 - 40°C

0

10

20

30

40

50

60

70

80

90

100

27.10.03 00:00 28.10.03 00:00 29.10.03 00:00 30.10.03 00:00 31.10.03 00:00 01.11.03 00:00 02.11.03 00:00 03.1 1.03 00:00

Tem

pera

tur

[°C]

T-Netz-VL T-Netz-RL T-Solarsek.-VL T-Solarsek.-RL T-Puffer-VL

Advantages of 2-pipe networks

Return flow nearly constant at 30°C Ideal conditions for solar thermal systems

� Distribution losses minimized

� Provides in all cases integration into the space

heating system

� No problems concerning legionnaires disease

� Easy counting of delivered energy for each flat

due to integrated heat meters

� Prefabricated heat transfer stations reduce the

labour cost, easy and faultless installation

Advantages of 2 pipe concepts

60 - 801,8 - 2,270 - 7525 - 30

Dimensioning with approx. 100% Solar fraction in Summer

50 - 700,9 - 1,450 - 6015 - 20

Dimensioning: Cost/Performance Optimum

Storagevolume

[Liter / m²collector area]

Collectorarea

[m² per Person]

Solar Fraction

Hot Water Demand

[%]

Solar Fraction

Total Heat Demand

[%]

Dimensioning of Collector area and Storage Volume

System Monitoring

Energie-speicher7.500 l

Wärmeverteilung für56 Wohneinheiten

36 kW Brauchwasserbereitung

Kaltwasser

Warmwasser

WMZ n

36 kW Brauchwasserbereitung

Kaltwasser

Warmwasser

WMZ n

Kollek

torfl

äche

120

Neigun

g 30

°

TKoll

TSol RL

TSek RL

TSol VL

WMZSolar

Daten-logger

TSek VL TPo

TPm

TPu

TAussen

AutomatischerSystemwart

TNH RL

TNH VL

WMZ NH

Gas-brennwert-kessel225 kW

WMZ Netz

TNetz VL

TNetz RL

Wärmeverteilnetztemperaturen (Vorlauf und Rücklauf) von 7 Objekten.

20

25

30

35

40

45

50

55

60

65

70

15.2.2005 00:00 16.2.2005 00:00 17.2.2005 00:00 18.2.2 005 00:00 19.2.2005 00:00 20.2.2005 00:00 21.2.2005 00 :00

Sys

tem

tem

pera

tur

[°C]

Flow and return temperatures

ca. 55-65°C

ca. 25-37°C

Low return temperatures of 30°C are necessary for a n optimised operation of solar thermal systems

System Efficiency –Annual system utilization

Ecellent system utilization between 80 and 90% are po ssible with 2-pipe networks!

More Information:More Information:

The book:

Solar Heating Systems for Houses

A Design Handbook for Solar Combisystems

Solar Combisystems

Mluti-familiy Houses

ThisThis Design Design handbookhandbook isis availableavailable forfor €€ 29,80 at 29,80 at www.aee.atwww.aee.at

Data:10 Multi Family Houses, 370 Flats1160 m² Collector area, 102 m³ Storage VolumeAverage Solar Fraction 15 - 20% (DHW and Space Heating)

Monitoring Results of 10 Solar Plants with 2-Pipe Networks

Local District Heating – Hamburg, Germany

Source: ITW, University Stuttgart

Local District Heating - Steinfurt-Borghorst, Germany

Source: ITW, University Stuttgart

Wärmeübergabestation mitdirekter Heizungsanbindung

und Trinkwasserbereitungim Durchflußprinzip

Wärmeübergabestation mitindirekter Heizungseinbindung

und Trinkwasserbereitungmit Speicherladesystem

Kaltwasser

Hydraulische Weicheoder Pufferspeicher

Kaltwasser

Heiz-kessel

TW ZK

Langzeit-

Wärmespeicher

Solarnetz

Wärmeverteilnetz

Heizzentrale

Kollektorfeld

Kollektorfeld

Wärme-übergabe-station

Wärme-übergabe-station

Local District Heating with Seasonal Storage

Source: ITW, University Stuttgart

Kies-Wasser-Wärmespeicher

Erdsonden-Wärmespeicher Aquifer-Wärmespeicher

Heißwasser-Wärmespeicher

Seasonal Heat Storages

District Heating – 1 MW th, Graz

District Heating – 1 MW th, Graz

District Heating – 3MW th, AEVG, Graz, Austria

Solar District HeatingSolar District Heating –– MarstalMarstal, DK, DK –– 13 13 MWth

District Heating

Austria

Since the beginning of the 1980s about 500 biomass district heating networks have been built in Austria and more of these types of plants are continuously being built and successfully operated. Especially due to the amount of wood available in Austria, these plants are considered to be interesting and also highly acceptable regarding the independence from fossil energy imports.

Several of these central biomass plants have been equipped with solar collector arrays, acting as an auxiliary heat supplier.

District Heating - Eibiswald

Solar assisted biomass district heating plant, Eibiswald with an installed capacity of 875 kWth, (1250 m² collector array)

District Heating - Eibiswald

Heat production in 1996. Annual heat consumption at the customers: 3650 MWh

Eibiswald, W ärm eerzeugung Juli 1997 - Juni 1998

0

100

200

300

400

500

600

700

800

900

1000

Jul97

Aug97

Sep97

Okt97

Nov97

Dez97

Jän98

Feb98

Mrz98

Apr98

Mai98

Jun98

Monat

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Solaranlage

Biom asse + Ö lkessel

Solarer Deckungsgrad

District Heating - Eibiswald

Heat consumption at the customers in 1996. Solar fraction on theheat consumption: 14,1%

Eibiswald, W ärm everbrauch Juli 1997 - Juni 1998

0

100

200

300

400

500

600

700

800

900

1000

Jul97

Aug97

Sep97

Okt97

Nov97

Dez97

Jän98

Feb98

Mrz98

Apr98

Mai98

Jun98

Monat

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

W ärm everbrauch bei den Abnehm ern

Solaranteil