2%2dhomogeneous equation and euler theorem

Upload: suryanagar687

Post on 30-May-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 2%2DHomogeneous Equation and Euler Theorem

    1/22

    (25 Solved problems and 00 Home assignments)

    Homogeneous Expression:

    An expression of the form nn22n

    211n

    1n

    0 ya...yxayxaxa ++++ ,

    where each term of degree n , is called Homogeneous expression in x and y and of

    degree or order n.

    Homogeneous Function:

    If this expression equal to some quantity u , then u is called Homogeneous

    Function in x and y of degree n .

    Now nn22n

    211n

    1n

    0 ya...yxayxaxau ++++=

    ++

    +

    +=n

    n

    2

    210n

    xy

    a.....xy

    axy

    aax

    =xy

    f xu n .

    Also, we can write a Homogeneous Function in x and y of degree 'n' as

    =

    yx

    f yu n .

    Similarly, a Homogeneous Function in x ,y and z of degree n can be written as

    Differential Calculus

    Partial Differentiation

    (Homogeneous Functions and Eulers Theorem)

    Prepared by:

    Dr. Sunil

    NIT Hamirpur (HP)(Last updated on 26-08-2008)

    Latest update available at: http://www.freewebs.com/sunilnit/

  • 8/14/2019 2%2DHomogeneous Equation and Euler Theorem

    2/22

    Partial Differentiation: Homogeneous Equation and Eulers Theorem

    Prepared by: Dr. Sunil, NIT Hamirpur

    2

    =xz

    ,xy

    Fxu n or

    =

    yz

    ,yx

    Fyu n or

    =zy

    ,zx

    Fzu n .

    Here 'u' is dependent variable and x, y, z are independent variables.

    Eulers Theorem:

    Statement: If u is a homogeneous function of x and y of degree n, then

    nuyu

    yxu

    x =

    +

    .

    Proof: Given u is a homogeneous function in x and y of degree n.

    Then we may write

    =xy

    f xu n . (i)

    Differentiating (i) partially w.r.t. x [keeping y as constant], we get

    n n 12

    n 2 n 1

    u y y yx f nx f

    x x x x

    y yx yf nx f .

    x x

    = +

    = +

    Similarly, differentiating (i) partially w.r.t. y [keeping x as constant], we get

    =

    =

    xy

    f xx1

    xy

    f xyu 1nn .

    Nown 2 n 1 n 1u u y y y

    x y x x yf nx f y x f x y x x x

    + = + +

    n yn x f nux

    = =

    .

    This completes the proof .

    Extension of Eulers Theorem:

    Statement: If u is a homogeneous function of x and y of degree n, then show that

    ( )u1nnyu

    yyxu

    xy2x

    ux 2

    22

    2

    2

    22

    =

    +

    +

    .

    Proof: Since u is a homogeneous function in x and y of degree n then

    nuyu

    yxu

    x =

    +

    . [by Eulers Theorem] ..... (i)

    Differentiating (i) partially w. r. t. x [keeping y as constant], we get

  • 8/14/2019 2%2DHomogeneous Equation and Euler Theorem

    3/22

    Partial Differentiation: Homogeneous Equation and Eulers Theorem

    Prepared by: Dr. Sunil, NIT Hamirpur

    3

    2 2

    2

    u u u ux y n .

    x x x y x

    + + =

    Multiplying by x, we get

    xu

    nxyxu

    xyxu

    xx

    ux

    2

    2

    2

    2

    =

    +

    +

    ( ) xu

    x1nyxu

    xyx

    ux

    2

    2

    2

    2

    =

    +

    . ......(ii)

    Again, Differentiating (i) partially w. r. t. y [keeping x as constant], we get

    yu

    nyu

    y

    uy

    xyu

    x 2

    22

    =

    +

    +

    .

    Multiplying by y, we get

    yu

    nyyu

    yy

    uy

    xyu

    xy 2

    22

    2

    =

    +

    +

    ( )

    yu

    y1ny

    uy

    xyu

    xy 2

    22

    2

    =

    +

    . .....(iii)

    Adding (ii) and (iii), we get

    ( ) ( ) ( )u1nnnu1nyu

    yxu

    x1ny

    uy

    yxu

    xy2x

    ux 2

    22

    2

    2

    22 ==

    +

    =

    +

    +

    .

    This completes the proof.

    Now let us solve some problems related to the above-mentioned topics:

    Q.No.1.: Verify Eulers theorem, when 323 yyx3xz = .

    Sol.: Since323

    yyx3xz =

    xy6x3xz 2 =

    and 22 y3x3yz

    =

    .

    ( ) ( ) ( )z3yyx3x3y3x3yxy6x3xyz

    yxz

    x 323222 ==+=

    +

    .

    Also

    =

    =xy

    f xxy

    xy

    31xz 33

    3 .

    z is a homogeneous function of x and y of degree 3.

    By Eulers theorem, we get z3nzyz

    yxz

    x ==

    +

    .

    Hence, Eulers theorem is verified .

  • 8/14/2019 2%2DHomogeneous Equation and Euler Theorem

    4/22

    Partial Differentiation: Homogeneous Equation and Eulers Theorem

    Prepared by: Dr. Sunil, NIT Hamirpur

    4

    Q.No.2.: If 2 / 1

    2 / 12 / 1

    3 / 13 / 1

    yx

    yxu

    ++

    = , then prove that u121

    yu

    yxu

    x =

    +

    .

    Sol.: Here

    2 / 1

    2 / 1

    3 / 1

    6 / 1

    2 / 1

    2 / 1

    2 / 12 / 1

    3 / 1

    3 / 13 / 1

    2 / 1

    2 / 12 / 1

    3 / 13 / 1

    xy

    1

    xy

    1x

    x

    y1x

    x

    y

    1x

    yx

    yxu

    +

    +=

    +

    +=

    ++

    =

    =

    +

    +=

    xy

    f x

    xy

    1

    xy

    1x 12 / 1

    2 / 1

    2 / 1

    3 / 1

    12 / 1 .

    u is a homogeneous function of x and y of degree121

    .

    By Eulers theorem, we have u121

    nuyu

    yxu

    x ==

    +

    .

    Hence the result .

    Q.No.3.: If

    =xy

    f u , then show that 0yu

    yxu

    x =

    +

    .

    Sol.: Here

    =

    = xyf xxyf u0 .

    u is a homogeneous function of x and y of degree 0.

    Hence by Eulers theorem, we have

    0u.0nuyu

    yxu

    x ===

    +

    .

    Hence the result .

    Q.No.4.: If

    = xy

    xyf u , then show that

    =

    +

    x

    y

    xyf 2y

    u

    yx

    u

    x .

    Sol.: Here

    =

    =

    =xy

    Fxxy

    f xy

    xxy

    xyf u 22 .

    u is a homogeneous function of x and y of degree 2.

    Hence by Eulers theorem, we have

  • 8/14/2019 2%2DHomogeneous Equation and Euler Theorem

    5/22

    Partial Differentiation: Homogeneous Equation and Eulers Theorem

    Prepared by: Dr. Sunil, NIT Hamirpur

    5

    ===

    +

    xy

    xyf 2u.2nuyu

    yxu

    x .

    Hence the result .

    Q.No.5.: If

    +

    = xytanyxsinu

    11 , find the value of yuyxux + .

    Sol.: Here

    =

    +=

    +

    =

    xy

    f xxy

    tan

    xy1

    sinxxy

    tanyx

    sinu 011011 .

    u is a homogeneous function of x and y of degree 0.

    Hence by Eulers theorem, we have

    0u0nuyuy

    xux ===+

    .

    Hence the result .

    Q.No.6.: Verify Eulers Theorem on homogeneous functions in the following cases:-

    (i) ( ) ( )5 / 15 / 14 / 14 / 1

    yx

    yxy,xf

    ++

    = , (ii) ( ) zyxz,y,xf u ++==

    (iii)

    +=

    y

    yxtanz

    221 , (iv)

    +

    =

    x

    ytan

    y

    xsinu 11

    (v)

    =xy

    logxz 4 .

    Sol.: (i) Here ( ) ( )( )

    =

    +

    +=

    ++

    =xy

    f x

    xy

    1

    xy

    1x

    yx

    yxy,xf 20 / 1

    5 / 1

    4 / 1

    20 / 15 / 15 / 1

    4 / 14 / 1

    ( )y,xf is a homogeneous function of x and y of degree 201

    .

    Hence by Eulers theorem, we have

    ( )5 / 15 / 14 / 14 / 1

    yx

    yx201

    nf yf

    yxf

    x++

    ==

    +

    . (i)

  • 8/14/2019 2%2DHomogeneous Equation and Euler Theorem

    6/22

    Partial Differentiation: Homogeneous Equation and Eulers Theorem

    Prepared by: Dr. Sunil, NIT Hamirpur

    6

    Again since ( ) ( )5 / 15 / 14 / 14 / 1

    yx

    yxy,xf

    ++

    =

    Differentiating partially w. r. t x and y respectively, we get

    ( ) ( )( )25 / 15 / 1

    5 / 44 / 14 / 14 / 35 / 15 / 1

    yx

    x51yxx41yx

    xf

    +

    +

    +=

    Multiplying by x, we get

    ( ) ( )( )25 / 15 / 1

    5 / 14 / 14 / 14 / 15 / 15 / 1

    yx

    x51

    yxx41

    yx

    xf

    x+

    +

    +=

    (ii)

    ( ) ( )( )25 / 15 / 1

    5 / 44 / 14 / 14 / 35 / 15 / 1

    yx

    y5

    1

    yxy4

    1

    yxyf

    +

    +

    +=

    Multiplying by y, we get

    ( ) ( )( )25 / 15 / 1

    5 / 14 / 14 / 14 / 15 / 15 / 1

    yx

    y51

    yxy41

    yx

    yf

    y+

    +

    +=

    (iii)

    Adding (ii) and (iii), we get

    ( ) ( ) ( ) ( )( )25 / 15 / 1

    5 / 15 / 14 / 14 / 14 / 14 / 15 / 15 / 1

    yx

    yx51yxyx

    41yx

    yf

    yxf

    x+

    ++++=

    +

    ( )5 / 15 / 14 / 14 / 1

    yx

    yx201

    ++

    = (iv)

    Hence, the Eulers Theorem is verified .

    (ii) Here ( )

    =

    +

    +=++==

    x

    z,

    x

    yf x

    x

    z

    x

    y1xzyxz,y,xf u 2 / 1

    2 / 12 / 12 / 1

    ( )z,y,xf u = is a homogeneous function of x ,y and z of degree21

    .

    Hence by Eulers theorem, we have

    ( )zyx21

    u21

    nuzu

    zyu

    yxu

    x ++===

    +

    +

    .

  • 8/14/2019 2%2DHomogeneous Equation and Euler Theorem

    7/22

    Partial Differentiation: Homogeneous Equation and Eulers Theorem

    Prepared by: Dr. Sunil, NIT Hamirpur

    7

    Again since ( ) zyxz,y,xf u ++==

    Differentiating partially w. r. t x , y and z respectively, we get

    x2

    1xu

    =

    ,y2

    1yu

    =

    andz2

    1zu

    =

    ( )zyx21

    z2

    1z

    y2

    1y

    x2

    1x

    zu

    zyu

    yxu

    x ++=++=

    +

    +

    .

    Hence, the Eulers Theorem is verified .

    (iii) Here

    =+

    =

    +=

    yx

    f y1yx

    tanyy

    yxtanz 0

    210

    221 .

    z is a homogeneous function of x ,y and z of degree 0.

    Hence by Eulers theorem, we have

    0z.0nzyz

    yxz

    x ===

    +

    .

    Again since

    +=

    y

    yxtanz

    221 .

    Differentiating partially w. r. t x and y respectively, we get

    ( ) 2222222

    22yx

    1.y2x

    xyx2.yx2

    1y1.

    y

    yx1

    1xz

    ++=

    +++=

    ( )( )

    22

    222

    222

    22

    22

    2

    22yx

    yxy.

    y2x

    1

    y

    yxy2.yx

    12y

    .

    y

    yx1

    1yz

    +

    ++

    =

    +

    +

    ++

    =

    ( ) 222

    22yx

    x.y2x

    1

    +

    += .

    ( ) ( )( )

    0yx

    x.

    y2x

    1y

    yx

    1.

    y2x

    xyx

    yz

    yxz

    x22

    2

    222222=

    +

    +

    +++

    =

    +

    .

    Hence, the Eulers Theorem is verified .

  • 8/14/2019 2%2DHomogeneous Equation and Euler Theorem

    8/22

    Partial Differentiation: Homogeneous Equation and Eulers Theorem

    Prepared by: Dr. Sunil, NIT Hamirpur

    8

    (iv) Here

    =

    +=

    +

    =

    xy

    f xxy

    tan

    xy1

    sinxxy

    tanyx

    sinu 011011 .

    u is a homogeneous function of x and y of degree 0.Hence by Euler's theorem, we have

    0u0nuyu

    yxu

    x ===

    +

    .

    Again since

    +

    =

    xy

    tanyx

    sinu 11 .

    Differentiating partially w. r. t x and y respectively, we get

    22222

    2

    22 yxy

    xy1

    xy.

    x

    y1

    1y1.

    yx

    1

    1xu +=

    ++

    = .

    2222

    2

    222 yx

    x

    xyy

    xx1

    .

    x

    y1

    1

    y

    x.

    yx

    1

    1yu

    ++

    =

    ++

    =

    .

    0yx

    x

    xyy

    xy

    yx

    y

    xy

    1x

    y

    uy

    x

    ux

    22222222=

    ++

    +

    +

    =

    +

    .

    Hence, the Eulers Theorem is verified .

    (v) Here

    =

    =xy

    f xxy

    logxz 44 .

    z is a homogeneous function of x and y of degree 4.

    Hence by Euler's theorem, we have

    ===

    +

    x

    ylogx4z4nz

    y

    zy

    x

    zx 4 .

    Again since

    =xy

    logxz 4 .

    Differentiating partially w. r. t x and y respectively, we get

  • 8/14/2019 2%2DHomogeneous Equation and Euler Theorem

    9/22

    Partial Differentiation: Homogeneous Equation and Eulers Theorem

    Prepared by: Dr. Sunil, NIT Hamirpur

    9

    332

    43 xxy

    log.x4x

    y

    xy1

    .xxy

    log.x4xz

    =

    +

    =

    andy

    xx1

    xy1

    .xyz 44 =

    =

    Hence, the Eulers Theorem is verified .

    Q.No.7.: If yxyx

    logu44

    ++

    = , show that 3yu

    yxu

    x =

    +

    .

    Sol.: Hereyxyx

    logu44

    ++

    =yxyx

    e44

    u

    ++

    = .

    ue is a homogeneous function of x and y of degree 3.

    Hence by Eulers theorem, we have uuuu

    e3neye

    yxe

    x ==

    +

    .

    uuu e3yu

    yexu

    xe =

    +

    .

    Hence 3yu

    yxu

    x =

    +

    .

    Hence the result .

    Q.No.8.: If

    +

    = yx

    yxsinu 1 , show that

    yu

    xy

    xu

    =

    .

    Sol.: Here

    +

    = yx

    yxsinu 1

    =

    +

    =

    +

    =xy

    f x

    xy

    1

    xy

    1x

    yx

    yxusin 02 / 1

    2 / 1

    0 .

    usin is a homogeneous function of x and y of degree 0.

    Hence by Eulers theorem, we have

    ( ) ( )0usin.0usinn

    yusin

    yx

    usinx ===

    +

    .

    0yu

    ucosyxu

    ucosx =

    +

    0yu

    yxu

    x =

    +

    .

    Henceyu

    xy

    xu

    =

    .

    Hence the result .

  • 8/14/2019 2%2DHomogeneous Equation and Euler Theorem

    10/22

    Partial Differentiation: Homogeneous Equation and Eulers Theorem

    Prepared by: Dr. Sunil, NIT Hamirpur

    10

    Q.No.9.: If u xyx

    yx

    = +

    , show that

    (i) xux

    yuy

    xyx

    + = .

    (ii) 0y

    uy

    yxu

    xy2x

    ux

    2

    22

    2

    2

    22 =

    +

    +

    .

    Sol.:(i) Here 21 uuxy

    xy

    xu +=

    +

    = (say)

    Theny

    uy

    xu

    xyu

    yxu

    xyu

    yxu

    x 2211

    +

    +

    +

    =

    +

    .

    Now since 1u and 2u are homogeneous function of x and y of degree 1 and 0

    respectively. Then by Eulers theorem, we have

    ==

    +

    xy

    xnuyu

    yxu

    x 111 and 0nu

    yu

    yx

    ux 2

    22 ==

    +

    .

    Hence 0xy

    xy

    uy

    xu

    xyu

    yxu

    xyu

    yxu

    x 2211 +

    =

    +

    +

    +

    =

    +

    .

    =

    +

    xy

    xyu

    yxu

    x .

    Hence the result . (ii) Again, since 1u and 2u are homogeneous function of x and y of degree 1 and 0

    respectively. Then, by extension of Eulers theorem, we have

    ( ) ( ) 0xy

    x.111u1nny

    uy

    yxu

    xy2x

    ux 2

    22

    2

    2

    22 =

    ==

    +

    +

    .

    Hence xu

    xxy

    ux y

    yu

    y2

    2

    2

    22

    2

    22 0

    + + = .

    Hence the result .

    Q.No.10.: If ( ) 3 / 122 yxu += , prove that u92

    y

    uy

    yxu

    xy2x

    ux

    2

    22

    2

    2

    22 =

    +

    +

    .

    Sol.: Here ( )

    =

    +=+=xy

    f xxy

    1xyxu 3 / 23 / 12

    3 / 23 / 122 .

  • 8/14/2019 2%2DHomogeneous Equation and Euler Theorem

    11/22

    Partial Differentiation: Homogeneous Equation and Eulers Theorem

    Prepared by: Dr. Sunil, NIT Hamirpur

    11

    u is a homogeneous function of x and y of degree32

    .

    Hence by extension of Eulers theorem, we have

    ( ) u92

    132

    32

    u1nny

    uyyx

    uxy2x

    ux 2

    22

    2

    2

    22

    =

    ==

    +

    +

    .

    Hence the result .

    Q.No.11.: If

    ++

    = yxyx

    sinu22

    1 , then show that utanyu

    yxu

    x =

    +

    .

    Sol.: Here

    ++

    = yxyx

    sinu22

    1

    =+

    +=

    ++

    ==xy

    f x

    x

    y1

    x

    y1

    xyxyx

    )say,z(usin 12

    2

    22.

    z is a homogeneous function of x and y of degree 1.

    Then, by Eulers theorem, we have znzyz

    yxz

    x ==

    +

    .

    + =x uux

    y uuy

    ucos cos sin

    .

    utanyu

    yxu

    x =

    +

    .

    Hence the result .

    Q.No.12.: If 2 / 1

    2 / 12 / 1

    3 / 13 / 11

    yx

    yxsinu

    ++

    = , then prove that

    (i) utan121

    yu

    yxu

    x =

    +

    .

    (ii) ( )utan13144

    utanuyxyu2ux 2yy

    2xyxx

    2 +=++ .

    Sol.: (i) Here2 / 1

    2 / 12 / 1

    3 / 13 / 11

    yxyx

    sinu++

    =

  • 8/14/2019 2%2DHomogeneous Equation and Euler Theorem

    12/22

    Partial Differentiation: Homogeneous Equation and Eulers Theorem

    Prepared by: Dr. Sunil, NIT Hamirpur

    12

    2 / 1

    2 / 1

    3 / 1

    6 / 1

    2 / 1

    2 / 1

    2 / 12 / 1

    3 / 1

    3 / 13 / 1

    xy

    1

    xy

    1x

    xy

    1x

    xy

    1x

    usin

    +

    +=

    +

    +

    =

    =

    +

    +=

    xy

    f x

    xy

    1

    xy

    1x 12 / 1

    2 / 1

    2 / 1

    3 / 1

    12 / 1 .

    usin is a homogeneous function of x and y of degree121

    .

    Then, by Eulers theorem, we have

    usin121

    usinny

    )u(siny

    x)u(sin

    x ==

    +

    usin121

    yu

    ucosyxu

    ucosx =

    +

    utan121

    yuy

    xux =+ . ...(i)

    Hence the result .

    (ii) Differentiating (i) w. r. t. x partially, we get ( )x2xyxxx uusec121

    yuuxu =++

    Multiplying by x , we get

    ( )x2xyxxx2 xuusec121

    xyuxuux =++ . .....(ii)

    Differentiating (i) w. r. t. y partially, we get

    ( )y2yyyxy uusec121

    yuuxu =++ .

    Multiplying by y , we get

    ( )y2yy2yxy yuusec121

    uyyuyxu =++ . ......(iii)

    Adding (ii) and (iii), we get

    ( ) ( ) ( )yx2

    yxyx2

    yy2

    xyxx2

    yuxu1usec121

    yuxuyuxuusec121

    uyxyu2ux +

    =++=++

    utan121

    utanusec144

    1utan

    121

    1usec121 22 +=

    +=

    ( ) ( )12utan1utan144

    1utan

    121

    utanutan1144

    1 22 ++=++=

  • 8/14/2019 2%2DHomogeneous Equation and Euler Theorem

    13/22

    Partial Differentiation: Homogeneous Equation and Eulers Theorem

    Prepared by: Dr. Sunil, NIT Hamirpur

    13

    ( )utan13utan144

    1 2+= .

    Hence the result .

    Q.No.13.: If ( )

    +

    ++

    = xy

    xy

    x1m2yx

    u

    m22

    , show that

    ( )m222

    22

    2

    2

    22 yxm2

    y

    uy

    yxu

    xy2x

    ux +=

    +

    +

    .

    Sol.: Here( )

    321

    m22uuu

    xy

    xy

    x1m2

    yxu ++=

    +

    +

    += (say)

    Theny

    uy

    xu

    xy

    uy

    xu

    xyu

    yxu

    xyu

    yxu

    x 332211

    +

    +

    +

    +

    +

    =

    +

    .

    Now since 1u , 2u and 3u are homogeneous function of x and y of degree 2m , 1 and 0

    respectively. Then by Eulers theorem, we have

    1111 mu2nu

    yu

    yxu

    x ==

    +

    , 2222 unu

    yu

    yx

    ux ==

    +

    and 0nu

    yu

    yx

    ux 3

    33 ==

    +

    .

    Hence 21332211 u.1u.m2

    yu

    yx

    ux

    yu

    yx

    ux

    yu

    yxu

    xyu

    yxu

    x +=

    +

    +

    +

    +

    +

    =

    +

    .

    Again, since 1u , 2u and 3u are homogeneous function of x and y of degree 2m, 1 and 0

    respectively.

    Then, by extension of Eulers theorem, we have

    ( ) ( ) ( ) ( )( )1m2

    yx1m2m2u111u1m2m2u1nn

    y

    uy

    yxu

    xy2x

    ux

    m22

    212

    22

    2

    2

    22

    +

    =+==

    +

    +

    Hence ( )m222

    22

    2

    2

    22 yxm2

    y

    uy

    yxu

    xy2x

    ux +=

    +

    +

    .

    Hence the result .

    Q.No.14.: If ( )yxsinu += , show that

    ( ) ( )yxcosyx21

    yu

    yxu

    x ++=

    +

    .

    Sol.: Here ( )yxsinu += .

  • 8/14/2019 2%2DHomogeneous Equation and Euler Theorem

    14/22

    Partial Differentiation: Homogeneous Equation and Eulers Theorem

    Prepared by: Dr. Sunil, NIT Hamirpur

    14

    ( ) ( )

    =

    +=+== xy

    f xxy

    1xyxsay,zusin 2 / 12 / 1

    2 / 11 .

    z is a homogeneous function of x and y of degree

    2

    1.

    Then, by Eulers theorem, we have xzx

    yzy

    nz z

    + = =12

    .

    ( )yx21

    usin21

    yu

    u1

    1y

    xu

    u1

    1x 1

    22+==

    +

    .

    ( ) ( ) ( ) ( )yxcosyx21

    yxsin1yx21

    yu

    yxu

    x 22 ++=++=

    +

    .

    Hence ( ) ( )yxcosyx21

    y

    u

    yx

    u

    x ++=

    +

    .

    Hence the result .

    Q.No.15.: If

    += 221 yxsinz , then show that ztanzyxyz2zx 3yy

    2xyxx

    2 =++ .

    Sol.: Here

    += 221 yxsinz ( )

    =+=+==xy

    xf x

    y1xyxsay,uzsin 2

    222 .

    u is a homogeneous function of x and y of degree 1.

    Then by Eulers theorem, we have unuyuy

    xux ==

    +

    .

    zsinyz

    zcosyxz

    zcosx =

    +

    ztanyz

    yxz

    x =

    +

    . (i)

    Differentiating (i) w. r. t. x partially, we get

    ( )x2xyxxx zzsecyzzxz =++

    Multiplying by x , we get

    ( )x2xyxxx2 xzzsecxyzxzzx =++ . ......(ii)

    Differentiating (i) w. r. t. y partially, we get

    ( )y2yyyxy zzsecyzzxz =++ Multiplying by y , we get

  • 8/14/2019 2%2DHomogeneous Equation and Euler Theorem

    15/22

    Partial Differentiation: Homogeneous Equation and Eulers Theorem

    Prepared by: Dr. Sunil, NIT Hamirpur

    15

    ( )y2yy2yxy yzzseczyyzyxz =++ . ......(iii)Adding (ii) and (iii), we get

    ( ) ( ) ztan)z(tanzsecyzxzyzxzzseczyxyz2zx 2yxyx2yy2xyxx2 =++=++ .

    ( ( ztanztanztan1zsecztan 322 === .Hence the result .

    Q.No.16.: If ( )2iyxivu =+ , andvu

    w = , prove that 0yw

    yxw

    x =

    +

    .

    Sol.: Here ( )2iyxivu =+ ixy2yxivu 22 =+ .

    Thus

    =

    =

    == xy

    f x

    xy

    2

    xy

    1

    xxy2yx

    vu

    w0

    2

    022

    .

    w is a homogeneous function of x and y of degree 0.

    Then, by Eulers theorem, we have

    0w.0nwyw

    yxw

    x ===

    +

    .

    Hence 0y

    wy

    x

    wx =

    +

    .

    This completes the proof .

    Q.No.17.: If ( )3ibyaxivu =+ ,show that

    (i) xux

    yuy

    u

    + = 3 ,

    (ii) xvx

    yvy

    v

    + = 3 ,

    (iii) ( 0ywy

    xwx =

    +

    where

    vuw = .

    Sol.: (i) Here ( )3ibyaxivu =+ )ybxa3yb(i)xyab3xa(ivu 22332233 +=+ .

    Thus

    =

    ==xy

    f xxy

    ab3ax)xyab3xa(u 32

    2332233 .

  • 8/14/2019 2%2DHomogeneous Equation and Euler Theorem

    16/22

    Partial Differentiation: Homogeneous Equation and Eulers Theorem

    Prepared by: Dr. Sunil, NIT Hamirpur

    16

    u is a homogeneous function of x and y of degree 3.

    Then, by Eulers theorem, we have

    w.3nwyw

    yxw

    x ==

    +

    .

    Hence w3yw

    yxw

    x =

    +

    .

    This completes the proof .

    (ii) Here ( )3ibyaxivu =+ )ybxa3yb(i)xyab3xa(ivu 22332233 +=+ .

    Thus

    =

    ==xy

    f xxy

    ba3xy

    bx)ybxa3yb(v 323

    332233 .

    v is a homogeneous function of x and y of degree 3.Then, by Eulers theorem, we have

    v.3nvyv

    yxv

    x ==

    +

    .

    Hence v3yv

    yxv

    x =

    +

    .

    This completes the proof .

    (iii) Here ( )3ibyaxivu =+ )ybxa3yb(i)xyab3xa(ivu 22332233 +=+ .

    Thus

    =

    =

    ==xy

    f x

    xy

    ba3xy

    b

    xy

    ab3ax

    ybxa3yb

    xyab3xavu

    w 0

    23

    3

    223

    02233

    2233.

    w is a homogeneous function of x and y of degree 0.

    Then, by Eulers theorem, we have

    0w.0nwy

    w

    yx

    w

    x ===

    +

    .

    Hence 0yw

    yxw

    x =

    +

    .

    This completes the proof .

  • 8/14/2019 2%2DHomogeneous Equation and Euler Theorem

    17/22

    Partial Differentiation: Homogeneous Equation and Eulers Theorem

    Prepared by: Dr. Sunil, NIT Hamirpur

    17

    Q.No.18.: If ( ) 2 / 1222 zyxv ++= ,then show that vzv

    zyv

    yxv

    x =

    +

    +

    .

    Sol.: Here ( ) 2 / 1222 zyxv ++=

    =

    +

    +=

    xz

    ,xy

    f xxz

    xy

    1xv 12 / 122

    1

    v is a homogeneous function of x ,y and z of degree 1 .

    Hence by Eulers theorem, we have

    vv).1(nuzv

    zyv

    yxv

    x ===

    +

    +

    .

    Hence the result .

    Q.No.19.: If ( )yxsinu 1 += , prove that

    ucos4u2cos.usin

    yuy

    yxuxy2

    xux

    32

    222

    2

    22 =+

    +

    .

    Sol.: Here ( )yxsinu 1 += ( )

    =

    +=+=xy

    f xxy

    1xyxusin 2 / 12 / 1

    2 / 1 .

    usin is a homogeneous function of x and y of degree21

    By Eulers theorem, usin2

    1usinn

    y

    )u(siny

    x

    )u(sinx ==

    +

    + =x uux

    y uuy

    ucos cos sin

    12

    . + =xux

    yuy

    u

    12

    tan . ...(i)

    Differentiating (i) w. r. t. x partially, we get

    ( )x2xyxxx uusec21

    yuuxu =++

    Multiplying by x , we get

    ( )x2

    xyxxx2

    xuusec21

    xyuxuux =++ ......(ii)

    Differentiating (i) w. r. t. y partially, we get

    ( )y2yyyxy uusec21

    yuuxu =++

    Multiplying by y , we get

  • 8/14/2019 2%2DHomogeneous Equation and Euler Theorem

    18/22

    Partial Differentiation: Homogeneous Equation and Eulers Theorem

    Prepared by: Dr. Sunil, NIT Hamirpur

    18

    ( )y2yy2yxy yuusec21

    uyyuyxu =++ ......(iii)

    Adding (ii) and (iii), we get

    ( ) ( ) ( )yx2

    yxyx

    2

    yy

    2

    xyxx

    2

    yuxu1usec2

    1

    yuxuyuxuusec2

    1

    uyxyu2ux +

    =++=++

    utan21

    utanusec41

    utan21

    1usec21 22 =

    =

    ( )ucos

    ucos214

    utan2

    ucos

    14

    utan2usecutan

    41

    2

    2

    22 =

    ==

    ucos4

    u2cos.usin

    y

    uy

    yxu

    xy2x

    ux

    32

    22

    2

    2

    22 =

    +

    +

    .

    Hence the result .

    Q.No.20.: If

    ++

    = y3x2

    yxtanV

    331 , prove that

    V2sinV4siny

    Vy

    yxV

    xy2x

    Vx

    2

    22

    2

    2

    22 =

    +

    +

    .

    Sol.: Here

    +

    +=

    y3x2

    yxtanV

    331 z

    x

    yf x

    xy32

    xy

    1x

    y3x2

    yxVtan 2

    3

    233

    =

    =

    +

    +=

    +

    += (say).

    z is a homogeneous function of x and y of degree 2.

    Then by Eulers theorem, we have z2nzyz

    yxz

    x ==

    +

    .

    Vtan2yV

    VsecyxV

    Vsecx 22 =

    +

    V2sinVcosVsin2Vcos.VcosVsin2

    VsecVtan2

    yVy

    xVx 22 ====+ . ....(i)

    Differentiating (i) partially w. r. t. x [keeping y as constant], we get

    xV

    2.V2cosyx

    Vy

    xV

    x

    Vx

    2

    2

    2

    =

    +

    +

    .

    Multiplying by x, we get

  • 8/14/2019 2%2DHomogeneous Equation and Euler Theorem

    19/22

    Partial Differentiation: Homogeneous Equation and Eulers Theorem

    Prepared by: Dr. Sunil, NIT Hamirpur

    19

    xV

    V2cosx2yx

    Vxy

    xV

    xx

    Vx

    2

    2

    22

    =

    +

    +

    ( )xV

    x1V2cos2yx

    Vxy

    x

    Vx

    2

    2

    22

    =

    +

    . ..(ii)

    Again, Differentiating (i) partially w. r. t. y [keeping x as constant], we get

    yV

    2.V2cosyV

    y

    Vy

    xyV

    x 2

    22

    =

    +

    +

    .

    Multiplying by y, we get

    yV

    V2cosy2yV

    yy

    Vy

    xyV

    xy2

    22

    2

    =

    +

    +

    ( ) yVy1V2cos2

    yVy

    xyVxy 2

    22

    2

    =

    +

    . .....(iii)

    Adding (ii) and (iii), we get

    ( ) ( ) V2sin1V2cos2yV

    yxV

    x1V2cos2y

    Vy

    yxV

    xy2x

    Vx 2

    22

    2

    2

    22 =

    +

    =

    +

    +

    V2sinV4sinV2sinV2cosV2sin2 == .

    Hence V2sinV4sin

    y

    Vy

    yxV

    xy2

    x

    Vx

    2

    22

    2

    2

    22 =

    +

    +

    .

    Hence the result .

    Q.No.21.: If

    =xz

    ,xy

    f xu n , show that nuzu

    zyu

    yxu

    x =

    +

    +

    .

    Sol.: Here

    =xz

    ,xy

    f xu n .Let 1txy

    = , 2txz

    =

    ( ) f xt,tf xu n21n ==

    Differentiating partially w. r. t x , y and z respectively, we get

    +

    +=

    +

    +=

    22

    21

    n1n2

    2

    1

    1

    n1n

    x

    ztf

    x

    ytf

    xf nxxt

    .tf

    xt

    .tf

    xf nxxu

    2

    1n

    1

    1n1n

    tf

    zxtf

    yxf nxxu

    =

    ,

  • 8/14/2019 2%2DHomogeneous Equation and Euler Theorem

    20/22

    Partial Differentiation: Homogeneous Equation and Eulers Theorem

    Prepared by: Dr. Sunil, NIT Hamirpur

    20

    1

    1n

    1

    n2

    2

    1

    1

    n

    tf

    xx1

    tf

    xyt

    .tf

    yt

    .tf

    xyu

    =

    =

    +

    = ,

    2

    1n

    2

    n2

    2

    1

    1

    n

    tf

    xx1

    tf

    xzt

    .tf

    zt

    .tf

    xzu

    =

    =

    +

    =

    +

    +

    =

    +

    +

    2

    1n

    1

    1n

    2

    1n

    1

    1n1n

    tf

    xztf

    xytf

    zxtf

    yxf nxxzu

    zyu

    yxu

    x .

    Hence ( ) nut,tf nxzu

    zyu

    yxu

    x 21n ==

    +

    +

    .

    Hence the result .

    Q.No.22.: If 222 yx

    ylogxlogxy1

    x

    1u

    +

    ++= show that 0u2yu

    yxu

    x =+

    +

    .

    Sol.: Here

    =+

    +=+

    ++= xy

    f x

    x

    y1

    xy

    log

    xy1

    1xyx

    ylogxlogxy1

    x

    1u 2

    2

    22

    222 .

    u is a homogeneous function of x and y of degree 2 .

    Hence by Eulers theorem, we have u2yu

    yxu

    x =

    +

    .

    Hence 0u2yu

    yxu

    x =+

    +

    .

    Q.No.23.: If ( )

    ++++

    =zyxzyx

    logz,y,xf 555

    , show that 4zf

    zyf

    yxf

    x =

    +

    +

    .

    Sol.: Here ( )

    ++++

    =zyxzyx

    logz,y,xf 555

    zyxzyx

    e555

    f

    ++++

    = ...(i)

    =

    ++

    +

    +

    =xz,

    xyf x

    xz

    xy

    1x

    z

    x

    y1

    xe 4

    55

    4f .

    f e is a homogeneous function of x, y and z of degree 4.

    Hence by Eulers theorem, we have

  • 8/14/2019 2%2DHomogeneous Equation and Euler Theorem

    21/22

    Partial Differentiation: Homogeneous Equation and Eulers Theorem

    Prepared by: Dr. Sunil, NIT Hamirpur

    21

    f f f f

    e4ze

    zye

    yxe

    x =

    +

    +

    .

    f f f f e4zf

    zeyf

    yexf

    xe =

    +

    +

    4zf

    zyf

    yxf

    x =

    +

    +

    .

    Hence the result .

    Q.No.24.: If

    +

    =zxyzxyzyx

    sinu222

    , show that 0zu

    zyu

    yxu

    x =

    +

    +

    .

    Sol.: Here

    =

    +

    =

    +

    =xz

    ,xy

    f x

    xz

    xz

    .xy

    xy

    xz

    xy

    1sinx

    zxyzxyzyx

    sinu 0

    22

    0222

    .

    u is a homogeneous function of x ,y and z of degree 0.

    Then by Eulers theorem, we have

    0u.0nuzu

    zyu

    yxu

    x ===

    +

    +

    .

    Hence the result .

    Q.No.25: Given that F(u) = V(x , y , z), where V is a homogeneous function of x , y , z of

    degree n , then prove that)u(F

    )u(Fn

    z

    uz

    y

    uy

    x

    ux / =

    +

    +

    .

    Sol.: Here V(x , y , z) is a homogeneous function of x , y , z of degree n , then by Euler's

    theorem nVzV

    zyV

    yxV

    x =

    +

    +

    )u(nFz

    )u(Fz

    y)u(F

    yx

    )u(Fx =

    +

    +

    )u(nFzu

    )u(Fzyu

    )u(Fyxu

    )u(Fx =+

    +

    )u(F

    )u(Fn

    zu

    zyu

    yxu

    x / =

    +

    +

    .

    Hence the result .

  • 8/14/2019 2%2DHomogeneous Equation and Euler Theorem

    22/22

    Partial Differentiation: Homogeneous Equation and Eulers Theorem

    Prepared by: Dr. Sunil, NIT Hamirpur

    22

    NEXT TOPIC

    Total Differentials,

    Explicit Function, Implicit Functions

    and

    Total Differential Coefficient

    *** *** *** *** ***

    *** *** ***

    ***