212.113.105.12212.113.105.12/library/ims/doc/mdi_plus_canopen.pdf · i table of contents part 1:...

138
OPERATING INSTRUCTIONS Excellence in Motion www.imshome.com 34 TM 42 TM 17 TM 23 TM 34 TM TM CA N open

Upload: phamnhan

Post on 21-Apr-2018

215 views

Category:

Documents


2 download

TRANSCRIPT

OPERATINGINSTRUCTIONS

Excellence in Motion

www.imshome.com

34 TM

42 TM

17 TM

23 TM

34 TM

TM

CANopen

The information in this book has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies.

Intelligent Motion Systems, Inc., reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Intelligent Motion Systems, Inc., does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights of others. Intelligent Motion Systems and are trademarks of Intelligent Motion Systems, Inc.

Intelligent Motion Systems, Inc.’s general policy does not recommend the use of its products in life support or aircraft applications wherein a failure or malfunction of the product may directly threaten life or injury. Per Intelligent Motion Systems, Inc.’s terms and conditions of sales, the user of Intel-ligent Motion Systems, Inc., products in life support or aircraft applications assumes all risks of such use and indemnifies Intelligent Motion Systems, Inc., against all damages.

TM

MDrivePlus CANopen ManualRevision R122006

Copyright © 2006 Intelligent Motion Systems, Inc.

All Rights Reserved

MDrivePlus CANopen Change Log

Date Revision Changes

10/06/2006 R100606 Initial Release

12/20/2006 R122006 Added newly supported objects to DSP-402 Implementation

i

Table of Contents

Part 1: Hardware Specifications

Section 1.1: MDrivePlus CANopen Overview and Features ...............................................................1-3

Overview ................................................................................................................................... 1-3Features ..................................................................................................................................... 1-3

Section 1.2: MDrive17Plus Hardware Specifications .........................................................................1-5

General Specifications ............................................................................................................... 1-5MDrive17Plus Mechanical Specification and Connector Pin Assignment ................................. 1-7

Dimensional Information ..................................................................................................... 1-7Pin Assignment and Description .......................................................................................... 1-7Options and Accessories ....................................................................................................... 1-8

MDrive17Plus2 Mechanical Specification and Connector Pin Assignment ............................... 1-9Dimensional Information ..................................................................................................... 1-9Pin Assignment and Description .......................................................................................... 1-9Options and Accessories ..................................................................................................... 1-10

MDrive17Plus2-65 Mechanical Specification and Connector Pin Assignment ........................ 1-11Dimensional Information ................................................................................................... 1-11Pin Assignment and Description ........................................................................................ 1-11Options and Accessories ..................................................................................................... 1-12

Section 1.3: MDrive23Plus Hardware Specifications .......................................................................1-13

General Specifications ............................................................................................................. 1-13MDrive23Plus Mechanical Specification and Connector Pin Assignment ............................... 1-15

Dimensional Information ................................................................................................... 1-15Pin Assignment and Description ........................................................................................ 1-15Options and Accessories ..................................................................................................... 1-16

MDrive23Plus2 Mechanical Specification and Connector Pin Assignment ............................. 1-17Dimensional Information ................................................................................................... 1-17Pin Assignment and Description ........................................................................................ 1-17Options and Accessories ..................................................................................................... 1-18

MDrive23Plus2 Mechanical Specification and Connector Pin Assignment ............................. 1-19Dimensional Information ................................................................................................... 1-19Pin Assignment and Description ........................................................................................ 1-19Options and Accessories ..................................................................................................... 1-20

Section 1.4: MDrive34Plus2 Hardware Specifications .....................................................................1-21

General Specifications ............................................................................................................. 1-21MDrive34Plus2 Mechanical Specification and Connector Pin Assignment ............................. 1-23

Dimensional Information ................................................................................................... 1-23Pin Assignment and Description ........................................................................................ 1-23Options and Accessories ..................................................................................................... 1-24

Section 1.5: MDrive34AC Plus2 Hardware Specifications ...............................................................1-25

General Specifications ............................................................................................................. 1-25MDrive34AC Plus2 Mechanical Specification and Connector Pin Assignment ....................... 1-27

Dimensional Information ................................................................................................... 1-27Pin Assignment and Description ........................................................................................ 1-27Options and Accessories ..................................................................................................... 1-28

Section 1.6: MDrive42AC Plus2 Hardware Specifications ...............................................................1-30

General Specifications ............................................................................................................. 1-30MDrive42AC Plus2 Mechanical Specification and Connector Pin Assignment ....................... 1-32

Dimensional Information ................................................................................................... 1-32Pin Assignment and Description ........................................................................................ 1-32Options and Accessories ..................................................................................................... 1-33

ii

Section 1.7: Connecting and Interfacing ..........................................................................................1-35

Connecting DC Power (DC Models) ...................................................................................... 1-35MDrive17Plus CANopen ................................................................................................... 1-35MDrive23Plus CANopen ................................................................................................... 1-35MDrive34Plus CANopen ................................................................................................... 1-35

Connecting AC Power (AC Models) ....................................................................................... 1-35Layout and Interface Guidelines .............................................................................................. 1-35

Recommended Wiring ....................................................................................................... 1-36Recommended Mating Connectors and Pins ...................................................................... 1-36Securing Power Leads and Logic Leads ............................................................................... 1-36

Interfacing The CAN Bus ....................................................................................................... 1-36CAN Bus Connections ....................................................................................................... 1-36

Recommended CANopen Dongle ........................................................................................... 1-37Interface Cable Construction .................................................................................................. 1-37Installation Instructions ........................................................................................................... 1-37Connecting and Interfacing The I/O ....................................................................................... 1-38

Standard I/O Set - All MDrivePlus CANopen Models ....................................................... 1-38Enhanced I/O Set - MDrivePlus2/Plus2-65 ........................................................................ 1-38MDrivePlus Motion Control I/O Ratings .......................................................................... 1-38Uses of the Digital I/O ....................................................................................................... 1-38Digital Input Functions ...................................................................................................... 1-39Digital Output Functions ................................................................................................... 1-39Object Dictionary Entries for the I/O ................................................................................ 1-39

I/O Connection Examples with Equivalent Input/Output Circuit Diagrams .......................... 1-39Input Interface Example - Switch Input Example (Sinking Input) ...................................... 1-39Input Interface Example - Switch Input Example (Sourcing Input) .................................... 1-40Output Interface Example (Sinking Output) ...................................................................... 1-40Output Interface Example (Sourcing Output — Plus2 Models Only) ................................ 1-41

Part 2: DSP-402 Implementation

Section 2.1: Introduction to the MDrivePlus CANopen DSP-402 Implementation ............................2-3

Introduction .............................................................................................................................. 2-3CAN Message Format ............................................................................................................... 2-3MDrivePlus Architecture ........................................................................................................... 2-3Device Control .......................................................................................................................... 2-4Modes of Operation .................................................................................................................. 2-4

Homing Mode ..................................................................................................................... 2-4Profile Position Mode ........................................................................................................... 2-4Profile Velocity Mode ........................................................................................................... 2-4Trajectory Generator ............................................................................................................ 2-5

Objects and the Object Dictionary ............................................................................................ 2-5Object Formatting ..................................................................................................................... 2-6

Object Description ............................................................................................................... 2-6Entry Description ................................................................................................................. 2-6Sub-Indexes .......................................................................................................................... 2-7

Section 2.2: Accessing The MDrivePlus CANopen ..............................................................................2-9

Introduction .............................................................................................................................. 2-9Process Data Object (PDO) ...................................................................................................... 2-9

PDO Attributes .................................................................................................................... 2-9Service Data Object (SDO) ....................................................................................................... 2-9

SDO Attributes .................................................................................................................... 2-9PDO Mapping ........................................................................................................................ 2-10PDO Mapping Procedure (Consumer PDO) .......................................................................... 2-10PDO Objects .......................................................................................................................... 2-11

Consumer PDO1 (RPDO1) 1400h (Object Description) ................................................. 2-11 Consumer PDO1 (RPDO1) 1400h (Entry Description) .................................................. 2-111600h (Object Description – Mapping Parameters) ........................................................... 2-111600h (Entry Description – Mapping Parameters) ............................................................. 2-11Consumer PDO2 (RPDO2) 1401h (Object Description) ................................................. 2-12Consumer PDO2 (RPDO2) 1401h (Entry Description) ................................................... 2-121601h (Object Description – Mapping Parameters) ........................................................... 2-121601h (Entry Description – Mapping Parameters) ............................................................. 2-12Consumer PDO3 (RPDO3) 1402h (Object Description) ................................................. 2-13

iii

Consumer PDO3 (RPDO3) 1402h (Entry Description) ................................................... 2-131602h (Object Description – Mapping Parameters) ........................................................... 2-131602h (Entry Description – Mapping Parameters) ............................................................. 2-13Producer PDO1 (TPDO1) 1800h (Object Description) ................................................... 2-14 Producer PDO1 (TPDO1) 1800h (Entry Description) .................................................... 2-141A00h (Object Description – Mapping Parameters) ........................................................... 2-141A00h (Entry Description – Mapping Parameters) ............................................................. 2-14Producer PDO2 (TPDO2) 1801h (Object Description) ................................................... 2-14Producer PDO2 (TPDO2) 1801h (Entry Description) ..................................................... 2-141A01h (Object Description – Mapping Parameters) ........................................................... 2-151A01h (Entry Description – Mapping Parameters) ............................................................. 2-15Producer PDO3 (TPDO3) 1802h (Object Description) ................................................... 2-15Producer PDO3 (TPDO3) 1802h (Entry Description) ..................................................... 2-151A02h (Object Description – Mapping Parameters) ........................................................... 2-161A02h (Entry Description – Mapping Parameters) ............................................................. 2-16

Section 2.3: Manufacturer Specific Objects ......................................................................................2-17

Introduction ............................................................................................................................ 2-17Accessibility Codes .................................................................................................................. 2-17Object 2000h: I/O Discretes (Config) ..................................................................................... 2-17

Object Description ............................................................................................................. 2-17Entry Description ............................................................................................................... 2-17

Object 2002h: I/O Discretes (Config) ..................................................................................... 2-18Object Description ............................................................................................................. 2-18Entry Description ............................................................................................................... 2-18

Object 2004h: Input Filter Mask (Config) .............................................................................. 2-18Object Description ............................................................................................................. 2-18Entry Description ............................................................................................................... 2-19

Object 2006h: Input Filter Time (ms) ..................................................................................... 2-19Object Description ............................................................................................................. 2-19Entry Description ............................................................................................................... 2-19

Object 2010h: Analog Input ................................................................................................... 2-20Object Description .................................................................................................................. 2-20

Entry Description ............................................................................................................... 2-20Object 2020h: Software Limits as Hardware Limits................................................................. 2-20

Object Description ............................................................................................................. 2-20Entry Description ............................................................................................................... 2-20

Object 2022h: Actual Position Software Limit ........................................................................ 2-20Object Description ............................................................................................................. 2-20Entry Description ............................................................................................................... 2-21

Object 2031h: Unit Options (Encoder Enable) ....................................................................... 2-21Object Description ............................................................................................................. 2-21Entry Description ............................................................................................................... 2-21

Object 2204h: Run Current Percent ........................................................................................ 2-21Object Description ............................................................................................................. 2-21Entry Description ............................................................................................................... 2-21

Object 2205h: Hold Current Percent ...................................................................................... 2-21Object Description ............................................................................................................. 2-22Entry Description ............................................................................................................... 2-22

Object 2211h: Position Present Point Target ........................................................................... 2-22Object Description ............................................................................................................. 2-22Entry Description ............................................................................................................... 2-22

Object 2212h: Position Final Point Target ............................................................................... 2-22Object Description ............................................................................................................. 2-22Entry Description ............................................................................................................... 2-22

Object 5001h: Configuration .................................................................................................. 2-22Entry Description ............................................................................................................... 2-23

Object 5002h: ASCII Serial Number ...................................................................................... 2-23Entry Description ............................................................................................................... 2-23

Object 5003h: ASCII Part Number ......................................................................................... 2-23Entry Description ............................................................................................................... 2-23

Object 5004h: Motor Parameters ............................................................................................ 2-23

iv

Entry Description ............................................................................................................... 2-23

Section 2.4: Device Control ..............................................................................................................2-25

Device Control ........................................................................................................................ 2-25Control and Status words ................................................................................................... 2-25Operation Modes ............................................................................................................... 2-25

State Machine ......................................................................................................................... 2-25Object 6040h — Controlword ................................................................................................ 2-25

Object Description ............................................................................................................. 2-26Entry Description ............................................................................................................... 2-26Data Description ................................................................................................................ 2-27Notes On State Transitions ................................................................................................. 2-27

Object 6040h — Controlword ................................................................................................ 2-28Object Description ............................................................................................................. 2-28Entry Description ............................................................................................................... 2-28Data Description ................................................................................................................ 2-28Device Control Command Bit Patterns (Bits 0-3 and 7)..................................................... 2-28Device Operation Mode Bit Patterns (Bits 4-6 and 8) ........................................................ 2-28

Object 6041h — Statusword ................................................................................................... 2-29Object Description ............................................................................................................. 2-29Entry Description ............................................................................................................... 2-29Data Description ................................................................................................................ 2-29

Section 2.5: Modes of Operation ......................................................................................................2-31

Object 6060h — Modes of Operation .................................................................................... 2-31Object Description ............................................................................................................. 2-31Entry Description ............................................................................................................... 2-31Data Description ................................................................................................................ 2-31

Object 6061h — Modes of Operation Display ........................................................................ 2-32Object Description ............................................................................................................. 2-32Entry Description ............................................................................................................... 2-32Data Description ................................................................................................................ 2-32

Object 6502h — Supported Drive Modes ............................................................................... 2-32Object Description ............................................................................................................. 2-32Entry Description ............................................................................................................... 2-32Data Description ................................................................................................................ 2-32

Section 2.6: Profile Position Mode ...................................................................................................2-35

General Information ............................................................................................................... 2-35Input Data Description ........................................................................................................... 2-35Output Data Description ........................................................................................................ 2-35Functional Description ............................................................................................................ 2-36Controlword (6040h) of Profile Position Mode ....................................................................... 2-37Object 6081h — Profile Velocity ............................................................................................ 2-38

Object Description ............................................................................................................. 2-38Entry Description ............................................................................................................... 2-38

Object 6082h — End Velocity ................................................................................................ 2-39Object Description ............................................................................................................. 2-39Entry Description ............................................................................................................... 2-39

Object 6083h — Profile Acceleration ...................................................................................... 2-39Object Description ............................................................................................................. 2-39Entry Description ............................................................................................................... 2-39

Statusword (6041h) of Profile Position Mode .......................................................................... 2-38Object 607Ah — Target Position ............................................................................................ 2-38

Object Description ............................................................................................................. 2-38Entry Description ............................................................................................................... 2-38

Object 6084h — Profile Deceleration ..................................................................................... 2-39Object Description ............................................................................................................. 2-39Entry Description ............................................................................................................... 2-39

Object 6086h — Motion Profile Type ..................................................................................... 2-40Object Description ............................................................................................................. 2-40Entry Description ............................................................................................................... 2-40

v

Section 2.7: Homing Mode ...............................................................................................................2-41

General Information ............................................................................................................... 2-41Input Data Description ...................................................................................................... 2-41Output Data Description ................................................................................................... 2-41Internal States ..................................................................................................................... 2-41

Controlword (6040h) of Profile Position Mode ....................................................................... 2-41Statusword (6041h) of Homing Mode .................................................................................... 2-42Homing Offset (607Ch) ......................................................................................................... 2-42

Object Description ............................................................................................................. 2-42Entry Description ............................................................................................................... 2-42

Homing Method (6098h) ....................................................................................................... 2-43Object Description ............................................................................................................. 2-43Entry Description ............................................................................................................... 2-43Data Description ................................................................................................................ 2-43Functional Description of Homing Methods ...................................................................... 2-43

Homing Speeds (6099h) ......................................................................................................... 2-47Object Description ............................................................................................................. 2-47Entry Description ............................................................................................................... 2-47

Section 2.8: Position Control Function ............................................................................................2-49

General Information ............................................................................................................... 2-49Object 6062h — Position Demand Value ............................................................................... 2-49

Object Description ............................................................................................................. 2-49Entry Description ............................................................................................................... 2-49

Object 6063h — Position Actual Value Internal ...................................................................... 2-49Object Description ............................................................................................................. 2-49Entry Description ............................................................................................................... 2-49

Object 6064h — Position Actual Value ................................................................................... 2-49Entry Description ............................................................................................................... 2-49

Object 6065h — Following Error Window ............................................................................. 2-50Object Description ............................................................................................................. 2-50Entry Description ............................................................................................................... 2-50

Object 6066h — Following Error Timeout ............................................................................. 2-50Object Description ............................................................................................................. 2-50Entry Description ............................................................................................................... 2-50

Object 6068h — Position Window Time ................................................................................ 2-50Object Description ............................................................................................................. 2-50Entry Description ............................................................................................................... 2-50

Section 2.9: Profile Velocity Mode ....................................................................................................2-51

Controlword (6040h) of Profile Velocity Mode ....................................................................... 2-51Statusword (6041h) of Profile Velocity Mode .......................................................................... 2-51Object 606Ch — Velocity Actual Value .................................................................................. 2-51

Object Description ............................................................................................................. 2-51Entry Description ............................................................................................................... 2-51

Object 60FFh — Target Velocity ............................................................................................. 2-52Entry Description ............................................................................................................... 2-52

Object 60F8h — Maximum Slippage ..................................................................................... 2-52Entry Description ............................................................................................................... 2-52

Section 2.10: Optional Application FE (General I/O) ......................................................................2-53

Object 60FDh — Digital Inputs ............................................................................................. 2-53Entry Description ............................................................................................................... 2-53

Object 60FEh — Digital Outputs ........................................................................................... 2-54Entry Description ............................................................................................................... 2-54

Appendices

Appendix A: Motor Performance ....................................................................................................... A-3

MDrive17Plus Speed-Torque ....................................................................................................A-3MDrive23Plus Speed-Torque ....................................................................................................A-3MDrive34Plus Speed-Torque ....................................................................................................A-3MDrive34AC Plus Speed-Torque ..............................................................................................A-3

vi

MDrive42AC Plus Speed-Torque ..............................................................................................A-4

Appendix B: Recommended Power and Cable Configurations (For DC MDrives) ............................ A-5

Example A – Cabling Under 50 Feet, DC Power .......................................................................A-5Example B – Cabling 50 Feet or Greater, AC Power to Full Wave Bridge ..................................A-5Example C – Cabling 50 Feet or Greater, AC Power to Power Supply .......................................A-5Recommended IMS Power Supplies ..........................................................................................A-6

MDrive17Plus and MDrive23Plus .......................................................................................A-6MDrive34Plus ......................................................................................................................A-6

Recommended Power Supply Cabling .......................................................................................A-7

Appendix C: MDrive with Planetary Gearbox .................................................................................. A-8

Section Overview ......................................................................................................................A-8Product Overview .....................................................................................................................A-8Selecting a Planetary Gearbox....................................................................................................A-9

Calculating the Shock Load Output Torque (TAB) ..............................................A-9System Inertia .........................................................................................................................A-12MDrive17Plus with Planetary Gearbox ...................................................................................A-16

MDrive17Plus Planetary Gearbox Parameters.....................................................................A-16MDrive17Plus Gearbox Ratios and Inertia Moments .........................................................A-16MDrive17Plus Planetary Gearbox ......................................................................................A-16MDrive17Plus Planetary Gearbox With Optional NEMA Output Flange ..........................A-17

MDrive23Plus with Planetary Gearbox ...................................................................................A-17MDrive23Plus Planetary Gearbox Parameters.....................................................................A-17MDrive23Plus Gearbox Ratios and Inertia Moments .........................................................A-17MDrive23Plus Planetary Gearbox ......................................................................................A-18MDrive23Plus Planetary Gearbox With Optional NEMA Output Flange ..........................A-18

MDrive34Plus (DC and AC) with Planetary Gearbox .............................................................A-19MDrive34Plus Planetary Gearbox Parameters.....................................................................A-19MDrive34Plus Gearbox Ratios and Inertia Moments .........................................................A-19MDrive34Plus Planetary Gearbox ......................................................................................A-19

MDrive42AC Plus2 with Planetary Gearbox ...........................................................................A-20MDrive42AC Plus2 105 mm Planetary Gearbox Parameters ..............................................A-20MDrive42AC Plus2 105 mm Gearbox Ratios and Inertia Moments ...................................A-20MDrive42AC Plus2 105mm Planetary Gearbox .................................................................A-20MDrive42AC Plus2 120 mm Planetary Gearbox Parameters ..............................................A-21MDrive42AC Plus2 120 mm Gearbox Ratios and Inertia Moments ...................................A-21MDrive42AC Plus2 120mm Planetary Gearbox .................................................................A-21

Appendix D Optional Cables and Cordsets ..................................................................................... A-22

MDrive17Plus2 Recommended Cables ...................................................................................A-22P1: PD16-1417-FL3 — Power and I/O .............................................................................A-22

MDrive23Plus and 34Plus Recommended Cables ...................................................................A-22P1: PD16-1417-FL3 — Power and I/O .............................................................................A-22P3: PD02-2300-FL3 — MDrive23Plus Power ...................................................................A-23P3: PD02-3400-FL3 — MDrive34Plus Power ...................................................................A-23

Recommended Cordsets for MDrive17Plus2-65 and MDrive23Plus2-65 ...............................A-24P1 — Power and I/O ..........................................................................................................A-24Pin Assignment and Wire Colors ........................................................................................A-24

Recommended Cordsets for MDrive34AC Plus2-65 and MDrive42AC Plus2-65 ...................A-25P1 — I/O ..........................................................................................................................A-25Pin Assignment and Wire Colors ........................................................................................A-25P3: MD-CS20x-000 — AC Power .....................................................................................A-26

CANopen Communications ....................................................................................................A-27Interface Cable Construction ..............................................................................................A-27Installation Instructions ......................................................................................................A-27

vii

List of Figures

Part 1: Hardware Specifications

Figure 1.2.1: MDrivePlus CANopen Dimensional Information ................................................ 1-7Figure 1.2.2: P1 Connector - I/O and Power ............................................................................. 1-8Figure 1.2.3: P2 Connector - CAN Communications ............................................................... 1-8Figure 1.2.4: MDrivePlus2 CANopen Dimensional Information ............................................... 1-9Figure 1.2.5: P1 Connector, Power and I/O ............................................................................ 1-10Figure 1.2.6: P2 Connector -CAN Communications .............................................................. 1-10Figure 1.2.7: MDrivePlus2-65 CANopen Dimensional Information ....................................... 1-11Figure 1.2.8: P2 Connector - CAN Communications ............................................................. 1-12Figure 1.2.9: P1 Connector, Power and I/O ............................................................................ 1-12Figure 1.3.1: MDrive23Plus CANopen Dimensional Information .......................................... 1-15Figure 1.3.2: P1 Connector - I/O and Power ........................................................................... 1-16Figure 1.3.3: P2 Connector - CAN Communications ............................................................. 1-16Figure 1.3.4: MDrive23Plus2 CANopen Dimensional Information ......................................... 1-17Figure 1.3.5: P1 Connector, Power and I/O ............................................................................ 1-18Figure 1.3.6: P2 Connector - CAN Communications ............................................................. 1-18Figure 1.3.7: MDrive23Plus2 CANopen Dimensional Information ......................................... 1-19Figure 1.3.8: P1 Connector, Power and I/O ............................................................................ 1-20Figure 1.3.9: P2 Connector - CAN Communications ............................................................. 1-20Figure 1.4.1: MDrive34Plus2 CANopen Dimensional Information ......................................... 1-23Figure 1.4.2: P1 Connector, Power and I/O ............................................................................ 1-24Figure 1.4.3: P2 Connector - CAN Communications ............................................................. 1-24Figure 1.5.1: MDrive34AC Plus2 CANopen Dimensional Information ................................... 1-27Figure 1.5.2: MDrive34AC Plus2 CANopen Connector Orientation ...................................... 1-28Figure 1.5.3: P1 Connector, Power and I/O ............................................................................ 1-28Figure 1.5.4: P2 Connector - CAN Communications ............................................................. 1-28Figure 1.5.5: P3 Connector - Euro AC .................................................................................... 1-28Figure 1.6.1: MDrive34AC Plus2 CANopen Dimensional Information ................................... 1-32Figure 1.6.2: MDrive34AC Plus2 CANopen Connector Orientation ...................................... 1-33Figure 1.6.3: P1 Connector, Power and I/O ............................................................................ 1-33Figure 1.6.4: P2 Connector - CAN Communications ............................................................. 1-33Figure 1.6.5: P3 Connector - Euro AC .................................................................................... 1-33Figure 1.7.1: MDrivePlus CANopen Power Connections ........................................................ 1-35Figure 1.7.2: CANopen Network using MDrivePlus ............................................................... 1-36Figure 1.7.3: Communications Converter, Phytec PCAN-USB to MDrivePlus ....................... 1-37Figure 1.7.4: Sinking Input Example using a Push Button Switch ........................................... 1-39Figure 1.7.5: Sourcing Input Example using a Push Button Switch ......................................... 1-40Figure 1.7.6: Sinking Output Example .................................................................................... 1-40Figure 1.7.7: Sourcing Output Example .................................................................................. 1-41

viii

Part 2: DSP-402 Implementation

Figure 2.1.1: Message Format .................................................................................................... 2-3Figure 2.1.2: MDrivePlus Architecture ...................................................................................... 2-3Figure 2.1.3: Functional Architecture ........................................................................................ 2-4Figure 2.1.4: MDrivePlus CANopen Object Dictionary ............................................................ 2-5Figure 2.2.1: PDO Producer – Consumer Relationship ............................................................. 2-9Figure 2.2.2: SDO Client – Server Relationship ........................................................................ 2-9Figure 2.2.3: PDO Mapping Showing the Default Mapping for RPDO2 ............................... 2-10Figure 2.3.1: Input Filter Mask ............................................................................................... 2-18Figure 2.4.1: Device Control ................................................................................................... 2-25Figure 2.4.2: State Machine States/Transitions Block Diagram ................................................ 2-27Figure 2.4.3: Statusword Bits ................................................................................................... 2-29Figure 2.6.1: Trajectory Generator Block Diagram .................................................................. 2-35Figure 2.6.2: Set-Point Transmission from Host Computer ..................................................... 2-36Figure 2.6.3: Single Set-Point Mode (Move After a Move) 6040h Bit 5=0 ............................... 2-37Figure 2.6.4: Set of Setpoints (Move on a Move) 6040h Bit 5=1 ............................................. 2-37Figure 2.7.1: The Homing Function ....................................................................................... 2-41Figure 2.7.2: Home Offset ...................................................................................................... 2-42Figure 2.7.3: Homing on the Negative Limit and Index Pulse ................................................. 2-43Figure 2.7.4: Homing on the Positive Limit and Index Pulse ................................................... 2-44Figure 2.7.5: Homing on the Positive Home Switch and Index Pulse ...................................... 2-44Figure 2.7.7: Homing on the Home Switch and Index Pulse - Positive Initial Move ................ 2-45Figure 2.7.6: Homing on the Negative Home Switch and Index Pulse .................................... 2-45Figure 2.7.8: Homing on the Home Switch and Index Pulse - Negative Initial Move .............. 2-46Figure 2.7.9: Homing without an Index Pulse ......................................................................... 2-46Figure 2.7.10: Homing on the Index Pulse .............................................................................. 2-47Figure 2.10.1: Object 60FD Structure ..................................................................................... 2-53Figure 2.10.2: Object 60FE Structure ..................................................................................... 2-54

Appendices

Figure A.1: MDrive17Plus CANopen Speed-Torque Curves .....................................................A-3Figure A.2: MDrive23Plus CANopen Speed-Torque Curves .....................................................A-3Figure A.3: MDrive34Plus CANopen Speed-Torque Curves .....................................................A-3Figure A.4: MDrive34AC Plus2 CANopen Speed-Torque Curves .............................................A-3Figure A.5: MDrive42AC Plus2 CANopen Speed-Torque Curves .............................................A-4Figure B.1: DC Cabling - Under 50 Feet ...................................................................................A-5Figure B.2: DC Cabling - 50 Feet or Greater - AC To Full Wave Bridge Rectifier ......................A-5Figure B.3: AC Cabling - 50 Feet or Greater - AC To Power Supply ..........................................A-5Figure C.1: MDrive23 Torque-Speed Curve ............................................................................A-10Figure C.2: Lead Screw System Inertia Considerations ............................................................A-12Figure C.3: Rack and Pinion System Inertia Considerations ....................................................A-13Figure C.4: Conveyor System Inertia Considerations ..............................................................A-13Figure C.5: Rotary Table System Inertia Considerations ..........................................................A-14Figure C.6: Chain Drive System Inertia Considerations ..........................................................A-15Figure C.7: Planetary Gearbox Specifications for MDrive17Plus .............................................A-16Figure C.8: Planetary Gearbox Specifications for MDrive17Plus with NEMA Output Flange .A-17Figure C.9: Planetary Gearbox Specifications for MDrive23Plus .............................................A-18Figure C.10: Planetary Gearbox Specifications for MDrive23Plus with NEMA Flange ...........A-18Figure C.11: Planetary Gearbox Specifications for MDrive34Plus ...........................................A-19Figure C.12: 105mm Planetary Gearbox Specifications for MDrive42AC Plus........................A-20Figure C.13: 120mm Planetary Gearbox Specifications for MDrive42AC Plus........................A-21Figure D.1: PD16-1417-FL3 Prototype Development Cable ..................................................A-22Figure D.2: PD14-2334-FL3 Prototype Development Cable ..................................................A-23Figure D.3: PD02-2300-FL3 Prototype Development Cable ..................................................A-23Figure D.4: PD02-3400-FL3 Prototype Development Cable ..................................................A-23Figure D.5: MD-CS10x-000 Prototype Development Cordset ................................................A-24Figure D.6: MD-CS10x-000 Prototype Development Cordset ................................................A-25Figure D.7: MD-CS20x-000 Euro AC Power ..........................................................................A-26Figure D.8: Interface Cable, Phytec PCAN-USB to MDrivePlus ............................................A-27

ix

List Of Tables

Part 1: Hardware Specifications

Table 1.2.1: MDrive17Plus P1 Connector - Power and I/O ...................................................... 1-7Table 1.2.2: MDrive17Plus P2 Connector - CAN Communications ......................................... 1-8Table 1.2.3: MDrive17Plus2 P1 Connector - Power and I/O ..................................................... 1-9Table 1.2.4: MDrive17Plus2 P2 Connector - CAN Communications ..................................... 1-10Table 1.2.5: MDrive17Plus2-65 P1 Connector - Power and I/O.............................................. 1-11Table 1.2.6: MDrive17Plus2-65 P2 Connector - CAN Communications ................................ 1-12Table 1.3.1: MDrive23Plus P1 Connector - Power and I/O .................................................... 1-15Table 1.3.2: MDrive23Plus P2 Connector - CAN Communications ....................................... 1-16Table 1.3.3: MDrive23Plus2 P1 Connector - Power and I/O .................................................. 1-17Table 1.3.4: MDrive23Plus2 P2 Connector - CAN Communications ..................................... 1-18Table 1.3.5: MDrive23Plus2-65 P1 Connector - Power and I/O ............................................. 1-19Table 1.3.6: MDrive23Plus2-65 P2 Connector - CAN Communications ................................ 1-20Table 1.4.1: MDrive34Plus2 P1 and P3 Connector - Power and I/O ....................................... 1-23Table 1.4.2: MDrive34Plus2 P2 Connector - CAN Communications ..................................... 1-24Table 1.5.1: MDrive34AC Plus2-65 P1 Connector - I/O ........................................................ 1-27Table 1.5.2: Drive34AC Plus2-65 P2 Connector - CAN Communications.............................. 1-28Table 1.5.3: Drive34AC Plus2-65 P3 Connector - AC Power .................................................. 1-28Table 1.6.1: Drive42AC Plus2-65 P1 Connector - I/O ............................................................ 1-32Table 1.6.2: Drive42AC Plus2-65 P2 Connector - CAN Communications ............................. 1-33Table 1.6.3: Drive42AC Plus2-65 P3 Connector - AC Power .................................................. 1-33Table 1.7.1: AC Power Wire Color .......................................................................................... 1-35Table 1.7.2: MDrivePlus CANopen I/O and Protection Ratings ............................................. 1-38Table 1.7.3: I/O Configuration Objects .................................................................................. 1-39

Part 2: DSP-402 Implementation

Table 2.1.1: Object Dictionary .................................................................................................. 2-5Table 2.4.1: State Machine States ............................................................................................ 2-25Table 2.4.2: State Machine Transitions .................................................................................... 2-26Table 2.4.3: MDrivePlus CANopen Device Control Commands ............................................ 2-28Table 2.4.4: MDrivePlus CANopen Operation Modes ............................................................ 2-28Table 2.4.5: Device State Bits for Statusword........................................................................... 2-29Table 2.6.1: Profile Position Mode Bits of Controlword .......................................................... 2-37Table 2.8.1: Profile Velocity Mode Bits of Controlword .......................................................... 2-51Table 2.8.2: Profile Velocity Mode Bits of Statusword ............................................................. 2-51

Appendices

Table C.1: Planetary Gearbox Operating Factor ......................................................................A-11Table C.2: MDrive17Plus Planetary Gearbox Parameters ........................................................A-16Table C.3: MDrive17Plus Planetary Gearbox Ratios and Inertia Moments .............................A-16Table C.4: MDrive23Plus Planetary Gearbox Parameters ........................................................A-17Table C.5: MDrive23Plus Planetary Gearbox Ratios and Inertia Moments .............................A-17Table C.6: MDrive34Plus Planetary Gearbox Parameters ........................................................A-19Table C.7: MDrive34Plus Planetary Gearbox Ratios and Inertia Moments .............................A-19Table C.8: MDrive42AC Plus2 105mm Planetary Gearbox Parameters ...................................A-20Table C.9: MDrive42AC Plus2 105mm Planetary Gearbox Ratios and Inertia Moments ........A-20Table C10: MDrive42AC Plus2 120mm Planetary Gearbox Parameters ..................................A-21Table C11: MDrive42AC Plus2 120mm Planetary Gearbox Ratios and Inertia Moments .......A-21Table D.1: PD16-1417-FL3 Wire Color Codes.......................................................................A-22Table D.2: PD16-1417-FL3 Wire Color Codes.......................................................................A-22Table D.3: PD02-2300-FL3 Wire Color Codes.......................................................................A-23Table D.4: PD02-2300-FL3 Wire Color Codes.......................................................................A-23Table D.5: MD-CS10x-000 Wire Color Chart ........................................................................A-24Table D.6: MD-CS10x-000 Wire Color Chart ........................................................................A-25Table D.7: Euro AC Wire Color Chart ....................................................................................A-26

x

TMExcellence in Motion

Section 1.1: MDrivePlus CANopen Overview and Features

Section 1.2: MDrive17Plus Hardware Specifications

Section 1.3: MDrive23Plus Hardware Specifications

Section 1.4: MDrive34Plus2 Hardware Specifications

Section 1.5: MDrive34AC Plus2 Hardware Specifications

Section 1.6: MDrive42AC Plus2 Hardware Specifications

Section 1.7: Connecting and Interfacing

Part 1: Hardware Specifications

TM

CANopen

1-2 MDrivePlus CANopen R122006

Page Intentionally Left Blank

1-3Part 1: Hardware Reference

Section 1.1MDrivePlus CANopen Overview and Features

Overview

The MDrivePlus CANopen offers system designers a low cost, intelligent microstepping drive integrated with a high torque brushless motor in standard NEMA frame sizes 17, 23, 34 and 42. Frame size 17 is integrated with a +12 to +48VDC microstepping driver and a +12 to +75 VDC microstepping driver for frame sizes 23 and 34. These DC powered integrated motion controllers are all CE. Available in a 120VAC or 240 VAC configuration, frame sizes 34 and 42 are CE and UL certified.

The NEMA 17, 23 and 34 models are available in three stack sizes, with two stack sizes available for the size 42.

The unsurpassed smoothness and performance delivered by the MDrivePlus CANopen is achieved through IMS's ad-vanced 2nd generation current control. By applying innovative techniques to control current flow through the motor, resonance is significantly dampened over the entire speed range and audible noise is reduced.

The MDrivePlus accepts a broad input voltage range, delivering enhanced performance and speed. Oversized input capacitors are used to minimize power line surges, reducing problems that can occur with long runs and multiple drive systems. An extended operating range of –40° to +85°C provides long life, trouble free service in demanding environ-ments.

Standard features available in the MDrivePlus CANopen include four +5 to +24 volt general purpose I/O lines, one 10 bit analog input.

Expanded features in the MDrivePlus2 version include up to eight +5 to +24 volt general purpose I/O lines.

For use in environments where exposure to chemical, dust and liquids may occur, a sealed assembly MDrivePlus2-65 version is designed to meet IP65 specifications.

All MDrivePlus CANopen models are available with optional closed loop configuration added via a 512 line (2048 edge) magnetic encoder with index mark, internal to the unit so there is no increase in length. This increases function-ality by adding stall detection, position maintenance and find index mark.

The MDrivePlus communicates using the CiA DS-301: Application Layer and Communication Profile. The CAN bus is 2.0B active (11 and/or 29 bit) and is capable of all standard frequencies from 10kHz to 1MHz. CANopen features include node guarding, heartbeat producer, SDOs and PDOs. Highlights include variable PDO mapping and extended node identifier.

Supported Modes of Operation for the MDrivePlus CANopen include: Profile Position, Homing Mode and Profile Velocity using the standard DSP-402: Device Profile for Drives and Controls Specification and object dictionary.\

Interface connections are accomplished using 12.0” (30.5cm) flying leads or a 7 position terminal strip. Plus2 versions come with pluggable locking wire crimp connectors.

Plus2-65 sealed versions come with M12/M23 circular connectors. The CAN Bus can be connected through a stan-dard DB-9 (male) connector or and M12 (female) connector on IP65 and AC Models.

The MDrivePlus is a compact, powerful and inexpensive solution that will reduce system cost, design and assembly time for a large range of brushless motor applications.

Features

Highly Integrated Microstepping Driver, Motion Controller and High Torque Brushless MotorAdvanced 2nd Generation Current Control for Exceptional Performance and Smoothness Single Supply: (See Specifications)Low CostExtremely CompactAvailable Options: - Internal Magnetic Encoder for Closed Loop Control - Integrated Planetary Gearbox - Control Knob for Manual PositioningOpen or Optional Closed Loop ControlProgrammable Motor Run and Hold CurrentsFour +5 to +24 VDC I/O Lines Accept Sourcing or Sinking OutputsOne 10 Bit Analog Input Selectable: 0 to +10 VDC, 0 to +5 VDC, 0-20 mA, 4-20 mACANopen DS-301 and DS-402Galvanically Isolated Communications 3 Dynamically Mappable Process Data Objects (PDO)Layer Setting Services to Establish Node ID and BAUD

1-4 MDrivePlus CANopen R122006

Node GuardingHeartbeat ProducerEmergency ObjectsUpgradeable Software Interface Options: - Pluggable Terminal Strip - 12.0” (30.5cm) Flying Leads

Plus2 Features

The MDrivePlus2 Motion Control adds expanded functionality to the MDrivePlus in the form of:

Enhanced and expanded I/O set (8 lines) which can be configured as sinking or sourcing inputs or outputs.

Pluggable wire crimp interface.

Plus2 -65 Features

The MDrivePlus2-65 Motion Control adds protection against the ingress of fluids and dust to the MDrivePlus2 by changing the motor-drive enclosure to meet IP65 specifications. With this change the connector configuration changes to industry standard M12/M23 circular connectors.

MDriveAC Plus Features

The MDriveAC Plus2-65 Motion Control adds protection against the ingress of fluids and dust to the MDrivePlus2 by changing the motor-drive enclosure to meet IP65 specifications. With this change the connector configuration changes to industry standard M12/M23 circular connectors. AC Power is connected via a 3-Pin Euro AC connector. The AC models are available in two input power ranges:

120VAC Input Model 240VAC Input Model

1-5Part 1: Hardware Reference

SECTION 1.2 MDrive17Plus Hardware Specifications

General Specifications

Electrical SpecificationsInput Voltage (+V) Range* +12 to +48 VDCMax Power Supply Current (Per MDrive17Plus)* 2 A

* Actual Power Supply Current will depend on Voltage and Load.

Environmental SpecificationsOperating Temperature -40°C to +85°CSealing IP65

I/O Specifications0 to +24VDC I/O - Number and Type

Plus (I/O Points 1-4) 4 Sourcing or Sinking Inputs or 4 Sinking Outputs

Plus2 (I/O Points 1-4, 9-12)8 Sourcing or Sinking Inputs or 8 Sourcing or Sinking Outputs

(2 Banks of 4 Each)0 to +24VDC I/O - ElectricalInputs TTL up to +24 VDCSinking Outputs (All) Up to +24 VDCSourcing Outputs (Plus2) +12 to +24 VDCOutput Sink Current (Plus) up to 600 mA (One Channel)

Output Sink Current (Plus2) up to 600 mA (One Channel in each I/O Bank)

Logic Threshold (Logic 0) < 0.8 VDCLogic Threshold (Logic 1) > 2.2 VDCProtection (Sinking) Over Temp, Short Circuit

Protection (Sourcing) Transient Over Voltage, Inductive Clamp

Analog InputResolution 10 BitRange (Voltage Mode) 0 to +5 VDC, 0 to +10 VDCRange (Current Mode) 4 to 20 mA, 0 to 20mA

Communications SpecificationsProtocol CAN 2.0bCommunications Profile CiA DS-301Device Profile CiA DSP-402

BAUD Rate 10, 20, 50, 125, 250, 500, 800 kBits/s, 1MBit/s (default)

WARNING! The maximum +48 VDC Input Voltage of

the MDrive17Plus series includes motor Back EMF, Power Supply Ripple and High Line.

WARNING! Because the MDrivePlus

consists of two core components, a drive and a motor, close attention must be paid to the thermal environment where the device is used. See Thermal Specifications.

1-6 MDrivePlus CANopen R122006

Motion Specifications

Microstep ResolutionSteps Per Revolution (Fixed) 51200Optional Differential Encoder (Internally Mounted)Type Internal, MagneticResolution (Lines) 512Resolution (Edges) 2048CountersCounter 1 (C1) Type PositionCounter 2 (C2) Type EncoderResolution 32 BitsMaximum Edge Rate 5 MHzVelocityRange ±5,000,000 Steps/Sec.Resolution 0.5961 Steps/Sec.Acceleration/DecelerationRange 1.5 x 109 Steps/Sec.2

Resolution 90.9 Steps/Sec.2

Software SpecificationsSetup Parameters Storable to NVMTransmit PDOs 3 Dynamically MappableReceive PDOs 3 Dynamically MappableManufacturer Specific Objects I/O Configuration, Run/Hold CurrentModes of Operation Profile Position, Homing Mode, Profile VelocityI/O FunctionsInput Functions General Purpose, Homing Mode ProfilesOutput Functions General Purpose

Motor SpecificationsSingle LengthHolding Torque 32 oz-in/22.6 N-cmDetent Torque 1.66 oz-in/1.17 N-cmRotor Inertia 0.00053 oz-in-sec2/0.038 kg-cm2

Weight (Motor + Driver) 9.8 oz/277.8 gDouble LengthHolding Torque 60 oz-in/42.46 N-cmDetent Torque 2.08 oz-in/1.47 N-cmRotor Inertia 0.00080 oz-in-sec2/0.057 kg-cm2

Weight (Motor + Driver) 10.5 oz/297.7 gTriple LengthHolding Torque 74.9 oz-in/52.9 N-cmDetent Torque 3.47 oz-in/2.45 N-cmRotor Inertia 0.00116 oz-in-sec2/0.082 kg-cm2

Weight (Motor + Driver) 15.1 oz/428.1 g

1-7Part 1: Hardware Reference

MDrive17Plus Mechanical Specification and Connector Pin Assignment

Dimensional Information

Dimensions in Inches (mm)

Dimensions in inches (mm)Motor Length LMAX1 (Single Shaft) LMAX2 (Control Knob)

Single 2.20 (55.9) 2.79 (70.9)Double 2.43 (61.7) 3.02 (76.7)Triple 2.77 (70.4) 3.37 (85.6)

P1

ConnectorOption

P2

LMAX

LMAX2

0.08(2.0)

0.59(15.0)

0.94(23.9)

1.220 SQ.(31.0 SQ.)

0.177(4.49

1.19(30.2)

2.30(58.3)

Ø 0.1968(Ø 4.999)

Ø 0.866(Ø 21.996)

1.68 SQ.(42.7 SQ.)

4X M3 x 0.5 x 0.15 Min Deep Threaded

Ø 0.97(Ø 24.6)

Control Knob(LMAX2 Option)

P1 Connector Options

Flying Leads 7-Pin TerminalStrip

P1

12(304.8)

0.44(11.2)

P1

0.425(10.79)

Figure 1.2.1: MDrive17Plus CANopen Dimensional Information

Pin Assignment and Description

P1 Connector - Power and I/O

Pin Assignment - P1 Power and I/O ConnectionsFlying Lead Wire

Color7-Pin Pluggable Terminal Strip Function Description

White/Yellow Pin 1 I/O 1 0 to +24 VDC Programmable I/O Point 1White/Orange Pin 2 I/O 2 0 to +24 VDC Programmable I/O Point 2White/Violet Pin 3 I/O 3 0 to +24 VDC Programmable I/O Point 3White/Blue Pin 4 I/O 4 0 to +24 VDC Programmable I/O Point 4

Green Pin 5 AIN 0 to 10 V / 4 to 20 mA / 0 to 20 mA Analog Input.

Black Pin 6 GND Power GroundRed Pin 7 +V +12 to +48 VDC Motor Power Supply input.

Table 1.2.1: MDrive17Plus P1 Connector - Power and I/O

MDrive17PlusHardware

Specifications

1-8 MDrivePlus CANopen R122006

Figure 1.2.2: MDrive17Plus P1 Connector - I/O and Power

P1

Pin 7Pin 6

Pin 1Pin 2Pin 3Pin 4Pin 5

White/YellowWhite/Orange

White/Violet

White/BlueGreen

Black

P1

Red

P2 Connector - CANopen Communications

1 2 3 4 56 7 8 9

CAN -V

CAN -V (CAN_GND)

CAN HighCAN +V

CAN Low CAN Shield

P2 Connector - CAN CommunicationsDB9 Function DescriptionPin 1 N/C No ConnectPin 2 CAN LOW CAN_L bus line (dominant low)Pin 3 CAN -V CAN Communications GroundPin 4 N/C No ConnectPin 5 CAN Shield Optional CAN ShieldPin 6 CAN -V Optional GroundPin 7 CAN HIGH CAN_H bus line (dominant high)Pin 8 N/C No Connect

Pin 9 CAN +V +7 to +30 VDC supply

Figure 1.2.3: MDrive17Plus P2 Connector - CAN Communications

Table 1.2.2: MDrive17Plus P2 Connector - CAN Communications

MDrive17PlusHardware

Specifications

Options and Accessories

Control Knob

The MDrive17Plus CANopen is available with a factory-mounted rear control knob for manual shaft positioning.

Planetary Gearbox

Efficient, low maintenance Planetary Gearboxes are offered assembled with the MDrive17Plus. (For specifications and details see Appendix C: MDrive17Plus Planetary Gearbox Specification.)

Encoder

The MDrive17Plus CANopen is available with an internal 512-line (2048 count) magnetic encoder with index mark.

Linear Slide

Integrated linear slides are available factory installed for precision linear movement. Screw pitches are 0.1", 0.2", 0.5" or 1.0" of travel per rev. Slides are 10.0" (25.4cm) to 36.0" (91.44cm) long. Contact factory for custom lengths.

Communication Converter Cable

This cable makes it possible to connect any laptop computer or PC with a USB connector to a CAN bus. Galvanic isolation of up to 500 V between a host-PC and CAN signals is achieved with the help of an integrated DC/AC converter. The CAN is connected via a 9-pin SUB-D plug according to CiA standard recommendation DS 102-1. The LED integrated in the housing shows the operating state of the MD-CC500-000. This cable is required to use the IMS CANopen GUI and to perform firmware upgrades.

USB to DB9-M .......................................................Part No. MD-CC500-000

1-9Part 1: Hardware Reference

MDrive17Plus2 Mechanical Specification and Connector Pin Assignment

Dimensional Information

Dimensions in Inches (mm)

Dimensions in inches (mm)Motor Length LMAX1 (Single Shaft) LMAX2 (Control Knob)

Single 2.20 (55.9) 2.79 (70.9)Double 2.43 (61.7) 3.02 (76.7)Triple 2.77 (70.4) 3.37 (85.6)

P1

ConnectorOption

P2

LMAX

LMAX2

0.08(2.0)

0.59(15.0)

0.94(23.9)

1.220 SQ.(31.0 SQ.)

0.177(4.49

1.19(30.2)

2.30(58.3)

Ø 0.1968(Ø 4.999)

Ø 0.866(Ø 21.996)

1.68 SQ.(42.7 SQ.)

4X M3 x 0.5 x 0.15 Min Deep Threaded

Ø 0.97(Ø 24.6)

Control Knob(LMAX2 Option)

0.425(10.79)

P1 Connector Options

16-Pin LockingWire Crimp

0.20(5.0)

0.14(3.6)

P1

Figure 1.2.4: MDrive17Plus2 CANopen Dimensional Information

Pin Assignment and Description

P1 Connector - Power and I/O, Expanded I/O Configuration

P1 - Expanded I/O Configuration16-Pin Wire Crimp Function Description

Pin 1 I/O PWR I/O Power, used with sourcing inputs or outputs. Pin 2 I/O GND Non-isolated I/O Ground. Common with Power Ground.Pin 3 I/O 1 0 to +24 VDC Programmable I/O Point 1Pin 4 I/O 2 0 to +24 VDC Programmable I/O Point 2Pin 5 I/O 3 0 to +24 VDC Programmable I/O Point 3Pin 6 I/O 4 0 to +24 VDC Programmable I/O Point 4Pin 7 I/O 9 0 to +24 VDC Programmable I/O Point 9Pin 8 I/O 10 0 to +24 VDC Programmable I/O Point 10Pin 9 I/O 11 0 to +24 VDC Programmable I/O Point 11

Pin 10 I/O 12 0 to +24 VDC Programmable I/O Point 12Pin 11 Not Used Not UsedPin 12 AIN 0 to 10 V / 4 to 20 mA / 0 to 20 mA Analog Input.Pin 13 Not Used Not UsedPin 14 Not Used Not UsedPin 15 +V +12 to +48 VDC Motor Power Supply Input.Pin 16 GND Power Ground

Recommended Cable

PD16-1417-FL3

Table 1.2.3: MDrive17Plus2 P1 Connector - Power and I/O

MDrive17Plus2

Hardware Specifications

1-10 MDrivePlus CANopen R122006

Figure 1.2.5: MDrive17Plus2 P1 Connector, Power and I/O

16-Pin Locking Wire CrimpMDrive17Plus2 Only

P1

Recommended Cables:P1: PD16-1417-FL3

15131197531

161412108642

P1

Pin 1

ConnectorOrientation

P2 Connector - CANopen Communications

1 2 3 4 56 7 8 9

CAN -V

CAN -V (CAN_GND)

CAN HighCAN +V

CAN Low CAN ShieldP2 Connector - CAN Communications

DB9 Function DescriptionPin 1 N/C No ConnectPin 2 CAN LOW CAN_L bus line (dominant low)Pin 3 CAN -V CAN Communications GroundPin 4 N/C No ConnectPin 5 CAN Shield Optional CAN ShieldPin 6 CAN -V Optional GroundPin 7 CAN HIGH CAN_H bus line (dominant high)Pin 8 N/C No ConnectPin 9 CAN +V +7 to +30 VDC supply

Figure 1.2.6: MDrive17Plus2 P2 Connector - CAN Communications

Table 1.2.4: MDrive17Plus2 P2 Connector - CAN Communications

MDrive17Plus2

Hardware Specifications

Options and Accessories

Control Knob

The MDrive17Plus CANopen is available with a factory-mounted rear control knob for manual shaft positioning.

Planetary Gearbox

Efficient, low maintenance Planetary Gearboxes are offered assembled with the MDrive17Plus2. (For specifications and details see Appendix C: MDrivePlus Planetary Gearbox Specification.)

Encoder

The MDrive17Plus2 CANopen is available with an internal 512-line (2048 count) magnetic encoder with index mark.

Linear Slide

Integrated linear slides are available factory installed for precision linear movement. Screw pitches are 0.1", 0.2", 0.5" or 1.0" of travel per rev. Slides are 10.0" (25.4cm) to 36.0" (91.44cm) long. Contact factory for custom lengths.

Communication Converter Cable

This cable makes it possible to connect any laptop computer or PC with a USB connector to a CAN bus. Galvanic isolation of up to 500 V between a host-PC and CAN signals is achieved with the help of an integrated DC/AC converter. The CAN is connected via a 9-pin SUB-D plug according to CiA standard recommendation DS 102-1. The LED integrated in the housing shows the operating state of the MD-CC500-000. This cable is required to use the IMS CANopen GUI and to perform firmware upgrades.

USB to DB9-M .......................................................Part No. MD-CC500-000

Prototype Development Cable

To speed prototyping of Plus2 versions, IMS recommends the following 10’ (3m) interface cable with first orders:

16-pin Wire Crimp Cable ........................................Part No. PD16-1417-FL3

1-11Part 1: Hardware Reference

MDrive17Plus2-65 Mechanical Specification and Connector Pin Assignment

Dimensional Information

Dimensions in Inches (mm)

MDrive17Plus2

-65 Hardware Specifications

Ø 0.53(Ø 13.5) Ø 0.87

(Ø 22.1)

5-Pin M12 Male(CAN Communications) 19-Pin M23 Male

(Power and I/O)

Dimensions in inches (mm)Motor Length LMAX1 LMAX2 LMAX3

Single 2.39 (60.71) 3.06 (77.72) 2.99 (75.95)Double 2.62 (66.55) 3.29 (83.57) 3.22 (81.79)Triple 2.96 (75.18) 3.63 (92.20) 3.56 (90.42)

P1

P2

LMAX

LMAX2

LMAX3

1.38(35.1)

0.59(15.0)

0.08(2.0)

0.94(23.9)

0.177(4.49)

1.078(27.4)

1.161(29.5)

2.792(70.9)

1.220 SQ.(31.0 SQ.)

1.68 SQ(42.7 SQ.)

0.49(12.5)

Ø 0.1968(Ø 4.999)Ø 0.866(Ø 21.996)

4x M3 x 0.5 x 0.15 Min. Deep Threaded

Figure 1.2.7: MDrive17Plus2-65 CANopen Dimensional Information

Pin Assignment and Description

P1 Connector - I/O and Power Connections, Expanded I/O Configuration

P1 - Expanded I/O Configuration19-Pin M23 Function Description

Pin 1 I/O 9 0 to +24 VDC Programmable I/O Point 9.Pin 2 I/O 11 0 to +24 VDC Programmable I/O Point 11.Pin 3 Not Used Not UsedPin 4 I/O 1 0 to +24 VDC Programmable I/O Point 1.Pin 5 Not Used Not UsedPin 6 +V +12 to +48 VDC Motor Power Supply Input.Pin 7 Not Used Not UsedPin 8 Not Used Not UsedPin 9 I/O 3 0 to +24 VDC Programmable I/O Point 3.

Pin 10 I/O GND Non-isolated I/O Ground. Common with Power Ground.Pin 11 I/O PWR I/O Power, used with sourcing inputs or outputs. Pin 12 Earth Ground Earth Ground, Connects to connector shell.Pin 13 I/O 12 0 to +24 VDC Programmable I/O Point 12.Pin 14 Not Used Not UsedPin 15 AIN 0 to 10 V / 4 to 20 mA / 0 to 20 mA Analog Input.Pin 16 I/O 2 0 to +24 VDC Programmable I/O Point 2.Pin 17 I/O 4 0 to +24 VDC Programmable I/O Point 4.Pin 18 I/O 10 0 to +24 VDC Programmable I/O Point 10.Pin 19 GND Power Ground.

Recommended Cordset

MD-CS100-000 or MD-CS101-000

Table 1.2.5: MDrive17Plus2-65 P1 Connector - Power and I/O

1-12 MDrivePlus CANopen R122006

MDrive17Plus2

-65 Hardware Specifications

Pin 4

Pin 5

Pin 7

Pin 8Pin 10

Pin 11

Pin 1

Pin 2

Pin 19

Pin 18

Pin 17

Pin 14

Pin 15

Pin 16

Outside: Pins 1 -12 Inside: Pins 13 - 19Pin 3

Pin 12

Pin 6

Pin 9

Pin 13

Figure 1.2.8: MDrive17Plus2-65 P1 Connector, Power and I/O

Pin 5

Pin 2Pin 1

Pin 3Pin 4 P2 Connector - CAN CommunicationsDB9 Function DescriptionPin 1 CAN Shield Optional CAN ShieldPin 2 CAN +V +7 to +30 VDC supplyPin 3 CAN -V CAN Communications GroundPin 4 CAN HIGH CAN_H bus line (dominant high)Pin 5 CAN LOW CAN_L bus line (dominant low)Figure 1.2.9: MDrive17Plus2-65 P2 Connector

-CAN Communications Table 1.2.6: P2 Connector -CAN Communications

Options and Accessories

Planetary Gearbox

Efficient, low maintenance Planetary Gearboxes are offered assembled with the MDrive17Plus2-65. (For specifications and details see Appendix C: MDrivePlus Planetary Gearbox Specification.)

Encoder

The MDrive17Plus2-65 CANopen is available with an internal 512-line (2048 count) magnetic encoder with index mark.

Linear Slide

Integrated linear slides are available factory installed for precision linear movement. Screw pitches are 0.1", 0.2", 0.5" or 1.0" of travel per rev. Slides are 10.0" (25.4cm) to 36.0" (91.44cm) long. Contact factory for custom lengths.

Communication Converter Cable

This cable makes it possible to connect any laptop computer or PC with a USB connector to a CAN bus. Galvanic isolation of up to 500 V between a host-PC and CAN signals is achieved with the help of an integrated DC/AC converter. The CAN is connected via a 9-pin SUB-D plug according to CiA standard recommendation DS 102-1. The LED integrated in the housing shows the operating state of the MD-CC500-000. This cable is required to use the IMS CANopen GUI and to perform firmware upgrades.

USB to DB9-M .......................................................Part No. MD-CC500-000

Cordsets

19-Pin M23 single-ended cordsets are offered to speed prototyping of MDrive17Plus2-65 CANopen units. Measuring 13.0' (4.0m) long, they are available in either straight or right angle termination and attach to the MDrivePlus P1 Connector. PVC jacketed cables come with a foil shield and unconnected drain wire.

Straight Termination .................................................................. Part No. MD-CS100-000Right Angle Termination ........................................................... Part No. MD-CS101-000

P2 Connector - CANopen Communications

1-13Part 1: Hardware Reference

SECTION 1.3 MDrive23Plus Hardware Specifications

General Specifications

Electrical SpecificationsInput Voltage (+V) Range* +12 to +75 VDCMax Power Supply Current (Per MDrive23Plus)* 2 A

* Actual Power Supply Current will depend on Voltage and Load.

Environmental SpecificationsOperating Temperature -40°C to +85°CSealing IP65

I/O Specifications0 to +24 VDC I/O - Number and Type

Plus (I/O Points 1-4) 4 Sourcing or Sinking Inputs or 4 Sinking Outputs

Plus2 (I/O Points 1-4, 9-12)8 Sourcing or Sinking Inputs or 8 Sourcing or Sinking Outputs

(2 Banks of 4 Each)0 to +24 VDC I/O - ElectricalInputs TTL up to +24 VDCSinking Outputs (All) Up to +24 VDCSourcing Outputs (Plus2) +12 to +24 VDCOutput Sink Current (Plus) up to 600 mA (One Channel)

Output Sink Current (Plus2) up to 600 mA (One Channel in each I/O Bank)

Logic Threshold (Logic 0) < 0.8 VDCLogic Threshold (Logic 1) > 2.2 VDCProtection (Sinking) Over Temp, Short Circuit

Protection (Sourcing) Transient Over Voltage, Inductive Clamp

Analog InputResolution 10 BitRange (Voltage Mode) 0 to +5 VDC, 0 to +10 VDCRange (Current Mode) 4 to 20 mA, 0 to 20mA

Communications SpecificationsProtocol CAN 2.0B ActiveCommunications Profile CiA DS-301Device Profile CiA DSP-402

BAUD Rate 10, 20, 50, 125, 250, 500, 800 kBits/s, 1MBit/s

WARNING! The maximum +75 VDC Input Voltage of

the MDrive17Plus series includes motor Back EMF, Power Supply Ripple and High Line.

WARNING! Because the MDrivePlus

consists of two core components, a drive and a motor, close attention must be paid to the thermal environment where the device is used. See Thermal Specifications.

1-14 MDrivePlus CANopen R122006

Motion Specifications

Microstep ResolutionSteps Per Revolution (Fixed) 51200Optional Differential Encoder (Internally Mounted)Type Internal, MagneticResolution (Lines) 512Resolution (Edges) 2048CountersCounter 1 (C1) Type PositionCounter 2 (C2) Type EncoderResolution 32 BitsMaximum Edge Rate 5 MHzVelocityRange ±5,000,000 Steps/Sec.Resolution 0.5961 Steps/Sec.Acceleration/DecelerationRange 1.5 x 109 Steps/Sec.2

Resolution 90.9 Steps/Sec.2

Software SpecificationsSetup Parameters Storable to NVMTransmit PDOs 3 Dynamically MappableReceive PDOs 3 Dynamically MappableManufacturer Specific Objects I/O Configuration, Run/Hold CurrentModes of Operation Profile Position, Homing Mode, Profile VelocityI/O FunctionsInput Functions General Purpose, Homing Mode ProfilesOutput Functions General Purpose

Motor SpecificationsSingle LengthHolding Torque 90 oz-in/64 N-cmDetent Torque 3.9 oz-in/2.7 N-cmRotor Inertia 0.0025 oz-in-sec2/0.26 kg-cm2

Weight (Motor + Driver) 21.6 oz/784.4 gDouble LengthHolding Torque 144 oz-in/102 N-cmDetent Torque 5.6 oz-in/3.92 N-cmRotor Inertia 0.0037 oz-in-sec2/0.26 kg-cm2

Weight (Motor + Driver) 26.4 oz/784.4 gTriple LengthHolding Torque 239 oz-in/169 N-cmDetent Torque 9.7 oz-in/6.86 N-cmRotor Inertia 0.065 oz-in-sec2/0.46 kg-cm2

Weight (Motor + Driver) 39.2 oz/1111.3 g

1-15Part 1: Hardware Reference

MDrive23Plus Mechanical Specification and Connector Pin Assignment

Dimensional Information

Dimensions in Inches (mm)

MDrive23PlusHardware

Specifications

2.02(51.2)

Ø 0.25(Ø 6.3)

2.22 SQ. (56.4 SQ.)

Ø 0.197 (Ø 5.0)

1.63(41.4)

1.856 SQ. (47.1 SQ.)

1.90(48.3)

2.96(75.2)

0.81(20.6)

0.23(5.8)

0.19(4.9)LMAX1

LMAX2

ConnectorOption

P2

P1/P3

Dimensions in inches (mm)Motor Length LMAX1 (Single Shaft) LMAX2 (Control Knob)

Single 2.65 (67.31) 3.36 (85.34)Double 3.02 (76.71) 3.73 (94.74)Triple 3.88 (98.55) 4.59 (116.59)

0.425(10.79)

Ø 0.97(Ø 24.6)

Control Knob(LMAX2 Option)

P1 Connector Options

Flying Leads 7-Pin TerminalStrip

P1

12(304.8)

0.44(11.2)

P1

Figure 1.3.1: MDrive23Plus CANopen Dimensional Information

Pin Assignment and Description

P1 Connector - Power and I/O

Pin Assignment - P1 Power and I/O ConnectionsFlying Lead Wire

Color7-Pin Pluggable Terminal Strip Function Description

White/Yellow Pin 1 I/O 1 0 to +24 VDC Programmable I/O Point 1White/Orange Pin 2 I/O 2 0 to +24 VDC Programmable I/O Point 2White/Violet Pin 3 I/O 3 0 to +24 VDC Programmable I/O Point 3White/Blue Pin 4 I/O 4 0 to +24 VDC Programmable I/O Point 4

Green Pin 5 AIN 0 to 10 V / 4 to 20 mA / 0 to 20 mA Analog Input.

Black Pin 6 GND Power GroundRed Pin 7 +V +12 to +48 VDC Motor Power Supply input.

Table 1.3.1: MDrive23Plus P1 Connector - Power and I/O

1-16 MDrivePlus CANopen R122006

MDrive23PlusHardware

Specifications P1

Pin 7Pin 6

Pin 1Pin 2Pin 3Pin 4Pin 5

White/YellowWhite/Orange

White/Violet

White/BlueGreen

Black

P1

Red

Figure 1.3.2: MDrive23Plus P1 Connector - I/O and Power

P2 Connector - CANopen Communications

1 2 3 4 56 7 8 9

CAN -V

CAN -V (CAN_GND)

CAN HighCAN +V

CAN Low CAN Shield

P2 Connector - CAN CommunicationsDB9 Function DescriptionPin 1 N/C No ConnectPin 2 CAN LOW CAN_L bus line (dominant low)Pin 3 CAN -V CAN Communications GroundPin 4 N/C No ConnectPin 5 CAN Shield Optional CAN ShieldPin 6 CAN -V Optional GroundPin 7 CAN HIGH CAN_H bus line (dominant high)Pin 8 N/C No Connect

Pin 9 CAN +V +7 to +30 VDC supply

Figure 1.3.3: MDrive23Plus P2 Connector - CAN Communications

Table 1.3.2: MDrive23Plus P2 Connector - CAN Communications

Options and Accessories

Control Knob

The MDrive23Plus CANopen is available with a factory-mounted rear control knob for manual shaft positioning.

Planetary Gearbox

Efficient, low maintenance Planetary Gearboxes are offered assembled with the MDrive23Plus. (For specifications and details see Appendix C: MDrive23Plus Planetary Gearbox Specification.)

Encoder

The MDrive23Plus CANopen is available with an internal 512-line (2048 count) magnetic encoder with index mark.

Linear Slide

Integrated linear slides are available factory installed for precision linear movement. Screw pitches are 0.1", 0.2", 0.5" or 1.0" of travel per rev. Slides are 10.0" (25.4cm) to 36.0" (91.44cm) long. Contact factory for custom lengths.

Communication Converter Cable

This cable makes it possible to connect any laptop computer or PC with a USB connector to a CAN bus. Galvanic isolation of up to 500 V between a host-PC and CAN signals is achieved with the help of an integrated DC/AC converter. The CAN is connected via a 9-pin SUB-D plug according to CiA standard recommendation DS 102-1. The LED integrated in the housing shows the operating state of the MD-CC500-000. This cable is required to use the IMS CANopen GUI and to perform firmware upgrades.

USB to DB9-M .......................................................Part No. MD-CC500-000

1-17Part 1: Hardware Reference

MDrive23Plus2 Mechanical Specification and Connector Pin Assignment

Dimensional Information

Dimensions in Inches (mm)

Figure 1.3.4: MDrive23Plus2 CANopen Dimensional Information

2.02(51.2)

Ø 0.25(Ø 6.3)

2.22 SQ. (56.4 SQ.)

Ø 0.197 (Ø 5.0)

1.63(41.4)

1.856 SQ. (47.1 SQ.)

1.90(48.3)

2.96(75.2)

0.81(20.6)

0.23(5.8)

0.19(4.9)LMAX1

LMAX2

ConnectorOption

P2

P1/P3

Dimensions in inches (mm)Motor Length LMAX1 (Single Shaft) LMAX2 (Control Knob)

Single 2.65 (67.31) 3.36 (85.34)Double 3.02 (76.71) 3.73 (94.74)Triple 3.88 (98.55) 4.59 (116.59)

0.425(10.79)

Ø 0.97(Ø 24.6)

Control Knob(LMAX2 Option)

P1 and P3 Connector Options

P1/P3

0.38(9.7)

0.50(12.7)

0.13(3.3)

P1: 14-Pin Wire CrimpP3: 2-Pin Wire Crimp

Pin Assignment and Description

P1 Connector - Power and I/O, Expanded I/O Configuration

P1 - Expanded I/O Configuration14-Pin Wire Crimp Function Description

Pin 1 I/O PWR I/O Power, used with sourcing inputs or outputs. Pin 2 I/O GND Non-isolated I/O Ground. Common with Power Ground.Pin 3 I/O 1 0 to +24 VDC Programmable I/O Point 1Pin 4 I/O 2 0 to +24 VDC Programmable I/O Point 2Pin 5 I/O 3 0 to +24 VDC Programmable I/O Point 3Pin 6 I/O 4 0 to +24 VDC Programmable I/O Point 4Pin 7 I/O 9 0 to +24 VDC Programmable I/O Point 9Pin 8 I/O 10 0 to +24 VDC Programmable I/O Point 10Pin 9 I/O 11 0 to +24 VDC Programmable I/O Point 11

Pin 10 I/O 12 0 to +24 VDC Programmable I/O Point 12Pin 11 Not Used Not UsedPin 12 AIN 0 to 10 V / 4 to 20 mA / 0 to 20 mA Analog Input.Pin 13 Not Used Not UsedPin 14 Not Used Not Used

Recommended Cable

PD14-2334-FL3

P1 - Expanded I/O Configuration2-Pin Wire Crimp Function Description

Pin 1 +V +12 to +75 VDC Motor Power Supply InputPin 2 GND Power Ground.

Recommended Cable

PD02-2300-FL3

MDrive23Plus2

Hardware Specifications

Table 1.3.3: MDrive23Plus2 P1 Connector - Power and I/O

1-18 MDrivePlus CANopen R122006

Figure 1.3.5: MDrive23Plus2 P1 Connector, Power and I/O

P2 Connector - CANopen Communications

1 2 3 4 56 7 8 9

CAN -V

CAN -V (CAN_GND)

CAN HighCAN +V

CAN Low CAN ShieldP2 Connector - CAN Communications

DB9 Function DescriptionPin 1 N/C No ConnectPin 2 CAN LOW CAN_L bus line (dominant low)Pin 3 CAN -V CAN Communications GroundPin 4 N/C No ConnectPin 5 CAN Shield Optional CAN ShieldPin 6 CAN -V Optional GroundPin 7 CAN HIGH CAN_H bus line (dominant high)Pin 8 N/C No ConnectPin 9 CAN +V +7 to +30 VDC supply

Figure 1.3.6: MDrive23Plus2 P2 Connector - CAN Communications

Table 1.3.4: MDrive23Plus2 P2 Connector - CAN Communications

Options and Accessories

Control Knob

The MDrive23Plus2 CANopen is available with a factory-mounted rear control knob for manual shaft positioning.

Planetary Gearbox

Efficient, low maintenance Planetary Gearboxes are offered assembled with the MDrive23Plus2. (For specifications and details see Appendix C: MDrivePlus Planetary Gearbox Specification.)

Encoder

The MDrive23Plus2 CANopen is available with an internal 512-line (2048 count) magnetic encoder with index mark.

Linear Slide

Integrated linear slides are available factory installed for precision linear movement. Screw pitches are 0.1", 0.2", 0.5" or 1.0" of travel per rev. Slides are 10.0" (25.4cm) to 36.0" (91.44cm) long. Contact factory for custom lengths.

Communication Converter Cable

This cable makes it possible to connect any laptop computer or PC with a USB connector to a CAN bus. Galvanic isolation of up to 500 V between a host-PC and CAN signals is achieved with the help of an integrated DC/AC converter. The CAN is connected via a 9-pin SUB-D plug according to CiA standard recommendation DS 102-1. The LED integrated in the housing shows the operating state of the MD-CC500-000. This cable is required ti use the IMS CANopen GUI and to perform firmware upgrades.

USB to DB9-M .......................................................Part No. MD-CC500-000

Prototype Development Cable

To speed prototyping of Plus2 versions, IMS recommends the following 10’ (3m) interface cable with first orders:

14-pin Wire Crimp Cable ........................................Part No. PD14-2324-FL3

2-Pin Power Cable....................................................Part No. PD02-2300-FL3

14-Pin and 2-PinLocking Wire Crimp

P1

P3

2 1

131197531

1412108642

Recommended Cables:P1: PD14-2334-FL3P2: PD02-2300-FL3

Pin 1

Pin 1

MDrive23Plus2

Hardware Specifications

1-19Part 1: Hardware Reference

MDrive23Plus2 Mechanical Specification and Connector Pin Assignment

Dimensional Information

Dimensions in Inches (mm)

1.033(26.2)

1.078(27.4)

2.96(75.2)

1.480(37.6)

LMAX3

LMAX1

0.230 ±0.004 (5.8 ±0.1)

2.042(51.9)

P1

P2

LMAX2Ø 0.53

(Ø 13.5) Ø 0.87(Ø 22.1)

2.02(51.2)

Ø 0.25(Ø 6.3)

2.22 SQ. (56.4 SQ.)

Ø 0.197 (Ø 5.0)

1.63(41.4)

1.856 SQ. (47.1 SQ.)

0.81(20.6)

5-Pin M12 Male(CAN Communications)

19-Pin M23 Male(Power and I/O)

Dimensions in inches (mm)Motor Length LMAX1 LMAX2 LMAX3

Single 2.82 (71.63) 3.48 (88.39) 3.42 (86.87)Double 3.16 (80.26) 3.82 (97.03) 3.76 (95.50)Triple 4.02 (102.11) 4.67 (118.62) 4.62 (117.35)

Figure 1.3.7: MDrive23Plus2 -65 CANopen Dimensional Information

MDrive23Plus2

-65 Hardware Specifications

Pin Assignment and Description

P1 Connector - I/O and Power Connections, Expanded I/O Configuration

P1 - Expanded I/O Configuration19-Pin M23 Function Description

Pin 1 I/O 9 0 to +24 VDC Programmable I/O Point 9.Pin 2 I/O 11 0 to +24 VDC Programmable I/O Point 11.Pin 3 Not Used Not UsedPin 4 I/O 1 0 to +24 VDC Programmable I/O Point 1.Pin 5 Not Used Not UsedPin 6 +V +12 to +75 VDC Motor Power Supply Input.Pin 7 Not Used Not UsedPin 8 Not Used Not UsedPin 9 I/O 3 0 to +24 VDC Programmable I/O Point 3.

Pin 10 I/O GND Non-isolated I/O Ground. Common with Power Ground.Pin 11 I/O PWR I/O Power, used with sourcing inputs or outputs. Pin 12 Earth Ground Earth Ground, Connects to connector shell.Pin 13 I/O 12 0 to +24 VDC Programmable I/O Point 12.Pin 14 Not Used Not UsedPin 15 AIN 0 to 10 V / 4 to 20 mA / 0 to 20 mA Analog Input.Pin 16 I/O 2 0 to +24 VDC Programmable I/O Point 2.Pin 17 I/O 4 0 to +24 VDC Programmable I/O Point 4.Pin 18 I/O 10 0 to +24 VDC Programmable I/O Point 10.Pin 19 GND Power Ground.

Recommended Cordset

MD-CS100-000 or MD-CS101-000

Table 1.3.5: MDrive23Plus2 -65 P1 Connector - Power and I/O

1-20 MDrivePlus CANopen R122006

MDrive23Plus2

-65 Hardware Specifications

Pin 4

Pin 5

Pin 7

Pin 8Pin 10

Pin 11

Pin 1

Pin 2

Pin 19

Pin 18

Pin 17

Pin 14

Pin 15

Pin 16

Outside: Pins 1 -12 Inside: Pins 13 - 19Pin 3

Pin 12

Pin 6

Pin 9

Pin 13

Figure 1.3.8: MDrive23Plus2 -65 P1 Connector, Power and I/O

Pin 5

Pin 2Pin 1

Pin 3Pin 4 P2 Connector - CAN CommunicationsDB9 Function DescriptionPin 1 CAN Shield Optional CAN ShieldPin 2 CAN +V +7 to +30 VDC supplyPin 3 CAN -V CAN Communications GroundPin 4 CAN HIGH CAN_H bus line (dominant high)Pin 5 CAN LOW CAN_L bus line (dominant low)Figure 1.3.9: P2 MDrive23Plus2 -65 Connector

- CAN Communications Table 1.3.6: MDrive23Plus2 -65 P2 Connector - CAN Communications

Options and Accessories

Planetary Gearbox

Efficient, low maintenance Planetary Gearboxes are offered assembled with the MDrive23Plus2-65. (For specifications and details see Appendix C: MDrivePlus Planetary Gearbox Specification.)

Encoder

The MDrive23Plus2-65 CANopen is available with an internal 512-line (2048 count) magnetic encoder with index mark.

Linear Slide

Integrated linear slides are available factory installed for precision linear movement. Screw pitches are 0.1", 0.2", 0.5" or 1.0" of travel per rev. Slides are 10.0" (25.4cm) to 36.0" (91.44cm) long. Contact factory for custom lengths.

Communication Converter Cable

This cable makes it possible to connect any laptop computer or PC with a USB connector to a CAN bus. Galvanic isolation of up to 500 V between a host-PC and CAN signals is achieved with the help of an integrated DC/AC converter. The CAN is connected via a 9-pin SUB-D plug according to CiA standard recommendation DS 102-1. The LED integrated in the housing shows the operating state of the MD-CC500-000. This cable is required to use the IMS CANopen GUI and to perform firmware upgrades.

USB to DB9-M .......................................................Part No. MD-CC500-000

Cordsets

19-Pin M23 single-ended cordsets are offered to speed prototyping of MDrive23Plus2-65 CANopen units. Measuring 13.0' (4.0m) long, they are available in either straight or right angle termination and attach to the MDrivePlus P1 Connector. PVC jacketed cables come with a foil shield and unconnected drain wire.

Straight Termination .................................................................. Part No. MD-CS100-000Right Angle Termination ........................................................... Part No. MD-CS101-000

P2 Connector - CANopen Communications

1-21Part 1: Hardware Reference

SECTION 1.4 MDrive34Plus2 Hardware Specifications

General Specifications

Note: The MDrive34Plus2 CANopen is only available with 8 I/O.

Electrical SpecificationsInput Voltage (+V) Range* +12 to +75 VDCMax Power Supply Current (Per MDrive34Plus)* 4 A

* Actual Power Supply Current will depend on Voltage and Load.

Environmental SpecificationsOperating Temperature -40°C to +85°C

I/O Specifications0 to +24 VDC I/O - Number and Type

I/O Points 1-4, 9-128 Sourcing or Sinking Inputs or 8 Sourcing or Sinking Outputs

(2 Banks of 4 Each)0 to +24 VDC I/O - ElectricalInputs TTL up to +24 VDCSinking Outputs (All) Up to +24 VDCSourcing Outputs (Plus2) +12 to +24 VDC

Output Sink Current (Plus2) up to 600 mA (One Channel in each I/O Bank)

Logic Threshold (Logic 0) < 0.8 VDCLogic Threshold (Logic 1) > 2.2 VDCProtection (Sinking) Over Temp, Short Circuit

Protection (Sourcing) Transient Over Voltage, Inductive Clamp

Analog InputResolution 10 BitRange (Voltage Mode) 0 to +5 VDC, 0 to +10 VDCRange (Current Mode) 4 to 20 mA, 0 to 20mA

Communications SpecificationsProtocol CAN 2.0B ActiveCommunications Profile CiA DS-301Device Profile CiA DSP-402

BAUD Rate 10, 20, 50, 125, 250, 500, 800 kBits/s, 1MBit/s

WARNING! The maximum +75 VDC Input Voltage of

the MDrive17Plus series includes motor Back EMF, Power Supply Ripple and High Line.

WARNING! Because the MDrivePlus

consists of two core components, a drive and a motor, close attention must be paid to the thermal environment where the device is used. See Thermal Specifications.

1-22 MDrivePlus CANopen R122006

Motion Specifications

Microstep ResolutionSteps Per Revolution (Fixed) 51200Optional Differential Encoder (Internally Mounted)Type Internal, MagneticResolution (Lines) 512Resolution (Edges) 2048CountersCounter 1 (C1) Type PositionCounter 2 (C2) Type EncoderResolution 32 BitsMaximum Edge Rate 5 MHzVelocityRange ±5,000,000 Steps/Sec.Resolution 0.5961 Steps/Sec.Acceleration/DecelerationRange 1.5 x 109 Steps/Sec.2

Resolution 90.9 Steps/Sec.2

Software SpecificationsSetup Parameters Storable to NVMTransmit PDOs 3 Dynamically MappableReceive PDOs 3 Dynamically MappableManufacturer Specific Objects I/O Configuration, Run/Hold CurrentModes of Operation Profile Position, Homing Mode, Profile VelocityI/O FunctionsInput Functions General Purpose, Homing Mode ProfilesOutput Functions General Purpose

Motor SpecificationsSingle LengthHolding Torque 381 oz-in/269 N-cmDetent Torque 10.9 oz-in/7.7 N-cmRotor Inertia 0.01416 oz-in-sec2/1.0 kg-cm2

Weight (Motor + Driver) 4.1 lb/1.9 kgDouble LengthHolding Torque 575 oz-in/406 N-cmDetent Torque 14.16 oz-in/10.0 N-cmRotor Inertia 0.02266 oz-in-sec2/1.6 kg-cm2

Weight (Motor + Driver) 5.5 lb/2.5 kgTriple LengthHolding Torque 1061 oz-in/749 N-cmDetent Torque 19.83 oz-in/14.0 N-cmRotor Inertia 0.04185 oz-in-sec2/3.4 kg-cm2

Weight (Motor + Driver) 8.8 lb/4.0 kg

1-23Part 1: Hardware Reference

MDrive34Plus2 Mechanical Specification and Connector Pin Assignment

Dimensional Information

Dimensions in Inches (mm)

Dimensions in inches (mm)Motor Length LMAX1 (Single Shaft) LMAX2 (Control Knob)

Single 3.71 (94.23) 4.42 (112.27)Double 4.50 (114.30) 5.21 (132.33)Triple 6.07 (154.18) 6.78 (172.21)

4x Ø 0.217(4x Ø 5.51)

Ø 0.5512(Ø 14.0)

Ø 2.874(Ø 73.0)

2.739 SQ.(69.57 SQ.)

3.39 SQ.(86.1 SQ.)

1.981(50.32)

3.727(94.67

0.079(2.0)

LMAX1

LMAX2

0.984(25.0)

1.46(37.1)

0.515(13.0)

0.394(10.01)

0.425(10.79)

Figure 1.4.1: MDrive34Plus2 CANopen Dimensional Information

Pin Assignment and Description

P1 Connector - Power and I/O, Expanded I/O Configuration

P1 - Expanded I/O Configuration14-Pin Wire Crimp Function Description

Pin 1 I/O PWR I/O Power, used with sourcing inputs or outputs. Pin 2 I/O GND Non-isolated I/O Ground. Common with Power Ground.Pin 3 I/O 1 0 to +24 VDC Programmable I/O Point 1Pin 4 I/O 2 0 to +24 VDC Programmable I/O Point 2Pin 5 I/O 3 0 to +24 VDC Programmable I/O Point 3Pin 6 I/O 4 0 to +24 VDC Programmable I/O Point 4Pin 7 I/O 9 0 to +24 VDC Programmable I/O Point 9Pin 8 I/O 10 0 to +24 VDC Programmable I/O Point 10Pin 9 I/O 11 0 to +24 VDC Programmable I/O Point 11

Pin 10 I/O 12 0 to +24 VDC Programmable I/O Point 12Pin 11 Not Used Not UsedPin 12 AIN 0 to 10 V / 4 to 20 mA / 0 to 20 mA Analog Input.Pin 13 Not Used Not UsedPin 14 Not Used Not Used

Recommended Cable

PD14-2334-FL3

P1 - Expanded I/O Configuration2-Pin Wire Crimp Function Description

Pin 1 +V +12 to +75 VDC Motor Power Supply InputPin 2 GND Power Ground.

Recommended Cable

PD02-3400-FL3

MDrive34Plus2

Hardware Specifications

Table 1.4.1: MDrive34Plus2 P1 and P3 Connector - Power and I/O

1-24 MDrivePlus CANopen R122006

P1

P3

2468

101214

135791113

14-Pin Locking Wire Crimp2-Pin Locking Wire Crimp

Recommended Cables:P/N PD14-2334-FL3P/N PD02-3400-FL3

1

2

Pin 1

Pin 1

Figure 1.4.2: MDrive34Plus2 P1 Connector, Power and I/O

P2 Connector - CANopen Communications

1 2 3 4 56 7 8 9

CAN -V

CAN -V (CAN_GND)

CAN HighCAN +V

CAN Low CAN ShieldP2 Connector - CAN Communications

DB9 Function DescriptionPin 1 N/C No ConnectPin 2 CAN LOW CAN_L bus line (dominant low)Pin 3 CAN -V CAN Communications GroundPin 4 N/C No ConnectPin 5 CAN Shield Optional CAN ShieldPin 6 CAN -V Optional GroundPin 7 CAN HIGH CAN_H bus line (dominant high)Pin 8 N/C No ConnectPin 9 CAN +V +7 to +30 VDC supply

Figure 1.4.3: MDrive34Plus2 P2 Connector - CAN Communications

Table 1.4.2: MDrive34Plus2 P2 Connector - CAN Communications

Options and Accessories

Control Knob

The MDrive34Plus2 CANopen is available with a factory-mounted rear control knob for manual shaft positioning.

Planetary Gearbox

Efficient, low maintenance Planetary Gearboxes are offered assembled with the MDrive34Plus2. (For specifications and details see Appendix C: MDrivePlus Planetary Gearbox Specification.)

Encoder

The MDrive34Plus2 CANopen is available with an internal 512-line (2048 count) magnetic encoder with index mark.

Linear Slide

Integrated linear slides are available factory installed for precision linear movement. Screw pitches are 0.1", 0.2", 0.5" or 1.0" of travel per rev. Slides are 10.0" (25.4cm) to 36.0" (91.44cm) long. Contact factory for custom lengths.

Communication Converter Cable

This cable makes it possible to connect any laptop computer or PC with a USB connector to a CAN bus. Galvanic isolation of up to 500 V between a host-PC and CAN signals is achieved with the help of an integrated DC/AC converter. The CAN is connected via a 9-pin SUB-D plug according to CiA standard recommendation DS 102-1. The LED integrated in the housing shows the operating state of the MD-CC500-000. This cable is required to use the IMS CANopen GUI and to perform firmware upgrades.

USB to DB9-M .......................................................Part No. MD-CC500-000

Prototype Development Cable

To speed prototyping of Plus2 versions, IMS recommends the following 10’ (3m) interface cable with first orders:

14-pin Wire Crimp Cable ........................................Part No. PD14-2324-FL3

2-Pin Power Cable....................................................Part No. PD02-3400-FL3

MDrive34Plus2

Hardware Specifications

1-25Part 1: Hardware Reference

SECTION 1.5 MDrive34AC Plus2 Hardware Specifications

General Specifications

Note: The MDrive34AC Plus2 CANopen is only available with 8 I/O.

Electrical SpecificationsInput Voltage Range (120 VAC MDrive) 95 to 132 VAC @ 50/60 HzInput Voltage Range (240 VAC MDrive) 95 to 264 VAC @ 50/60 Hz

Environmental SpecificationsOperating Temperature -40°C to +85°C

I/O Specifications0 to 24 +VDC I/O - Number and Type

I/O Points 1-4, 9-128 Sourcing or Sinking Inputs or 8 Sourcing or Sinking Outputs

(2 Banks of 4 Each)0 to 24 +VDC I/O - ElectricalInputs TTL up to +24 VDCSinking Outputs (All) Up to +24 VDCSourcing Outputs (Plus2) +12 to +24 VDC

Output Sink Current (Plus2) up to 600 mA (One Channel in each I/O Bank)

Logic Threshold (Logic 0) < 0.8 VDCLogic Threshold (Logic 1) > 2.2 VDCProtection (Sinking) Over Temp, Short Circuit

Protection (Sourcing) Transient Over Voltage, Inductive Clamp

Analog InputResolution 10 BitRange (Voltage Mode) 0 to +5 VDC, 0 to +10 VDCRange (Current Mode) 4 to 20 mA, 0 to 20mA

Communications SpecificationsProtocol CAN 2.0B ActiveCommunications Profile CiA DS-301Device Profile CiA DSP-402

BAUD Rate 10, 20, 50, 125, 250, 500, 800 kBits/s, 1MBit/s

1-26 MDrivePlus CANopen R122006

Motion Specifications

Microstep ResolutionSteps Per Revolution (Fixed) 51200Optional Differential Encoder (Internally Mounted)Type Internal, MagneticResolution (Lines) 512Resolution (Edges) 2048CountersCounter 1 (C1) Type PositionCounter 2 (C2) Type EncoderResolution 32 BitsMaximum Edge Rate 5 MHzVelocityRange ±5,000,000 Steps/Sec.Resolution 0.5961 Steps/Sec.Acceleration/DecelerationRange 1.5 x 109 Steps/Sec.2

Resolution 90.9 Steps/Sec.2

Software SpecificationsSetup Parameters Storable to NVMTransmit PDOs 3 Dynamically MappableReceive PDOs 3 Dynamically MappableManufacturer Specific Objects I/O Configuration, Run/Hold CurrentModes of Operation Profile Position, Homing Mode, Profile VelocityI/O FunctionsInput Functions General Purpose, Homing Mode ProfilesOutput Functions General Purpose

Motor SpecificationsSingle LengthHolding Torque 330 oz-in/233 N-cmDetent Torque 10.9 oz-in/7.7 N-cmRotor Inertia 0.01416 oz-in-sec2/1.0 kg-cm2

Weight (Motor + Driver) 6.4 lb/2.9 kgDouble LengthHolding Torque 500 oz-in/353 N-cmDetent Torque 14.16 oz-in/10.0 N-cmRotor Inertia 0.02266 oz-in-sec2/1.6 kg-cm2

Weight (Motor + Driver) 7.7 lb/3.5 kgTriple LengthHolding Torque 750 oz-in/749 N-cmDetent Torque 19.83 oz-in/14.0 N-cmRotor Inertia 0.04185 oz-in-sec2/3.4 kg-cm2

Weight (Motor + Driver) 11.0 lb/5.0 kg

1-27Part 1: Hardware Reference

MDrive34AC Plus2 Mechanical Specification and Connector Pin Assignment

Dimensional Information

Dimensions in Inches (mm)

Figure 1.5.1: MDrive34AC Plus2 CANopen Dimensional Information

Pin Assignment and Description

P1 Connector - I/O Connections, Expanded I/O Configuration

P1 - Expanded I/O Configuration19-Pin M23 Function Description

Pin 1 I/O 9 0 to +24 VDC Programmable I/O Point 9.Pin 2 I/O 11 0 to +24 VDC Programmable I/O Point 11.Pin 3 Not Used Not UsedPin 4 I/O 1 0 to +24 VDC Programmable I/O Point 1.Pin 5 Not Used Not UsedPin 6 Not Used Not UsedPin 7 Not Used Not UsedPin 8 Not Used Not UsedPin 9 I/O 3 0 to +24 VDC Programmable I/O Point 3.

Pin 10 I/O GND Non-isolated I/O Ground. Common with Power Ground.Pin 11 I/O PWR I/O Power, used with sourcing inputs or outputs. Pin 12 Earth Ground Earth Ground, Connects to connector shell.Pin 13 I/O 12 0 to +24 VDC Programmable I/O Point 12.Pin 14 Not Used Not UsedPin 15 AIN 0 to 10 V / 4 to 20 mA / 0 to 20 mA Analog Input.Pin 16 I/O 2 0 to +24 VDC Programmable I/O Point 2.Pin 17 I/O 4 0 to +24 VDC Programmable I/O Point 4.Pin 18 I/O 10 0 to +24 VDC Programmable I/O Point 10.Pin 19 Not Used Not Used

Recommended Cordset

MD-CS100-000 or MD-CS101-000

Table 1.5.1: MDrive34AC Plus2 P1 Connector - Power and I/O

Dimensions in inches (mm)Motor Length LMAX1

(Single Shaft)LMAX2

(Control Knob)Single 6.1 (155.0) 7.1 (180.4)Double 6.9 (174.3) 7.9 (199.7)Triple 8.4 (214.3) 9.4 (239.79)

LMAX1

LMAX2

1.46(37.0)

0.87(22.0)

Ø 0.55(Ø 14.0)

0.40(10.1)

0.08(2.0)

P3P1P2

2.70(68.4)

3.38 SQ.(85.8 SQ.)

5.76(146.2)

6.47(164.2)

2.74 SQ.(69.58 SQ.)

Ø 2.87(Ø 73.0)

3.46(87.8)

0.63(16.0)

Connectors

Ø 0.87(Ø 22.1)

P1 19-Pin M23

Ø 0.53(Ø 13.5)

P2 5-Pin M12

Ø 0.87(Ø 22.1)

P3 3-Pin Euro AC

1-28 MDrivePlus CANopen R122006

P3 Connector

P1 Connector

P2 Connector

Figure 1.5.2: MDrive34AC Plus2 CANopen Connector Orientation

Pin 4

Pin 5

Pin 7

Pin 8Pin 10

Pin 11

Pin 1

Pin 2

Pin 19

Pin 18

Pin 17

Pin 14

Pin 15

Pin 16

Outside: Pins 1 -12 Inside: Pins 13 - 19Pin 3

Pin 12

Pin 6

Pin 9

Pin 13

Figure 1.5.3: MDrive34AC Plus2 P1 Connector, I/O

Pin 5

Pin 2Pin 1

Pin 3Pin 4 P2 Connector - CAN CommunicationsDB9 Function DescriptionPin 1 CAN Shield Optional CAN ShieldPin 2 CAN +V +7 to +30 VDC supplyPin 3 CAN -V CAN Communications GroundPin 4 CAN HIGH CAN_H bus line (dominant high)Pin 5 CAN LOW CAN_L bus line (dominant low)Figure 1.5.4: MDrive34AC Plus2 P2 Connector

-CAN Communications Table 1.5.2: MDrive34AC Plus2 P2 Connector -CAN Communications

P1 Connector - I/O Connections, Expanded I/O Configuration

P3 Connector - AC Power

Pin 1

Pin 3

Pin 2

3-Pin Euro AC Connector

Figure 1.5.5: MDrive34AC Plus2 P3 Connector

P3 Connector - AC PowerEuro AC Function Description

Pin 1 Chassis Ground Chassis Ground (Earth)

Pin 2 AC Line AC Power LinePin 3 AC Neutral AC Power Neutral

Table 1.5.3: MDrive34AC Plus2 P3 Connector - AC Power

Options and Accessories

Planetary Gearbox

Efficient, low maintenance Planetary Gearboxes are offered assembled with the MDrive34AC Plus2. (For specifications and details see Appendix C: MDrivePlus Planetary Gearbox Specification.)

Encoder

The MDrive34AC Plus2 CANopen is available with an internal 512-line (2048 count) magnetic encoder with index mark.

Linear Slide

Integrated linear slides are available factory installed for precision linear movement. Screw pitches are 0.1", 0.2", 0.5" or 1.0" of travel per rev. Slides are 10.0" (25.4cm) to 36.0" (91.44cm) long. Contact factory for custom lengths.

Communication Converter Cable

This cable makes it possible to connect any laptop computer or PC with a USB connector to a CAN bus. Galvanic isolation of up to 500 V between a host-PC and CAN signals is achieved with the help of an integrated DC/AC converter. The CAN is connected via a 9-pin SUB-D plug according to CiA standard recommendation DS 102-1. The LED integrated in the housing shows the operating state of the MD-CC500-000. This cable is required to use the IMS CANopen GUI and to perform firmware upgrades.

USB to DB9-M .......................................................Part No. MD-CC500-000

1-29Part 1: Hardware Reference

Cordsets - Prototype Development

19-Pin M23 single-ended cordsets are offered to speed prototyping of MDrive34AC Plus2-65 Motion Control units. Measuring 13.0' (4.0m) long, they are available in either straight or right angle termination and attach to the MDrivePlus P1 Connector. PVC jacketed cables come with a foil shield and unconnected drain wire.

Straight Termination .................................................................. Part No. MD-CS100-000Right Angle Termination ........................................................... Part No. MD-CS101-000

Cordsets – Power Interface

3-pin Euro AC single-ended cordsets are offered for power interface to the MDrive34AC Plus2. Measuring 13.0' (4.0m) long, either straight or right angle termination is available. PVC jacketed cables are IP68, NEMA 6P rated.

Straight Termination .................................................................. Part No. MD-CS200-000Right Angle Termination ........................................................... Part No. MD-CS201-000

1-30 MDrivePlus CANopen R122006

SECTION 1.6 MDrive42AC Plus2 Hardware Specifications

General Specifications

Note: The MDrive42AC Plus2 CANopen is only available with 8 I/O.

Electrical SpecificationsInput Voltage Range (120 VAC MDrive) 95 to 132 VAC @ 50/60 HzInput Voltage Range (240 VAC MDrive) 95 to 264 VAC @ 50/60 Hz

Environmental SpecificationsOperating Temperature -40°C to +85°C

I/O SpecificationsGeneral Purpose I/O - Number and Type

I/O Points 1-4, 9-128 Sourcing or Sinking Inputs or 8 Sourcing or Sinking Outputs

(2 Banks of 4 Each)General Purpose I/O - ElectricalInputs TTL up to +24 VDCSinking Outputs (All) Up to +24 VDCSourcing Outputs (Plus2) +12 to +24 VDC

Output Sink Current (Plus2) up to 600 mA (One Channel in each I/O Bank)

Logic Threshold (Logic 0) < 0.8 VDCLogic Threshold (Logic 1) > 2.2 VDCProtection (Sinking) Over Temp, Short Circuit

Protection (Sourcing) Transient Over Voltage, Inductive Clamp

Analog InputResolution 10 BitRange (Voltage Mode) 0 to +5 VDC, 0 to +10 VDCRange (Current Mode) 4 to 20 mA, 0 to 20mA

Communications SpecificationsProtocol CAN 2.0B ActiveCommunications Profile CiA DS-301Device Profile CiA DSP-402

BAUD Rate 10, 20, 50, 125, 250, 500, 800 kBits/s, 1MBit/s

1-31Part 1: Hardware Reference

Motion Specifications

Microstep ResolutionSteps Per Revolution (Fixed) 51200Optional Differential Encoder (Internally Mounted)Type Internal, MagneticResolution (Lines) 512Resolution (Edges) 2048CountersCounter 1 (C1) Type PositionCounter 2 (C2) Type EncoderResolution 32 BitsMaximum Edge Rate 5 MHzVelocityRange ±5,000,000 Steps/Sec.Resolution 0.5961 Steps/Sec.Acceleration/DecelerationRange 1.5 x 109 Steps/Sec.2

Resolution 90.9 Steps/Sec.2

Software SpecificationsSetup Parameters Storable to NVMTransmit PDOs 3 Dynamically MappableReceive PDOs 3 Dynamically MappableManufacturer Specific Objects I/O Configuration, Run/Hold CurrentModes of Operation Profile Position, Homing Mode, Profile VelocityI/O FunctionsInput Functions General Purpose, Homing Mode ProfilesOutput Functions General Purpose

Motor SpecificationsSingle LengthHolding Torque 1147 oz-in/233 N-cmDetent Torque 35 oz-in/25 N-cmRotor Inertia 0.0917 oz-in-sec2/6.5 kg-cm2

Weight (Motor + Driver) 14.07 lb/6.38 kgDouble LengthHolding Torque 2294 oz-in/1620 N-cmDetent Torque 84 oz-in/59 N-cmRotor Inertia 0.1833 oz-in-sec2/13.0 kg-cm2

Weight (Motor + Driver) 21.25 lb/9.64 kg

1-32 MDrivePlus CANopen R122006

MDrive42AC Plus2 Mechanical Specification and Connector Pin Assignment

Dimensional Information

Dimensions in Inches (mm)

Figure 1.6.1: MDrive42AC Plus2 CANopen Dimensional Information

Pin Assignment and Description

P1 Connector - I/O Connections, Expanded I/O Configuration

P1 - Expanded I/O Configuration19-Pin M23 Function Description

Pin 1 I/O 9 0 to +24 VDC Programmable I/O Point 9.Pin 2 I/O 11 0 to +24 VDC Programmable I/O Point 11.Pin 3 Not Used Not UsedPin 4 I/O 1 0 to +24 VDC Programmable I/O Point 1.Pin 5 Not Used Not UsedPin 6 Not Used Not UsedPin 7 Not Used Not UsedPin 8 Not Used Not UsedPin 9 I/O 3 0 to +24 VDC Programmable I/O Point 3.

Pin 10 I/O GND Non-isolated I/O Ground. Common with Power Ground.Pin 11 I/O PWR I/O Power, used with sourcing inputs or outputs. Pin 12 Earth Ground Earth Ground, Connects to connector shell.Pin 13 I/O 12 0 to +24 VDC Programmable I/O Point 12.Pin 14 Not Used Not UsedPin 15 AIN 0 to 10 V / 4 to 20 mA / 0 to 20 mA Analog Input.Pin 16 I/O 2 0 to +24 VDC Programmable I/O Point 2.Pin 17 I/O 4 0 to +24 VDC Programmable I/O Point 4.Pin 18 I/O 10 0 to +24 VDC Programmable I/O Point 10.Pin 19 Not Used Not Used

Recommended Cordset

MD-CS100-000 or MD-CS101-000

Table 1.6.1: MDrive42AC Plus2 P1 Connector - Power and I/O

Dimensions in inches (mm)Motor Length LMAX1

(Single Shaft)LMAX2

(Control Knob)Single 7.4 (187.96) 9.4 (238.76)Double 8.4 (213.36) 10.4 (264.16)

LMAX1

LMAX2

2.17(55.0)

1.375(34.9)

Ø 0.75(Ø 19.05)

0.49(12.5)

0.059(1.5)

3.0(76.2)

4.331 SQ.(110.0 SQ.)

6.75(171.45)

7.40(187.96)

3.50 SQ.(88.88 SQ.)

Connectors

Ø 0.87(Ø 22.1)

P1 19-Pin M23

Ø 0.53(Ø 13.5)

P2 5-Pin M12

Ø 0.87(Ø 22.1)

P3 3-Pin Euro AC

0.65(16.51)

Ø 0.75(Ø 19.05)

0.335(8.51)

0.83(21.08)

Ø 2.185(Ø 55.5)

4.50(114.3)

1-33Part 1: Hardware Reference

Figure 1.6.2: MDrive42AC Plus2 CANopen Connector Orientation

Pin 4

Pin 5

Pin 7

Pin 8Pin 10

Pin 11

Pin 1

Pin 2

Pin 19

Pin 18

Pin 17

Pin 14

Pin 15

Pin 16

Outside: Pins 1 -12 Inside: Pins 13 - 19Pin 3

Pin 12

Pin 6

Pin 9

Pin 13

Figure 1.6.3: P1 Connector, Power and I/O

Pin 5

Pin 2Pin 1

Pin 3Pin 4 P2 Connector - CAN CommunicationsDB9 Function DescriptionPin 1 CAN Shield Optional CAN ShieldPin 2 CAN +V +7 to +30 VDC supplyPin 3 CAN -V CAN Communications GroundPin 4 CAN HIGH CAN_H bus line (dominant high)Pin 5 CAN LOW CAN_L bus line (dominant low)Figure 1.6.4: MDrive42AC Plus2 P2 Connector

- CAN Communications Table 1.6.2: MDrive42AC Plus2 P2 Connector - CAN Communications

P1 Connector - I/O and Power Connections, Expanded I/O Configuration

P3 Connector - AC Power

Pin 1

Pin 3

Pin 2

3-Pin Euro AC Connector

Figure 1.6.5: MDrive42AC Plus2 P3 Connector

P3 Connector - AC PowerEuro AC Function Description

Pin 1 Chassis Ground Chassis Ground (Earth)

Pin 2 AC Line AC Power LinePin 3 AC Neutral AC Power Neutral

Table 1.6.3: MDrive42AC Plus2 P2 Connector - CAN Communications

Options and Accessories

Planetary Gearbox

Efficient, low maintenance Planetary Gearboxes are offered assembled with the MDrive42AC Plus2. (For specifications and details see Appendix C: MDrivePlus Planetary Gearbox Specification.)

Encoder

The MDrive42AC Plus2 CANopen is available with an internal 512-line (2048 count) magnetic encoder with index mark.

Linear Slide

Integrated linear slides are available factory installed for precision linear movement. Screw pitches are 0.1", 0.2", 0.5" or 1.0" of travel per rev. Slides are 10.0" (25.4cm) to 36.0" (91.44cm) long. Contact factory for custom lengths.

Communication Converter Cable

This cable makes it possible to connect any laptop computer or PC with a USB connector to a CAN bus. Galvanic isolation of up to 500 V between a host-PC and CAN signals is achieved with the help of an integrated DC/AC converter. The CAN is connected via a 9-pin SUB-D plug according to CiA standard recommendation DS 102-1. The LED integrated in the housing shows the operating state of the MD-CC500-000. This cable is required to use the IMS CANopen GUI and to perform firmware upgrades.

USB to DB9-M .......................................................Part No. MD-CC500-000

P1 Connector

P2 ConnectorP3 Connector

1-34 MDrivePlus CANopen R122006

Cordsets - Prototype Development

19-Pin M23 single-ended cordsets are offered to speed prototyping of MDrive42AC Plus2-65 units. Measuring 13.0' (4.0m) long, they are available in either straight or right angle termination and attach to the MDrivePlus P1 Connector. PVC jacketed cables come with a foil shield and unconnected drain wire.

Straight Termination .................................................................. Part No. MD-CS100-000Right Angle Termination ........................................................... Part No. MD-CS101-000

Cordsets – Power Interface

3-pin Euro AC single-ended cordsets are offered for power interface to the MDrive42AC Plus2. Measuring 13.0' (4.0m) long, either straight or right angle termination is available. PVC jacketed cables are IP68, NEMA 6P rated.

Straight Termination .................................................................. Part No. MD-CS200-000Right Angle Termination ........................................................... Part No. MD-CS201-000

1-35Part 1: Hardware Reference

SECTION 1.7 Connecting and Interfacing

Connecting DC Power (DC Models)

MDrive17Plus CANopen

The MDrive17Plus CANopen operates from a single unregulated linear or unregulated switching power supply to power the control circuits and provide motor power.

The power requirements for the MDrive17Plus CANopen are:

Output Voltage .....................................................................................................+12 to +48 VDCCurrent (max. per unit) ...............................................................................................................2A (Actual power supply current requirement will depend upon voltage and load)

MDrive23Plus CANopen

The power requirements for the MDrive23Plus CANopen are:

Output Voltage .....................................................................................................+12 to +75 VDCCurrent (max. per unit) ...............................................................................................................2A (Actual power supply current requirement will depend upon voltage and load)

MDrive34Plus CANopen

The power requirements for the MDrive23Plus CANopen are:

Output Voltage .....................................................................................................+12 to +75 VDCCurrent (max. per unit) ...............................................................................................................4A (Actual power supply current requirement will depend upon voltage and load)

Connecting AC Power (AC Models)

The MDrive34AC Plus2 CANopen and MDrive42AC Plus2 CANopen operate from an AC Line connection and are available in both 120 VAC and 240 VAC Configuration. In order to maintain the UL Rating the IMS cordset MD-CS20x-000 or Lumberg equivalent MUST Be used.

AC Power Wire ColorEuro AC Function Wire Color

Pin 1 Chassis Ground Green/Yellow

Pin 2 AC Line BrownPin 3 AC Neutral Blue

Table 1.7.1: AC Power Wire Color

Layout and Interface Guidelines

Logic level cables must not run parallel to power cables. Power cables will introduce noise into the logic level cables and make your system unreliable.

Logic level cables must be shielded to reduce the chance of EMI induced noise. The shield needs to be grounded at the signal source to earth. The other end of the shield must not be tied to anything, but allowed to float. This allows the shield to act as a drain.

Power supply leads to the MDrivePlus need to be twisted. If more than one driver is to be connected to the same power supply, run separate power and ground leads from the supply to each driver.

UnregulatedLinear orSwitching

Power Supply

PowerGround

+VDC

Shield toEarth Ground

+

–BlackRed

Power Ground+VDC Input

See Hardware Specifications forConnector/Pin Configuration

Recommended Prototype Development CablesMDrive17Plus: PD16-1417-FL3MDrive23Plus: PD02-2300-FL3MDrive34Plus: PD02-3400-FL3

Figure 1.7.1: MDrivePlus CANopen Power Connections

1-36 MDrivePlus CANopen R122006

Recommended Wiring

The following wiring/cabling is recommended for use with the MDrivePlus:

Logic Wiring ......................................................................................................................22 AWG Wire Strip Length ...................................................................................................0.25” (6.0 mm)Power and Ground .................... See Appendix B: Recommended Power and Cable Configurations

Recommended Mating Connectors and Pins

Logic and Power

The following mating connectors are recommended for the MDrivePlus2 Units ONLY! Please contact a JST distributor for ordering and pricing information.

MDrive17Plus2

I/O and Power — 16-pin Locking Wire Crimp Connector Shell ............... JST PN PADP-16V-1-S Crimp Pins ..............................................................................................JST PN SPH-001T-P0.5L

MDrive23Plus2

I/O — 14-pin Locking Wire Crimp Connector Shell ................................. JST PN PADP-14V-1-S Crimp Pins ..............................................................................................JST PN SPH-001T-P0.5L

Power — 2-Pin Wire Crimp .................................................................................. AMP 794617-2Crimp Pins ..............................................................................................................AMP 794610-1

MDrive34Plus2

I/O —14-pin Locking Wire Crimp Connector Shell .................................. JST PN PADP-14V-1-S Crimp Pins ..............................................................................................JST PN SPH-001T-P0.5LPower — 2-Pin Wire Crimp ................................................................................ Molex 51067-200Crimp Pins ........................................................................................................ Molex 50217-9101

Securing Power Leads and Logic Leads

Some applications may require that the MDrive move with the axis motion. If this is a requirement of your applica-tion, the motor leads (flying, pluggable or threaded) must be properly anchored. This will prevent flexing and tugging which can cause damage at critical connection points within the MDrive.

Interfacing The CAN Bus

The MDrivePlus CANopen communicates using the CAN 2.0B Active Protocol and the CiA DS-301 Application Layer and Communications Profile. The full DS-301 V4.02 Specification may be downloaded free at http://www.can-cia.org. The default BAUD rate is 1 Mbit/Sec. The default Node ID is 41h.

CAN Bus Connections

Figure 1.7.2: CANOpen Network using MDrivePlus.

CANopenController

MDrivePlusCANopenNode 1

MDrivePlusCANopen

Node x

CA

N H

igh

Shi

eld

CA

N L

ow

CA

N H

igh

Shi

eld

CA

N L

ow

CA

N H

igh

Shi

eld

CA

N L

ow

+V Supply7 to 30 VDC

Return

CA

N +

V

CA

N -V

CA

N -V

CA

N -V

CA

N +

V

CA

N +

V

1 2 3 4 56 7 8 9

CAN -V

CAN -V (CAN_GND)

CAN HighCAN +V

CAN Low CAN Shield

3

21

4

Pin 4: CAN HIGH

Pin 1: Shield Pin 2: CAN +V

Pin 3: CAN -V

Pin 5: CAN LOW

5-Pin M12 Male

DB-9

Default Communications BAUD Rate: 1 Mbit/Sec

Default Node ID: 41h

1-37Part 1: Hardware Reference

Recommended CANopen Dongle

In order to use the IMS GUI and upgrade utility for the MDrivePlus CANopen you must purchase the MD-CC500-000 Communications Cable. When purchased from IMS, the User Interface software for upgrading and prototyping is included. This is required to upgrade the firmware in the MDrivePlus as CANopen updates become available.

This device is also available from Phytec at: http://www.phytec.com/can/hardware/pccaninterface/peakusb.htm, but does not include the IMS CANopen GUI and Upgrader software.

Interface Cable Construction

To connect the MD-CC500-000 dongle to the MDrivePlus an interface cable will need to be constructed. Figure 1.7.3 details the parts and connections.

Installation Instructions

Install the Phytec PCAN-USB adapter per the Phytec Operating Instructions included on the CD.

Install the CANOpen_Tester Interface provided by IMS.

Using the interface cable, connect the MDrivePlus to the Phytec PCAN-USB adapter.

Apply Power to the MDrivePlus CANopen.

1.

2.

3.

4.

NOTE: The MD-CC500-000 USB to CAN Adapter is required to

upgrade the firmware in the MDrivePlus with CANOpen. Any CAN adapter/Controller can be used to communicate to the device using CANOpen Objects and Indexes.

CAN +V

CAN -V (Ground)

+7 to +30 VDC Power Supply

Pin 2: CAN-L

Pin 2: CAN-L

Pin 5: CAN Shield

Pin 1: CAN Shield

Pin 3: CAN -V (Ground)

Pin 6: CAN-V (Ground)

Pin 1: CAN-V (Ground)

Pin 7: CAN-H

Pin 4: CAN-H

Pin 9: CAN +V Pin 2: CAN +V

CAN-H

CAN-L120Ω

120Ω Termination Resistor is REQUIRED

Between CAN-H and CAN-LAt the MDrivePlus end of the cable.

DB-9F

MD-CC500-000

DB-9F

DB-9F M12F

M12F

CAN +VCAN -V

To MDrivePlus P2

To USB Port

Figure 1.7.3: Communications Cable, Phytec PCAN-USB to MDrivePlus

1-38 MDrivePlus CANopen R122006

Connecting and Interfacing The I/O

The MDrivePlus CANopen product line is available with two digital I/O configurations, Standard and Enhanced.

The goal of this I/O configuration scheme is to maximize compatibility between the MDrivePlus CANopen and standard sensors and switches.

Standard ................................................................................ All MDrivePlus ModelsAvailable Points ................................................................. IO1, IO2, IO3, IO4 (Sinking or Sourcing Inputs, Sinking Outputs ONLY)

Enhanced ............................................................................... Plus2, Plus2-65Available Points ................................................................. IO1, IO2, IO3, IO4 (Sinking Sourcing, Outputs/Inputs)Additional Points ............................................................... IO9, IO10, IO11, IO12 (Sinking Sourcing, Outputs/Inputs)

Standard I/O Set - All MDrivePlus CANopen Models

The MDrivePlus CANopen comes standard with a set of four I/O — (4) sinking or sourcing 0 to +24 VDC inputs or (4) sinking 0 to +24 VDC outputs, which may be configured through the object dictionary as inputs or outputs

Enhanced I/O Set - MDrivePlus2/Plus2-65

The MDrivePlus2 CANopen is equipped with a set of eight I/O — (8) sinking or sourcing 0 to +24 VDC inputs or (8) sinking or sourcing +12 to +24 VDC outputs. The eight I/O consist of two separate banks of four points: Bank 1: IO1 - IO4, Bank 2: IO9 - IO12.

MDrivePlus Motion Control I/O Ratings

MDrivePlus I/O RatingsMDrivePlus Output Voltage (IOPWR) Rating 0 to +24 VDC

MDrivePlus2 Output Voltage (IOPWR) Rating +12 to +24 VDC (Sourcing) | 0 to +24 VDC (Sinking)

Load Rating* (equal current per I/O Point)* Heatsink Temp = 85C

I/O State I Continuous I Peak (D=0.84)

1 on, 3 off 550 mA 600 mA

2 on, 2 off 390 mA 425 mA

3 on, 1 off 320 mA 350 mA

4 on, 0 off 275 mA 300 mA

To compute FET dissipation for unequal loads, calculate the FET power for each I/O not to exceed 425 mW.

Continuous Current FET Power = Icont2 x 1.4

Peak Current FET Power = Ipeak2 x D x 1.4

Duty Cycle (D =T on /T period) = ≤ 1.0 seconds at 85˚C heatsink temperature.

Protection RatingsIndependent Over-temperature

Current Limit 0.6A to 1.2 A

Clamp +45V, -20V

Table 1.7.2: MDrivePlus CANopen I/O and Protection Ratings

Uses of the Digital I/O

The I/O may be utilized to receive input from external devices such as sensors, switches or PLC outputs. When con-figured as outputs, devices such as relays, solenoids, LEDs and PLC inputs may be controlled from the MDrivePlus CANopen.

Each I/O point may be individually configured as either general purpose outputs or homing (±Limit, Home) mode inputs. The goal of this I/O configuration scheme is to maximize compatibility between the MDrivePlus CANopen and standard sensors and switches.

Digital Input Functions

The MDrivePlus CANopen inputs may be interfaced to a variety of sinking or sourcing devices. An input may be con-figured to homing mode home and limit input functions. These may be configured to invert the polarity of the input.

1-39Part 1: Hardware Reference

Digital Output Functions

The MDrivePlus CANopen outputs may be interfaced to a variety of sinking or sourcing devices. An output may be configured to be a general purpose user output. These may be configured to invert the polarity of the output.

Object Dictionary Entries for the I/O

I/O ObjectsIndex Sub-Index Function

2000h

01h Configure I/O Function (0x00 = Input, 0xFF = Ouput)02h Configure I/O as Sourcing (0x00 = Sinking, 0xFF = Sourcing)03h Configure I/O as both (0x00 = See Sub 02, 0xFF = Both Sourcing and Sinking

04hConfigure I/O as Polarity In (0xFF will invert the polarity of the voltage seen on the input)

05h Configure I/O as Polarity Out (0xFF will invert the state of the output)

2002h01h Configure Input as Home02h Configure Input as + Limit03h Configure Input as – Limit

Table 1.7.3: I/O Configuration Objects

I/O Connection Examples with Equivalent Input/Output Circuit Diagrams

Input Interface Example - Switch Input Example (Sinking Input)

The following circuit example shows a switch connected between an I/O point and power ground.

Switch Input, Sinking

Internalpull-upvoltage

detectlogic

24.9k ohms

100k ohms

3.3 V

GND

Iil

65 - 160 uA

MDrivePlus Sinking Input Equivalent Circuit

IOx

Vih = 2.31 VVil = 0.99 V

Threshold (nom) = 1.5 VIil = 100 µA

Figure 1.7.4: Sinking Input Example using a Push Button Switch

1-40 MDrivePlus CANopen R122006

Input Interface Example - Switch Input Example (Sourcing Input)

The following circuit example shows a switch connected between an I/O point and a voltage supply which will source the input to perform a function.

Switch Input, Sourcing

Internalpull-upvoltage

detectlogic

40 - 135 uA

24.9k ohms

100k ohms

3.3 V

The internal pull-up voltagecannot provide output

current / voltage

IOx

GND

Iih

MDrivePlus Sourcing Input Equivalent

Vih = 2.31 VVil = 0.99 V

Threshold (nom) = 1.5 VIih = -1.24 mA

Up to+24 VDC

+

Figure 1.7.5: Sourcing Input Example using a Push Button Switch

Output Interface Example (Sinking Output)

The following circuit example shows a load connected to an I/O point that will be configured as a sinking output.

Internalpull-upvoltage

24.9k ohms

Sinking Output Equivalent Circuit

alwaysoff

switched

65-160 µA

IOx

GND

MDrivePlus

load current, sinking up to24 V

LOAD

Sinking Output

+

Diode recommended forinductive loads

Figure 1.7.6: Sinking Output Example

1-41Part 1: Hardware Reference

Output Interface Example (Sourcing Output — Plus2 Models Only)

The following circuit example shows a load connected to an I/O point that will be configured as a sourcing output.

Internalpull-upvoltage

The internal pull-up voltagecannot provide output

current / voltage

24.9k ohms

Sourcing Output Equivalent Circuit

alwaysoff

switched

IOPWR

IOx

IOGND

MDrivePlus2

LOAD

12 to24 V

+

load current, sourcing

Sourcing Output

40-135 µA

Figure 1.7.7: Sourcing Output Example

1-42 MDrivePlus CANopen R122006

Page Intentionally Left Blank

TMExcellence in Motion

Section 2.1: Introduction to the MDrivePlus CANopen DSP-402 Implementation

Section 2.2: Manufacturer Specific Objects

Section 2.3: Accessing the MDrivePlus CANopen

Section 2.4: Device Control

Section 2.5: Modes of Operation

Section 2.6: Profile Position

Section 2.7: Homing Mode

Section 2.8: Position Control Function

Section 2.9: Profile Velocity

Section 2.10: Optional Application FE

Part 2: DSP-402 Implementation

TM

CANopen

2-2 MDrivePlus CANopen R122006

Page Intentionally Left Blank

2-3Part 2: DSP-402 Implementation

Section 2.1Introduction to the MDrivePlus CANopen DSP-402 Implementation

Introduction

This document describes the Operational Modes and Objects utilized by the MDrivePlus CANopen. The MDrivePlus uses the CiA DSP402 protocol as described the the CiA document CANopen Device Profile for Drives and Motion Control V2.0B.

CAN Message Format

The MDrivePlus is compliant with CAN 2.0B Active Specification. The Data Packets follow the message format shown in Figure 2.1.1. The Figure is for reference only, please refer to the CAN 2.0B Specification.

MDrivePlus Architecture

CAN Node

Application Layer and Communications Profile DS 301

Drive Profile DSP 402

Device Control State Machine(Section XX)

Modes of Operation

ProfilePositionMode

(Section X)

HomingMode

(Section X)

ProfileVelocityMode

(Section X)

Motor

MDrivePlus

CAN Network

Figure 2.1.2: MDrivePlus Architecture

StartArbitration

(Command and Address) Control Data CRC ACK End Space

Marks Start of Message Frame

Marks Endof Message Frame

Address and Message Modifier(PDO, SDO etc.)

Data Length

Up to 8 Bytesof Data

Cyclic RedundancyChecksum

Receiver PullsBit Low

Figure 2.1.1: Message Format

2-4 MDrivePlus CANopen R122006

Device Control

The starting and stopping of the drive and several mode specific commands are executed by the state machine.

Modes of Operation

The operation mode defines the behavior of the drive. The following modes are defined in this profile:

Homing Mode

This chapter describes the various methods to find a home position (also: reference point, datum, zero point).

Profile Position Mode

The positioning of the drive is defined in this mode. Speed, position and acceleration can be limited and profiled moves using a Trajectory Generator are possible as well.

Profile Velocity Mode

The Profile Velocity Mode is used to control the velocity of the drive with no special regard of the position. It supplies limit functions and trajectory generation.

Homing Function

Position Function

Velocity Function

TrajectoryGenerator

TrajectoryGenerator

TrajectoryGenerator

Position Control Loop

Velocity Control Loop

Homing Mode (Section X)

Profile Position Mode (Section X)

Profile Velocity Mode (Section X)

Figure 2.1.3: Functional Architecture

2-5Part 2: DSP-402 Implementation

Trajectory Generator

The chosen operation mode and the corresponding parameters (objects) define the input of the Trajectory Generator. The Trajectory Generator supplies the control loop(s) with the demand values. They are generally mode specific.

Each Mode may use its own Trajectory Generator. A general description of its functionality is given in Section X, which is related to the Profile Position Mode.

Objects and the Object Dictionary

In a CANopen network, a device is controlled by writing to device parameters and reading the status of the device. This is accomplished using a pre-defined dictionary of instructions that can be written and status information that can be read. These pieces of information are called Objects.

The full set of objects are called the Object Dictionary. The Object Dictionary is the interface between the CANopen master, or controller and the MDrivePlus node on a CANopen network.

Entries within the Object Dictionary are addressed using 16-bit Indexes. In the case of simple variables (VAR) the index refer-ences the value of the variable directly. In the case of records and arrays the index addresses the entire data structure.

To allow individual elements of the data structures a sub-index is defined. The fields accessed by the sub-index may be of dif-fering data types.

Index (hex) Object0000 Not Used

0001 – 004F Static Data Types

0020 – 003F Complex Data Types

0040 – 005F Manufacturer Specific Data

0060 – 007F Device Profile Specific Static Data Types

0080 – 009F Device Profile Specific Complex Data Types

00A0 – 0FFF Reserved for Future Use

1000 – 1FFF Communications Profile Area

2000 – 5FFF Manufacturer Specific Profile

6000 – 9FFF Standardized Device Profile

A000 – BFFF Standardized Interface Profile

C000 – FFFF Reserved for Future Use

Table 2.1.1: Object Dictionary

CANContoller

Object Dictionary

I/OOutput (LED, Relay)

Input (Switch, Sensor)Analog Input

DriveLogic

Motor

MDrivePlus Node

Additional System Nodes

Figure 2.1.4: MDrivePlus CANopen Object Dictionary

2-6 MDrivePlus CANopen R122006

Object Formatting

This manual will display the Object and Entry data using the model detailed below.

Object Description

Index

XXXXhName

Index NameObject Code

VARData Type

I/U

Index

The Index is the hexadecimal number that represents the index number of the object in the CANopen Object Dictionary. With the exception of IMS Manufacturer specific objects these are defined in CiA Device Profile for Drives and Controls DSP402. The applicable objects are defined in this document as well.

Index Name

The Index Name is the general name and description of the object. With the exception of IMS Manufacturer spe-cific objects these are defined in CiA Device Profile for Drives and Controls DSP402.

Object Code

VAR - Variable

Data Type

Physically, the types consist of one or more bytes. One byte consists of 8 bits (Bit 0 to 7). Bit 0 is the LSB (Least Significant Bit). A byte can also be depicted hexadecimally (0x00 ... 0xff ).

If a data type consists of n byte, the following applies:

Data byte 1 (Byte in address x) = highest value byte

Data byte n (Byte in address x+n-1) = lowest value byte

The data coding and the value ranges for the respective data types apply, unless otherwise explicitly stated in the data description of an MDrivePlus communication object.

Integer (I) Range Length± Integer 8 –128 ... +127 1 Byte

± Integer 16 – 32,768 ... +32,767 2 Bytes

± Integer 32 – 2,147,483,647 ... +2,147,483,647 4 Bytes

Coding 2’s Complement

Unsigned (U) Range LengthUnsigned 8 0 ... 255 1 Byte

Unsigned 16 0 ... 65,535 2 Bytes

Unsigned 32 0 ... 4,294,967,295 4 Bytes

Coding Binary

Entry Description

Access

R/W/S/KPDO Mapping

Yes/NoCategory

M/ORange

I/UDefault

I/U

Access

R .......................................................................................Read AccessW .....................................................................................Write AccessS ......................................... Storable to NonVolatile Memory (NVM)K .......................................................... Key Required for Write Access

2-7Part 2: DSP-402 Implementation

PDO Mapping

Describes whether (Yes) or not (No) the Index may be mapped to a PDO (Process Data Object). If yes it may be mapped to a PDO, if No the Object must be accessed using SDO (Service Data Objects).

Category

M .......................................................................................MandatoryO ..........................................................................................Optional

Range

The range of the Index will be expressed as a ± Integer or Unsigned.

Default

The range of the Index will be expressed as a ± Integer or Unsigned.

Sub-Indexes

An object may have a number of Sub-Indexes which further define the operation of the object, such as I/O Configuration Parameters.

Sub-Indexes are formatted thus:

Sub-Index X

Description Sub-Index Functional Description

Entry Category Mandatory/Optional

Access R/W/S/K

PDO Mapping Yes/No

Value Range 1 Byte Hex

Default Value 1 Byte Hex

2-8 MDrivePlus CANopen R122006

Page Intentionally Left Blank

2-9Part 2: DSP-402 Implementation

Section 2.2Accessing The MDrivePlus CANopen

Introduction

The access from the CAN network to the drive is done through data objects.

Process Data Object (PDO)

PDOs are messages in an unconfirmed service. They are used for the transfer of real-time data to and from the drive. The transfer is fast, because it is performed with no protocol overhead what means to transport eight application data bytes in one CAN-frame. The PDOs correspond to entries in the Object dictionary.

PDO Attributes

Two Types: RPDO (Receive) and TPDO (Transmit)Up to 8 Bytes of application data per message frame. No additional protocol overhead is required.Transfer is not confirmedPDOs Require setup, SDOs map each byte of the PDO to one or more Object Entries.PDOs operate using the Producer (TPDO)/Consumer (RPDO) relationship Push-Pull model.Best for transferring data such as Device Status, Set-points etc.

Service Data Object (SDO)

A Service Data Object (SDO) reads from entries or writes to entries of the Object Dictionary. The SDO transport protocol al-lows transmitting objects of any size. The first byte of the first segment contains the necessary flow control information includ-ing a toggle bit to overcome the well-known problem of doubly received CAN frames. The next three byte of the first segment contain index and sub-index of the Object Dictionary entry to be read or written. The last four byte of the first segment are available for user data. The second and the following segments (using the very same CAN identifier) contain the control byte and up to seven byte of user data. The receiver confirms each segment or a block of segments, so that a peer-to-peer communi-cation (client/server) takes place.

SDO Attributes

Can access any Object in the Object Dictionary regardless of size.Transfer is confirmedDirect access to the Object DictionaryClient/Server relationship.Best for setting up configuration parameters.

1.2.3.4.5.6.

1.2.3.4.5.

Producer Consumer

TPDO RPDO

RPDO

RPDO

Data

Figure 2.2.1: PDO Producer – Consumer Relationship

Client

Server

ID Request

ID Request

Figure 2.2.2: SDO Client – Server Relationship

2-10 MDrivePlus CANopen R122006

PDO Mapping

The MDrivePlus CANopen allows you to map objects to PDOs to reduce the transfer application data more efficiently. By using the PDO the user can map a PDO to multiple objects (8 Data Bytes max.)

The example will show RPDO 1400h mapped to Control Word (6040h) and Target Position (607Ah).

RPDO Index Sub-Index Mapped To Index Bytes1600h 00h

1600h 01h 6040h 2

1600h 02h 607Ah 4

PDO Mapping Procedure (Consumer PDO)

PDO Mapping Example 1: Profile Position Mode – Mapping ControlWord and Target Position to RPDO1Step Action Index Sub-Index Bytes Value

1 Place MDrive in PreOperational State —

2 Turn Off RPDO1 1400h 01 — 8000 01C0h3 Set 1600h Sub-Index 00 to 0 1600h 00 — 0h

4 Map ControlWord 6040h to 1600.01h, Establish New Set Point 6040h 00 2 005Fh

5 Map target_position 607Ah to 1600.02h 607Ah 4 Desired Axis Position in Hex

6 Set 1600h.00 to 2 Max Sub-Indexes 1600h 00 — 2h7 Turn On RPDO1 1400h 00 — 0000 01C0h8 Place MDrive in Profile Position Mode 6060h 00 1 1h9 Place MDrive in Operational State

10 Send PDO to MDrive

Note: Before re-sending the PDO to the MDrive, the old set-point must be cleared by sending 6040.00h 004Fh in a second PDO or in an SDO.

MDrive CANopenNode

1601h0 = 2 (# of SubIndex Entries1 = 2 Byte ControlWord (6040h)2 = 4 Byte Commanded SetPoint (607A)

RPDO 2

BYTES 0 - 1 BYTES 2 - 5 BYTE 6 - 7ControlWord

003FhSet-Point (Position) Data

Unused

110 1 1 1

F = Operation Enabledab

s/rel

chan

ge set

immed

.

new se

t-point

Default Mapping Example - Consumer PDO 2

00 00 00 00

Index

SubIndex

ControlWord = 03FhMove to Absolute SetPoint

ControlWord = 05FhMove to Relative SetPoint

ControlWord = 00FhReset New Set-Point Bit to Prepare for Next Move

Transition BitMUST be reset to zerobetween set-points

Figure 2.2.3: PDO Mapping Showing the Default Mapping for RPDO2

2-11Part 2: DSP-402 Implementation

PDO Objects

Consumer PDO1 (RPDO1) 1400h (Object Description)

Index Name Object Code Data Type Category

1400h Receive PDO1 Parameter Record PDO Communications Parameters Mandatory

Consumer PDO1 (RPDO1) 1400h (Entry Description)

Sub-Index Description Category Access Value Range Default

00h Highest Supported Sub-Index Mandatory R/W Mfg. Specific

01h COB-ID used by PDO Mandatory R/W 0000 0200h + NODE ID

02h Transmission Type Mandatory R/W 255d

03h Inhibit Time Optional R/W

04h Reserved

05h Event Timer Optional R/W 0d

1600h (Object Description – Mapping Parameters)

Index Name Object Code Data Type Category

1600h Receive PDO1 Mapping Record PDO Mapping Mandatory

1600h (Entry Description – Mapping Parameters)

Sub-Index Description Category Access Value Range Default

00h Highest Supported Sub-Index Mandatory R/W 01h

01h 1st Application Object Mandatory R/W 6040 0010h

02h 2nd Application Object Mandatory R/W Mfg. Specific

03h 3rd Application Object Mandatory R/W Mfg. Specific

04h 4th Application Object Mandatory R/W Mfg. Specific

05h 5th Application Object Mandatory R/W Mfg. Specific

06h 6th Application Object Mandatory R/W Mfg. Specific

07h 7th Application Object Mandatory R/W Mfg. Specific

08h 8th Application Object Mandatory R/W Mfg. Specific

2-12 MDrivePlus CANopen R122006

Consumer PDO2 (RPDO2) 1401h (Object Description)

Index Name Object Code Data Type Category

1401h Receive PDO2 Parameter Record PDO Communications Parameters Optional

Consumer PDO2 (RPDO2) 1401h (Entry Description)

Sub-Index Description Category Access Value Range Default

00h Highest Supported Sub-Index Mandatory R/W 02h

01h COB-ID used by PDO Mandatory R/W0000 0300h or 8000 0000h +

NODE ID

02h Transmission Type Mandatory R/W 255d

03h Inhibit Time Optional R/W

04h Reserved

05h Event Timer Optional R/W 0d

1601h (Object Description – Mapping Parameters)

Index Name Object Code Data Type Category

1601h Receive PDO2 Mapping Record PDO Mapping Conditional, if 1401h is implemented

1601h (Entry Description – Mapping Parameters)

Sub-Index Description Category Access Value Range Default

00h Highest Supported Sub-Index Mandatory R/W 01h

01h 1st Application Object Mandatory R/W 6040 0010h

02h 2nd Application Object Optional R/W 6060 0008h

03h 3rd Application Object Optional R/W Mfg. Specific

04h 4th Application Object Optional R/W Mfg. Specific

05h 5th Application Object Optional R/W Mfg. Specific

06h 6th Application Object Optional R/W Mfg. Specific

07h 7th Application Object Optional R/W Mfg. Specific

08h 8th Application Object Optional R/W Mfg. Specific

2-13Part 2: DSP-402 Implementation

Consumer PDO3 (RPDO3) 1402h (Object Description)

Index Name Object Code Data Type Category

1402h Receive PDO3 Parameter Record PDO Communications Parameters Optional

Consumer PDO3 (RPDO3) 1402h (Entry Description)

Sub-Index Description Category Access Value Range Default

00h Highest Supported Sub-Index Mandatory R/W 02h

01h COB-ID used by PDO Mandatory R/W0000 0400h or 8000 0000h +

NODE ID

02h Transmission Type Mandatory R/W 255d

03h Inhibit Time Optional R/W

04h Reserved

05h Event Timer Optional R/W 0d

1602h (Object Description – Mapping Parameters)

Index Name Object Code Data Type Category

1601h Receive PDO3 Mapping Record PDO Mapping Conditional, if 1402h is implemented

1602h (Entry Description – Mapping Parameters)

Sub-Index Description Category Access Value Range Default

00h Highest Supported Sub-Index Mandatory R/W 01h

01h 1st Application Object Mandatory R/W 6040 0010h

02h 2nd Application Object Optional R/W 607A 0020h

03h 3rd Application Object Optional R/W Mfg. Specific

04h 4th Application Object Optional R/W Mfg. Specific

05h 5th Application Object Optional R/W Mfg. Specific

06h 6th Application Object Optional R/W Mfg. Specific

07h 7th Application Object Optional R/W Mfg. Specific

08h 8th Application Object Optional R/W Mfg. Specific

Producer PDO1 (TPDO1) 1800h (Object Description)

Index Name Object Code Data Type Category

1800h Transmit PDO1 Parameter Record PDO Communications Parameters Optional

2-14 MDrivePlus CANopen R122006

Producer PDO1 (TPDO1) 1800h (Entry Description)

Sub-Index Description Category Access Value Range Default

00h Highest Supported Sub-Index Mandatory R 02h

01h COB-ID used by PDO Mandatory R/W 4000 0180h + NODE ID

02h Transmission Type Mandatory R/W 255d

03h Inhibit Time Optional R/W

04h Reserved

05h Event Timer Optional R/W 0d

1A00h (Object Description – Mapping Parameters)

Index Name Object Code Data Type Category

1A00h Transmit PDO1 Mapping Record PDO Mapping Mandatory

1A00h (Entry Description – Mapping Parameters)

Sub-Index Description Category Access Value Range Default

00h Highest Supported Sub-Index Mandatory R/W 01h

01h 1st Application Object Mandatory R/W 6041 0010h

02h 2nd Application Object Optional R/W Mfg. Specific

03h 3rd Application Object Optional R/W Mfg. Specific

04h 4th Application Object Optional R/W Mfg. Specific

05h 5th Application Object Optional R/W Mfg. Specific

06h 6th Application Object Optional R/W Mfg. Specific

07h 7th Application Object Optional R/W Mfg. Specific

08h 8th Application Object Optional R/W Mfg. Specific

Producer PDO2 (TPDO2) 1801h (Object Description)

Index Name Object Code Data Type Category

1801h Transmit PDO2 Parameter Record PDO Communications Parameters Optional

Producer PDO2 (TPDO2) 1801h (Entry Description)

Sub-Index Description Category Access Value Range Default

00h Highest Supported Sub-Index Mandatory R —

01h COB-ID used by PDO Mandatory R/W4000 0280h or C000 0280h +

NODE ID

02h Transmission Type Mandatory R/W 255d

03h Inhibit Time Optional R/W 0d

04h Reserved

05h Event Timer Optional R/W 0d

2-15Part 2: DSP-402 Implementation

1A01h (Object Description – Mapping Parameters)

Index Name Object Code Data Type Category

1A01h Transmit PDO2 Mapping Record PDO Mapping Conditional if 1801h is implemented

1A01h (Entry Description – Mapping Parameters)

Sub-Index Description Category Access Value Range Default

00h Highest Supported Sub-Index Mandatory R/W 02h

01h 1st Application Object Mandatory R/W 6041 0010h

02h 2nd Application Object Optional R/W 6061 0008h

03h 3rd Application Object Optional R/W Mfg. Specific

04h 4th Application Object Optional R/W Mfg. Specific

05h 5th Application Object Optional R/W Mfg. Specific

06h 6th Application Object Optional R/W Mfg. Specific

07h 7th Application Object Optional R/W Mfg. Specific

08h 8th Application Object Optional R/W Mfg. Specific

Producer PDO3 (TPDO3) 1802h (Object Description)

Index Name Object Code Data Type Category

1802h Transmit PDO3 Parameter Record PDO Communications Parameters Optional

Producer PDO3 (TPDO3) 1802h (Entry Description)

Sub-Index Description Category Access Value Range Default

00h Highest Supported Sub-Index Mandatory R —

01h COB-ID used by PDO Mandatory R/W4000 0380h or C000 0380h +

NODE ID

02h Transmission Type Mandatory R/W 255d

03h Inhibit Time Optional R/W 0d

04h Reserved

05h Event Timer Optional R/W 0d

1A02h (Object Description – Mapping Parameters)

Index Name Object Code Data Type Category

1A02h Transmit PDO3 Mapping Record PDO Mapping Conditional if 1802h is implemented

2-16 MDrivePlus CANopen R122006

1A02h (Entry Description – Mapping Parameters)

Sub-Index Description Category Access Value Range Default

00h Highest Supported Sub-Index Mandatory R/W 02h

01h 1st Application Object Mandatory R/W 6041 0010h

02h 2nd Application Object Optional R/W 6064 0010h

03h 3rd Application Object Optional R/W Mfg. Specific

04h 4th Application Object Optional R/W Mfg. Specific

05h 5th Application Object Optional R/W Mfg. Specific

06h 6th Application Object Optional R/W Mfg. Specific

07h 7th Application Object Optional R/W Mfg. Specific

08h 8th Application Object Optional R/W Mfg. Specific

2-17Part 2: DSP-402 Implementation

Section 2.3Manufacturer Specific Objects

Introduction

The objects detailed in this section are IMS manufacturer specific configuration objects to configure:

I/O Type

Run/Hold Current

Factory Configuration

Accessibility Codes

R — Read

W — Write

S — Storable to Nonvolatile Memory (NVM)

K — Key Required

Object 2000h: I/O Discretes (Config)

Object Description

Index

2000hName

I/O DiscretesObject Code

VARData Type

Unsigned 8

Entry Description

Sub-Index Description Category Access PDO Mapping

Value Range Default

01h Configure I/O as Output Mandatory R/W No 0x00 — 0xFF 0x00 (1 = Output, 0 = Input)

02h Configure I/O as Sourcing Mandatory R/W No 0x00 — 0xFF0x00 (1 =

Sourcing Only, 0 = Sinking Only)

03h Configure I/O as Both Mandatory R/W No 0x00 — 0xFF

0x00 (1 = Both Source and Sink,

0 = See Sub-Index 2)

04h Configure I/O as Polarity In Mandatory R/W No 0x00 — 0xFF

0x00 (1 = Invert Polarity of Digital Inputs, 0 = See Index 60FDh

Sub-Index 1 Bits <23...16>)

05h Configure I/O as Polarity Out Mandatory R/W No 0x00 — 0xFF

0x00 (1 = Invert Polarity of Digital

I/O, 0 = See Index 60FEh Sub-Index 1 Bits <23...16>)

2-18 MDrivePlus CANopen R122006

Object 2002h: I/O Discretes (Config)

Object Description

Index

2002hName

Config Input SwitchesObject Code

VARData Type

Unsigned 8

Entry Description

Sub-Index Description Category Access PDO Mapping

Value Range Default

01h Configure I/O as Home Mandatory R/W No 0x00 — 0xFF0x00 (1 = Selects I/O# as the Home Switch)

02h Configure I/O as Positive Limit Mandatory R/W No 0x00 — 0xFF

0x00 (1 = Selects I/O# as the

Positive Limit)

03h Configure I/O as Negative Limit Mandatory R/W No 0x00 — 0xFF

0x00 (1 = Selects I/O# as the

Negative Limit)

Object 2004h: Input Filter Mask (Config)

The Input Filter Mask Object configures the device to filter the selected inputs. The operation of the Object is shown in Figure 2.3.1 below.

Object Description

Index

2004hName

Input Filter MaskObject Code

VARData Type

Unsigned 8

LSBMSB

7 6 5 4 3 2 1 0

LSBMSB

7 6 5 4 3 2 1 0

IN12 IN11 IN10 IN9 IN4 IN3 IN2 IN1

100 10000

011 00010

2004.01h Input Filter Mask

2006.01h Input Filter Time

60FDh Digital Inputs

Filter Inputs 1 & 2

Fil ter Time 100 mSec.

Figure 2.3.1: Input Filter Mask

2-19Part 2: DSP-402 Implementation

Entry Description

Sub-Index Description Category Access PDO Mapping

Value Range Default

01h Input Filter Mask Optional R/W No 00h – FFh 01h

02h Input Filter Mask Optional R/W No 00h – FFh 02h

03h Input Filter Mask Optional R/W No 00h – FFh 04h

04h Input Filter Mask Optional R/W No 00h – FFh 08h

05h Input Filter Mask Optional R/W No 00h – FFh 10h

06h Input Filter Mask Optional R/W No 00h – FFh 20h

07h Input Filter Mask Optional R/W No 00h – FFh 40h

Object 2006h: Input Filter Time (ms)

Object Description

Index

2006hName

Input Filter TimeObject Code

VARData Type

Unsigned 8

Entry Description

Sub-Index Description Category Access PDO Mapping

Value Range Default

01h Input Filter Time Optional R/W No 0 – 250 ms 0

02h Input Filter Time Optional R/W No 0 – 250 ms 0

03h Input Filter Time Optional R/W No 0 – 250 ms 0

04h Input Filter Time Optional R/W No 0 – 250 ms 0

05h Input Filter Time Optional R/W No 0 – 250 ms 0

06h Input Filter Time Optional R/W No 0 – 250 ms 0

07h Input Filter Time Optional R/W No 0 – 250 ms 0

08h Input Filter Time Optional R/W No 0 – 250 ms 0

2-20 MDrivePlus CANopen R122006

Object 2010h: Analog Input

Object Description

Index

2010hName

Analog InputObject Code

VARData Type

See Entry Desc.

Entry Description

Sub-Index Description Category Access PDO Mapping

Value Range Default Data Type

01h Analog Reading Mandatory R/W Yes 0 - 1023 0 Unsigned 16

02h Analog Input Configuration Mandatory R/W No

0=5V Scale 8=10V Scale

2=20mA Scale0 Unsigned 8

03h Input Filtering Mandatory R/W No 0 — 31 0=No Filtering Unsigned 8

Object 2020h: Software Limits as Hardware Limits

Object Description

Index

2020hName

Software Limits as Hardware

Object Code

VARData Type

Unsigned 8

Entry Description

Sub-Index Description Category Access PDO Mapping

Value Range Default

01h Limit Reached Flag Optional R/W No 00h – FFh 0

02h Limit Reached Mask Optional R/W No 00h – FFh 0

Object 2022h: Actual Position Software Limit

Object Description

Index

2022hName

Actual Position Software Limit

Object Code

VARData Type

Signed 32

Entry Description

Sub-Index Description Category Access PDO Mapping

Value Range Default

01h Actual Negative Limit Optional R/W No Full 32 Bit 80000000h

02h Actual Positive Limit Optional R/W No Full 32 Bit 7FFFFFFFh

2-21Part 2: DSP-402 Implementation

Object 2031h: Unit Options (Encoder Enable)

Object Description

Index

2031hName

Encoder EnableObject Code

VARData Type

Unsigned 8

Entry Description

Access

R/W/SPDO Mapping

NoRange

1/0Default

0

Object 2204h: Run Current Percent

Object Description

Index

2204hName

Run Current %Object Code

VARData Type

Unsigned 8

Entry Description

Access

R/W/SPDO Mapping

NoRange

1 - 100Default

25

Object 2205h: Hold Current Percent

Object Description

Index

2205hName

Hold Current %Object Code

VARData Type

Unsigned 8

Entry Description

Access

R/W/SPDO Mapping

NoRange

0 - 100Default

5

2-22 MDrivePlus CANopen R122006

Object 2211h: Position Present Point Target

Object Description

Index

2211hName

Position Present Point Target

Object Code

VARData Type

Integer 32

Entry Description

Access

RPDO Mapping

NoRange

± 231Default

0

Object 2212h: Position Final Point Target

Object Description

Index

2212hName

Position Final Point Target

Object Code

VARData Type

Integer 32

Entry Description

Access

R/W/SPDO Mapping

NoRange

± 231Default

0

Object 5001h: Configuration

The following object is set at the factory, and is not user configurable.

Object Description

Index

5001hName

Options SettingObject Code Data Type

Unsigned 32

Entry Description

Access

R/KPDO Mapping

NoRange

N/ADefault

Factory

2-23Part 2: DSP-402 Implementation

Object 5002h: ASCII Serial Number

The following object is set at the factory, and is not user configurable. It can be read by the user in the event that the con-tained data is needed for technical or application support.

Object Description

Index

5002hName

ASCII Ser. No.Object Code Data Type

Unsigned 32

Entry Description

Access

R/KPDO Mapping

NoRange

N/ADefault

Factory

Object 5003h: ASCII Part Number

The following object is set at the factory, and is not user configurable. It can be read by the user in the event that the con-tained data is needed for technical or application support.

Object Description

Index

5003hName

ASCII Part No.Object Code Data Type

Unsigned 32

Entry Description

Access

R/KPDO Mapping

NoRange

N/ADefault

Factory

Object 5004h: Motor Parameters

The following object is set at the factory, and is not user configurable. It can be read by the user in the event that the con-tained data is needed for technical or application support.

Object Description

Index

5004hName

Motor ParametersObject Code Data Type

Unsigned 32

Entry Description

Access

R/KPDO Mapping

NoRange

N/ADefault

Factory

2-24 MDrivePlus CANopen R122006

Page Intentionally Left Blank

2-25Part 2: DSP-402 Implementation

Section 2.4Device Control

Device Control

The device control function block controls all the func-tions of the MDrivePlus CANopen and is divided into to sections:

1. Control of the State Machine

2. Operation Mode

Control and Status words

Controlword (Object Index 6040h) controls the state and operation modes of the MDrivePlus CANopen. Statusword (Object Index 6041h) returns the status of the MDrivePlus CANopen.

Operation Modes

The MDrivePlus CANopen supports the Profile Position and Profile Velocity operation modes.

State Machine

The State Machine describes the status and control sequence of the MDrivePlus CANopen and specifies the Initialization status, the Pre-Operational status, the Operational status, and the Stopped status. See Figure 1.2 for a diagrammatic represen-tation of State machine states and state transitions.

State Machine StatesState Status Description

Not Ready to Switch On Low Level Power Applied. The drive is being initialized or is running a self test. A brake, if present, is applied in this state. The drive function is disabled.

Switch On Disabled Drive Initialization is complete.The drive parameters have been set up.Drive parameters may be changed.High Voltage may not be applied to the drive.The drive function is disabled.

Ready To Switch On High Voltage may be applied to the drive.The drive parameters may be changed.The drive function is disabled.

Switched On High Voltage has been applied to the drive.The Power Amplifier is ready.The drive parameters may be changed.The drive function is disabled.

Operation Enable No faults have been detected.The drive function is enabled and power is applied to the motor.The drive parameters may be changed.(This corresponds to normal operation of the drive.)

Quick Stop Active The drive parameters may be changed.The Quick Stop function is being executed.The drive function is enabled and power is applied to the motor.

NOTE: If the ‘Quick-Stop-Option-Code’ is switched to 5 (Stay in Quick-Stop), the MDrivePlus cannot exit the Quick-Stop-State, but you can transmit to ‘Operation Enable’ with the command ‘Enable Operation’.

Fault Reaction Active

SUPPORT UNDER DEVELOPMENT

The drive parameters may be changed.A non-fatal fault has occurred in the drive.The Quick Stop function is being executed.The drive function is enabled and power is applied to the motor.

Fault

SUPPORT UNDER DEVELOPMENT

The drive parameters may be changed.A fault has occurred in the drive.The drive function is disabled.

DEVICE CONTROL

State Machine

Controlword 6040h

Profile Position

Profile Velocity

Modes of Operation 6060h

Statusword6041h

Figure 2.4.1: Device Control

Table 2.4.1: State Machine States

2-26 MDrivePlus CANopen R122006

State Machine TransitionsTransition Number From State To State Event/Action

0 Start Not Ready To Switch On

Event: Reset.

Action: The drive self-tests and/or self-initializes.

1 Not Ready To Switch On Switch On Disabled

Event: The drive has self-tested and/or initialized successfully.

Action: Activate communication and process data monitoring

2 Switch On Disabled Ready to Switch OnEvent: ‘Shutdown’ command received from host.

Action: None.

3 Ready to Switch On Switched OnEvent: ‘Switch On’ command received from host.

Action: The power section is switched on if it is not already switched on.

4 Switched On Operation EnableEvent: ‘Enable Operation’ command received from host.

Action: The drive function is enabled.

5 Operation Enable Switched OnEvent: ‘Disable Operation’ command received from

host.

Action: The drive operation will be disabled.

6 Switched On Ready to Switch OnEvent: ‘Shutdown’ command received from host.

Action: The power section is switched off.

7 Ready to Switch On Switch On DisabledEvent: ‘Quick stop’ command received from host.

Action: None

8 Operation Enable Ready to Switch OnEvent: ‘Shutdown’ command received from host.

Action:The power section is switched off immediately, and the motor is free to rotate if unbraked

9 Operation Enable Switch On DisabledEvent: ‘Disable Voltage’ command received from host.

Action:The power section is switched off immediately, and the motor is free to rotate if unbraked

10 Switched On Switch On Disabled

Event:‘Disable Voltage’ or ‘Quick Stop’ command received from host.

Action:The power section is switched off immediately, and the motor is free to rotate if unbraked

11 Operation Enable Quick Stop ActiveEvent: ‘Quick Stop’ command received from host.

Action: The Quick Stop function is executed.

12 Quick Stop Active Switch On DisabledEvent:

‘Quick Stop’ is completed or ‘Disable Voltage’ command received from host. This transition is possible, if the Quick-Stop-Option-Code is different 5 (Stay in Quick-Stop)

Action: The power section is switched off.

13 All States Fault Reaction Active

Event: A fault has occured in the drive.

Action: Execute appropriate fault reaction.

14 Fault Reaction Active Fault

Event: Fault reaction is completed.

Action:The drive function is disabled, the power section may be switched off.

15 Fault Switch On Disabled

Event: ‘Fault Reset’ command is recieved from the host.

Action:

A reset of the fault condition is carried out if no fault exists currently on the drive. After leaving the ‘Fault’ state the Bit ‘Fault Reset’ of the controlword has to be cleared bythe host.

16 Quick Stop Active Operation EnableEvent:

‘Enable Operation’ command received from host. This transition is possible if the Quick-Stop-Option-Code is 5,6,7 or 8.

Action: The drive function is enabled

Table 2.4.2: State Machine Transitions

2-27Part 2: DSP-402 Implementation

Power Disabled

Power Enabled

Fault

Start

Not Ready to Switch On

Fault Reaction Active

Fault

Switch On Disabled

Ready To Switch On

0

1

27

45

6

Switched On

Operation Enable Quick Stop Active

9 38

1611

10 12

14

13

15

Controlword 6040h

Internal Event

Statusword6041h

SUPPORT FOR FAULT STATES UNDER DEVELOPMENT

Figure 2.4.2: State Machine States/Transitions Block Diagram

Notes On State Transitions

Commands directing a change in state are processed completely and the new state achieved before additional state change commands are processed.

Transitions 0 and 1 occur automatically at drive power-on or reset. All other state changes must be directed by the host.

Drive function disabled indicates that no current is being supplied to the motor.

Drive function enabled indicates that current is available for the motor and profile position and profile velocity reference values may be processed.

2-28 MDrivePlus CANopen R122006

Object 6040h — Controlword

Ths controlword is a mandatory, unsigned 16 bit number containing bits for controlling the state and operating modes for the MDrivePlus CANo-pen.

Object Description

Index

6040hName

ControlwordObject Code

VARData Type

Unsigned16

Entry Description

Access

r/wPDO Mapping

n/aRange

Unsigned16Default

n/a

Data Description

MSB

15 11 10 9 8

LSB

7 6 4 3 2 1 0

Manufacturer Specific

Reserved Halt Fault Reset

Operation Mode Specific

Enable Operation

Quick Stop

Enable Voltage

Switch On

O O O M O M M M M

O=Optional M= Mandatory

Device Control Command Bit Patterns (Bits 0-3 and 7)

Command

Bit of Controlword (6040h)State

TransitionsFault Reset (Bit 7)

Enable Operation

(Bit 3)Quick Stop

(Bit 2)Enable Voltage (Bit 1)

Switch On (Bit 0)

Shutdown 0 X 1 1 0 2, 6, 8

Switch On 0 0 1 1 1 3

Switch On 0 1 1 1 1 3

Disable Voltage 0 X X 0 X 7, 9, 10, 12

Quick Stop 0 X 0 1 X 7,10, 11

Disable Operation 0 0 1 1 1 5

Enable Operation 0 1 1 1 1 4, 16

Fault Reset X X X X 15

*The MDrivePlus CANopen executes the functionality of Switched On

** The MDrivePlus CANopen will do nothing

Table 2.4.3: MDrivePlus CANopen Device Control Commands (Bits Marked X are not relevant)

Device Operation Mode Bit Patterns (Bits 4-6 and 8)

Operation ModeControlword 6040h Bits 4-6, 8

Bit 8 Bit 6 Bit 5 Bit 4Profile Position Halt Absolute/Relative Change Set Immediately New Setpoint

Profile Velocity Halt Reserved Reserved Reserved

Homing* Halt Homing Operation Start Reserved Reserved

*Homing Mode is currently under development for the MDrivePlus CANopen

Table 2.4.4: MDrivePlus CANopen Operation Modes

2-29Part 2: DSP-402 Implementation

Object 6041h — Statusword

The Statusword is a read-only object that indicates the current state of the drive, no bits are latched. Statusword consists of bits for:

The current state of the drive.

The operating state of the mode.

Manufacturer Specific options.

Object Description

Index

6041hName

StatuswordObject Code

VARData Type

Unsigned16

Entry Description

Access

roPDO Mapping

n/aRange

Unsigned16Default

n/a

Data Description

Bits 0-3 and 5-6

The following bits indicate the status of the MDrivePlus CANopen.

StatusBit of Statusword (6041h)

5 6 4* 3 2 1 0Not Ready to Switch On 0 X X 0 0 0 0

Switch On Disabled 1 X X 0 0 0 0

Ready to Switch On 0 1 X 0 0 0 1

Switched On 0 1 X 0 0 1 1

Operation Enabled 0 1 X 0 1 1 1

Quick Stop Active 0 0 X 0 1 1 1

Fault Reaction Active 0 X X 1 1 1 1

Fault 0 X X 0 0 0 0

X=Irrelevant Bit State, *Bit 4 shown for illustration purpose only.

Table 2.4.5: Device State Bits for Statusword

Statusword (6041h) Bits

LSBMSB

Ready to Switch On

Switched On

Operation Enabled

Fault

Voltage Enabled

Quick Stop Active

Switch On Disabled

Warning

Manufacturer Specific

Manufacturer Specific

Manufacturer Specific

Remote

Target Reached

Internal Limit Active

Operation Mode Specific

Operation Mode Specific

0M

15O

14O

12O

11M

10M

9M

8O

7O

6M

5M

4M

3M

2M

1M

13O

Figure 2.4.3: Statusword Bits

2-30 MDrivePlus CANopen R122006

Bit 4: Voltage Enabled

The Disable Voltage request is active when the voltage_disabled bit is cleared to 0.

Bit 5: Quick Stop Active

When reset, this bit indicates that the drive is reacting on a quick stop request. Bits 0, 1 and 2 of the statusword must be set to 1 to indicate that the drive is capable to regenerate. The setting of the other bits indicates the status of the drive (e.g. the drive is performing a quick stop as result of a reaction to a non-fatal fault. The fault bit is set as well as bits 0, 1 and 2).

Bit 7: Warning

A drive warning is present if bit 7 is set. The cause means no error but a state that has to be mentioned, e.g. temperature limit, job refused. The status of the drive does not change. The cause of this warning may be found by reading the fault code parameter. The bit is set and reset by the device.

Bit 8: Manufacturer Specific

This bit may be used by a drive manufacturer to implement any manufacturer specific functionality.

Bit 9: Remote

If bit 9 is set, then parameters may be modified via the CAN-network, and the drive executes the content of a command message. If the bit remote is reset, then the drive is in local mode and will not execute the command message. The drive may transmit messages containing valid actual values like a position_actual_value, depending on the actual drive

configuration. The drive will accept accesses via service data objects (SDOs) in local mode.

Bit 10: Target Reached

If bit 10 is set by the drive, then a setpoint has been reached (torque, speed or position depending on the modes_of_op-eration). The change of a target value by software alters this bit. If quickstop_option_code is 5, 6, 7 or 8, this bit must be set, when the quick stop operation is finished and the drive is halted. If Halt occured and the drive has halted then this bit is set too.

Bit 11: Internal Limit Active

This bit set by the drive indicates, that an internal limitation is active (e.g. position_range_limit).

Bits 12-13: Operation Mode Specific

Operation ModeStatusword 6041h

Bit 12 Bit 13Profile Position Set Point

AcknowledgeFollowing Error

Profile Velocity Speed Max Slippage Error

Homing* Homing Attained Homing Error

*Homing Mode is currently under development for the MDrivePlus CANopen

Table 2.4.6: MDrivePlus CANopen Operation Mode Status

Bit 14-15: Manufacturer Specific

These bits may be used by a drive manufacturer to implement any manufacturer specific functionality.

2-31Part 2: DSP-402 Implementation

Section 2.5Modes of Operation

Object 6060h — Modes of Operation

The performance of the MDrivePlus CANopen depends on the activated Modes of Operation. It is not possible to operates the modes in parallel. The user must select a mode to operate in. An example of exclusive functions are Profile Velocity and Profile Position modes.

The MDrivePlus allows the user to switch dynamically from operation mode to operation mode.

The IMS MDrivePlus CANopen supports the following Modes of Operation:

Profile Position

Profile Velocity

Homing Mode

Object Description

Index

6060hName

Mode of OperationObject Code

VARData Type

±Integer8

Entry Description

Access

rwPDO Mapping

n/aRange

±Integer8Default

n/a

Data Description

The actual mode is reflected in the modes_of_operation_display (index 6061h), and not in the modes of operation (index 6060h). It may be changed by writing to modes of operation.

OperationMode

Function

Profile Velocity Mode

Profile Position Mode

Homing Mode

Mode of Operation(6060h)

Mode of Operation Display(6061h)

Figure 2.5.1: Mode of Operation

2-32 MDrivePlus CANopen R122006

Mode of Operation (6060h)

Manuf. Specific Modes

Reserved

Reserved

Interpolated Position Mode

Reserved

Profile Position Mode

Profile Velocity Mode

Homing Mode

Velocity Mode

Profile Torque Mode

-1...-1288...127 01234567

Gray Text modes unsupported by MDrivePlus CANopen

Figure 2.5.2: Modes of Operation

Object 6061h — Modes of Operation Display

The Modes of Operation Display shows the current mode of operation. The meaning of the returned value corresponds to that of the Modes of Operation option code (index 6060h)

Object Description

Index

6061hName

Mode of Operation DisplayObject Code

VARData Type

±Integer8

Entry Description

Access

rPDO Mapping

n/aRange

±Integer8Default

n/a

Data Description

Same as Object 6060h Modes of Operation.

Object 6502h — Supported Drive Modes

This object shall provide information on the supported drive modes.

Object Description

Index

6061hName

Mode of Operation DisplayObject Code

VARData Type

±Integer8

Entry Description

Access

rPDO Mapping

n/aRange

±Integer8Default

n/a

Data Description

Same as Object 6060h Modes of Operation.

2-33Part 2: DSP-402 Implementation

LSBMSB

31 16 15 10 9 8 7 6 5 4 3 2 1 0

Profile Position

Velocity

Profile Velocity

Profile Torque

Reserved

Homing

Interpolated Position

Cyclic Sync Position

Cyclic Sync Velocity

Cyclic Sync Torque

Reserved

MFG Specific

111 0000000

1 = Mode Supported 0 = Mode Not Supported

Figure 2.5.3: Supported Drive Modes

2-34 MDrivePlus CANopen R122006

Page Intentionally Left Blank

2-35Part 2: DSP-402 Implementation

Section 2.6Profile Position Mode

General Information

A target_position is applied to the Trajectory Generator. It is generating a position_demand_value for the position control loop described in the Position Control Function Section. These two function blocks are optionally controlled by individual parameter sets.

At the input to the Trajectory Generator, parameters may have optional limits applied before being normalized to internal units. Normalized parameters are denoted with an asterisk. The simplest form of a Trajectory Generator is just to pass through a target_position and to transform it to a position_demand_value* with internal units (increments) only.

For the IMS MDrivePlus CANopen the following values apply:

target_position — microsteps

profile_velocity — microsteps/sec

end_velocity — microsteps/sec

profile_acceleration — microsteps/sec2

profile_deceleration — microsteps/sec2

position_demand_value — microsteps

Input Data Description

Operating Mode DescriptionProfile Position target_position, profile_velocity, end_velocity, profile_

acceleration, profile_deceleration

Output Data Description

Operating Mode DescriptionProfile Position position_demand_value

Trajectory Generator

Position target_position (607Ah)

profile_velocity (6081h)end_velocity (6082h)

profile_acceleration (6083h)profile_deceleration (6084h)

Velocity

Acceleration

Multiplier

polarity (607Eh)

position_demand_value (60FCh)

Figure 2.6.1: Trajectory Generator Block Diagram

Note that the MDrivePlus CANopen is fixed at 256 microsteps/full motor step or 51,200 microsteps per motor revolution.

2-36 MDrivePlus CANopen R122006

Functional Description

There are two different ways to apply target_positions to a drive, are supported by this device profile.

Set of set-points:

After reaching the target_position the drive unit immediately processes the next target_position which results in a move where the velocity of the drive normally is not reduced to zero after achieving a set-point.

2. Single set-point:

After reaching the target_position the drive unit signals this status to a host computer and then receives a new set-point. After reaching a target_position the velocity normally is reduced to zero before starting a move to the next set-point.

The two modes are controlled by the timing of the bits new_set-point and change_set_immediately in the controlword and set-point_acknowledge in the statusword.

These bits allow to set up a request-response mechanism in order to prepare a set of set-points while another set still is pro-cessed in the drive unit. This minimizes reaction times within a control program on a host computer.

Figure 2.6.2, Figure 2.6.3 and Figure 2.6.4 illustrate the difference between the “set of set-points” mode and the “single set-point” mode. The initial status of the bit change_set_immediately in the controlword determines which mode is used. Trapezoidal moves are used as this is the only motion_profile_type the MDrivePlus CANopen supports.

If the bit change_set_immediately is “0” (shaded area in Figure 3.2) a single set-point is expected by the drive . After data is applied to the drive, a host signals that the data is valid by changing the bit new_setpoint to “1” in the controlword . The drive responds with set-point_acknowledge set to “1” in the statusword after it recognized and buffered the new valid data. Now the host may release new_setpoint and afterwards the drive signals with set-point_acknowledge equal “0” its ability to accept new data again . In Figure 3.3 this mechanism results in a velocity of zero after ramping down in order to reach a target_position X1.at T1. After signalling to the host, that the set-point is reached like described above, the next target_posi-tion X2 is processed at T2 and reached at T3.

1.

Bit 4: new_set-point

Bit 12: set-point_acknowledge

Bit 5: change_set_immediately

data

0 = Single Set-Point 1 = Set of Set-points1

6

6

1

5

5

3

3

4

4

2

2

Single Set-Point is Expected by MDrivePlus

Host Signals “Data is Valid” new_set-point = 1

MDrivePlus responds by setting Bit 12, set-point_acknowledge = 1

MDrivePlus responds by setting Bit 12, set-point_acknowledge = 0MDrivePlus is ready to accept new data

Once Data is Validated, Host may release new_set-point

Indicates state Change of change_set_immediately to 1

ControlWord(6040h)

StatusWord(6041h)

Figure 2.6.2: Set-Point Transmission from Host Computer

2-37Part 2: DSP-402 Implementation

V2

V1

T0 T1 T2 T3

Velocity

Time

target_position X1

target_position X2

Figure 2.6.3: Single Set-Point Mode (Move After a Move) 6040h Bit 5=0

With change_set_immediately set to “1” , symbolized by the clear area in Figure 2.6.2, the host advises the drive to apply a new set-point immediately after reaching the last one. The relative timing of the other signals is unchanged. This behavior causes the drive to already process the next set-point X2 and to keep its velocity when it reaches the target_position X1 at T1. Then drive moves immediately to the already calculated next target_position X2.

V2

V1

T0 T1 T2

Velocity

Time

Second target_positiongiven - immediate response

target_position reached

Figure 2.6.4: Set of Setpoints (Move on a Move) 6040h Bit 5=1

Controlword (6040h) of Profile Position Mode

15 9 8 7 6 5 4 3 0

See 1.3 Halt See 1.3 abs/rel Change Set Immediately New Set-Point See 1.3

MSB LSB

Bit Name Value Description

4 New Set Point0 Does not assume target position

1 Assume target position

5 Change Set Immediately

0 Finish the actual positioning and then start the next positioning

1 Interrupt the actual positioning and start the next positioning

6 abs/rel0 Target position is an absolute value

1 Target position is a relative value

8 Halt0 Execute positioning

1 Stop motion with profile deceleration

Table 2.6.1: Profile Position Mode Bits of Controlword

2-38 MDrivePlus CANopen R122006

Statusword (6041h) of Profile Position Mode

9 14 13 12 11 10 9 0

See 1.4 Following Error Set-Point Acknowledge See 1.4 Target Reached See 1.4

MSB LSB

Bit Name Value Description

10 Target Reached

0 Halt=0: Target position not reached Halt=1: Axis decelerating

1 Halt=0: Target position reached Halt=1: Axis velocity is 0

12 Set-Point Acknowledge

0 Trajectory generator has not assumed the positioning values yet

1 Trajectory generator has assumed the positioning values

13 Following Error0 No following error

1 Following error

Table 2.6.2: Profile Position Mode Bits of Statusword

Object 607Ah — Target Position

The Target Position is the position that the drive should move to in position profile mode using the MDrivePlus CANopen parameters such as velocity, acceleration, deceleration, motion profile type etc. The target position is given in terms of 51,200 units per motor shaft revolution. The target position will be interpreted as absolute or relative depending on the absolute relative flag (bit 6) in the controlword.

Object Description

Index

607AhName

Target PositionObject Code

VARData Type

Integer 32

Entry Description

Access

rwPDO Mapping

PossibleRange

Integer 32Default

n/a

Object 6081h — Profile Velocity

The profile velocity is the velocity normally attained at the end of the acceleration ramp during a profiled move and is valid for both directions of motion. The profile velocity is given in steps per second..

Object Description

Index

6081hName

Profile VelocityObject Code

VARData Type

Integer 32

Entry Description

Access

rwPDO Mapping

PossibleRange

Integer 32Default

n/a

2-39Part 2: DSP-402 Implementation

Object 6082h — End Velocity

The end velocity defines the velocity which the drive must have on reaching the target position. Normally, the drive stops at the target position, i.e. the end_velocity = 0. The end velocity is given in the same units as profile velocity.

Object Description

Index

6082hName

End VelocityObject Code

VARData Type

Integer 32

Entry Description

Access

rwPDO Mapping

PossibleRange

Integer 32Default

n/a

Object 6083h — Profile Acceleration

Profile Acceleration is given in steps/sec2

Object Description

Index

6083hName

Profile AccelerationObject Code

VARData Type

Integer 32

Entry Description

Access

rwPDO Mapping

PossibleRange

Integer 32Default

n/a

Object 6084h — Profile Deceleration

Profile Deceleration is given in steps/sec2

Object Description

Index

6084hName

Profile DecelerationObject Code

VARData Type

Integer 32

Entry Description

Access

rwPDO Mapping

PossibleRange

Integer 32Default

n/a

2-40 MDrivePlus CANopen R122006

Object 6086h — Motion Profile Type

The Motion Profile Type is used to select the type of motion profile used to perform a move. The MDrivePlus CANopen is fixed at Value 0: Linear Ramp (Trapezoidal Profile)

Object Description

Index

6086hName

Motion Profile TypeObject Code

VARData Type

Integer 16

Entry Description

Access

rwPDO Mapping

PossibleRange

Integer 16Default

0

2-41Part 2: DSP-402 Implementation

Section 2.7Homing Mode

General Information

This chapter describes the method by which a drive seeks the home position (also called, the datum, reference point or zero point). There are various methods of achieving this using limit switches at the ends of travel or a home switch (zero point switch) in mid-travel, most of the methods also use the index (zero) pulse train from an incremental encoder.

Input Data Description

The user can specify the speeds and the method of homing. There are two homing_speeds; in a typical cycle the faster speed is used to find the home switch and the slower speed is used to find the index pulse. The manufacturer is allowed some discre-tion in the use of these speeds as the response to the signals may be Dependent upon the hardware used.

Output Data Description

There is no output data except for those bits in the statusword which return the status or result of the homing process and the demand to the position control loops.

Internal States

There is only one internal state called homing which is reflected in the bits of the statusword.

Controlword (6040h) of Profile Position Mode

15 9 8 7 6 5 4 3 0

See 1.3 Halt See 1.3 Reserved Homing Operation Start See 1.3

MSB LSB

Bit Name Value Description

4 Homing Operation Start

0 Homing Mode Inactive

0 1 Start Homing Mode

1 Homing Mode Active

1 0 Interrupt Homing Mode

8 Halt0 Execute the instruction of bit 4

1 Stop motion

Table 2.7.1: Homing Mode Bits of Controlword

control_word

status_word

position_demand_value

homing_method

homing_speed

Homing

Figure 2.7.1: The Homing Function

2-42 MDrivePlus CANopen R122006

Statusword (6041h) of Homing Mode

9 14 13 12 11 10 9 0

See 1.4 Homing Error Homing Attained See 1.4 Target Reached See 1.4

MSB LSB

Bit Name Value Description

10 Target Reached

0 Halt=0: Home position not reached Halt=1: Axis decelerating

1 Halt=0: Home position reached Halt=1: Axis velocity is 0

12 Homing Attained0 Homing Mode not yet complete

1 Homing Mode carried out successfully

13 Following Error0 No homing error

1 Homing error

Table 2.7.2: Homing Mode Bits of Statusword

Homing Offset (607Ch)

This object shall indicate the configured difference between the zero position for the application and the machine home position (found during homing). During homing the machine home position is found and once the homing is completed the zero position is offset from the home position by adding the home offset to the home position. All subsequent absolute moves shall be taken relative to this new zero position. This is illustrated in Figure 2.7.2. If this object is not implemented then the home offset shall be regarded as zero. The value of this object shall be given in micro steps. Negative values shall indicate the opposite direction.

Object Description

Index

607ChName

Homing OffsetObject Code

VARData Type

Integer 32

Entry Description

Access

rwPDO Mapping

PossibleRange

Integer 32Default

0d

0 HOMEOFFSET (Steps)

Figure 2.7.2: Home Offset

2-43Part 2: DSP-402 Implementation

Axis Direction1

Index Pulse

Negative Limit Switch

Figure 2.7.3: Homing on the Negative Limit and Index Pulse

Homing Method (6098h)

The homing method object determines the method that will be used during homing.

Object Description

Index

6098hName

Homing MethodObject Code

VARData Type

± Integer 8

Entry Description

Access

rwPDO Mapping

PossibleRange

± Integer 8Default

0

Data Description

Value Description-128 — -1 Manufacturer Specific

0 No Homing Operation Required

1 — 35 Homing Methods 1 through 35 (See Functional Description)

36 — 128 Reserved

Functional Description of Homing Methods

Method 1: Homing on the Negative Limit Switch and Index Pulse

Using this method the initial direction of movement is leftward if the negative limit switch is inactive (here shown as low). The home position is at the first index pulse to the right of the position where the negative limit switch becomes inactive.

2-44 MDrivePlus CANopen R122006

Method 2: Homing on the Positive Limit Switch and Index Pulse

Using this method the initial direction of movement is rightward if the positive limit switch is inactive (here shown as low). The position of home is at the first index pulse to the left of the position where the positive limit switch becomes inactive.

Methods 3 and 4: Homing on the Positive Home Switch and Index Pulse

Using methods 3 or 4 the initial direction of movement is dependent on the state of the home switch. The home position is at the index pulse to either to the left or the right of the point where the home switch changes state. If the initial position is sited so that the direction of movement must reverse during homing, the point at which the reversal takes place is anywhere after a change of state of the home switch.

Methods 5 and 6: Homing on the Negative Home Switch and Index Pulse

Using methods 5 or 6 the initial direction of movement is dependent on the state of the home switch. The home position is at the index pulse to either to the left or the right of the point where the home switch changes state. If the initial position is sited so that the direction of movement must reverse during homing, the point at which the reversal takes place is anywhere after a change of state of the home switch.

Axis Direction

2

Index PulsePositive Limit Switch

Figure 2.7.4: Homing on the Positive Limit and Index Pulse

3

3

Index PulseHome Switch

4

4

Figure 2.7.5: Homing on the Positive Home Switch and Index Pulse

2-45Part 2: DSP-402 Implementation

6

6

Index PulseHome Switch

5

5

Figure 2.7.6: Homing on the Negative Home Switch and Index Pulse

Methods 7 to 14: Homing on the Home Switch and Index Pulse

These methods use a home switch which is active over only portion of the travel, in effect the switch has a ‘momentary’ action as the axle`s position sweeps past the switch.

Using methods 7 to 10 the initial direction of movement is to the right, and using methods 11 to 14 the initial direction of movement is to the left except if the home switch is active at the start of the motion. In this case the initial direction of motion is Dependent on the edge being sought. The home position is at the index pulse on either side of the rising or falling edges of the home switch, as shown in the following two diagrams. If the initial direction of movement leads away from the home switch, the drive must reverse on encountering the relevant limit switch.

7 9

9

9

7

7

10

Home Switch

Positive Limit Switch

8 10

8

8 10

Index Pulse

Figure 2.7.7: Homing on the Home Switch and Index Pulse - Positive Initial Move

2-46 MDrivePlus CANopen R122006

Home Switch

Negative Limit Switch

Index Pulse

14

14

13

12

11

11

11

12

12

13

13

14

Figure 2.7.8: Homing on the Home Switch and Index Pulse - Negative Initial Move

Methods 15 and 16: Reserved

These methods are reserved for future expansion of the homing mode.

Methods 17 to 30: Homing without an Index Pulse

These methods are similar to methods 1 to 14 except that the home position is not dependent on the index pulse but only Dependent on the relevant home or limit switch transitions. For example methods 19 and 20 are similar to methods 3 and 4 as shown in the following diagram.

Methods 31 and 32: Reserved

These methods are reserved for future expansion of the homing mode.

Home Switch

19

20

19

20

Figure 2.7.9: Homing without an Index Pulse

2-47Part 2: DSP-402 Implementation

Methods 33 and 34: Homing on an Index Pulse

Using methods 33 or 34 the direction of homing is negative or positive respectively. The home position is at the index pulse found in the selected direction.

Method 35: Homing on the Current Position

In method 35 the current position is taken to be the home position.

Homing Speeds (6099h)

Object Description

Index

6099hName

Homing SpeedsObject Code

VARData Type

Unsigned 32

Entry Description

Sub-Index Description Category Access PDO Mapping

Value Range Default

01h Number of Entries Mandatory RO No 2 2

02h Speed during search for switch Mandatory R/W Possible Unsigned 32 0

03h Speed during search for zero Mandatory R/W Possible Unsigned 32 0

34

33

Index Pulse

Figure 2.7.10: Homing on the Index Pulse

2-48 MDrivePlus CANopen R122006

Page Intentionally Left Blank

2-49Part 2: DSP-402 Implementation

Section 2.8Position Control Function

General Information

In this chapter, all parameters are described which are necessary for a closed loop position control. The control loop is fed with the position_demand_value as one of the outputs of the Trajectory Generator and with the output of the position detec-tion unit (position_actual_value) like a resolver or encoder as input parameters.

Object 6062h — Position Demand Value

This object shall provide the demanded position value. The value shall be given in motor steps.

Object Description

Index

6062hName

Position Demand ValueObject Code

VARData Type

Integer 32

Entry Description

Access

rPDO Mapping

n/aRange

Integer 32Default

n/a

Object 6063h — Position Actual Value Internal

This object shall provide the actual value of the position measurement device, which shall be one of the two input values of the closed-loop position control

Object Description

Index

6063hName

Position Actual Value*Object Code

VARData Type

Integer 32

Entry Description

Access

rPDO Mapping

n/aRange

Integer 32Default

n/a

Object 6064h — Position Actual Value

This object represents the actual value of the position measurement device microsteps.

Object Description

Index

6064hName

Position Actual ValueObject Code

VARData Type

Integer 32

Entry Description

Access

rPDO Mapping

n/aRange

Integer 32Default

n/a

2-50 MDrivePlus CANopen R122006

Object 6065h — Following Error Window

This object shall indicate the configured range of tolerated position values symmetrically to the position demand value. If the position actual value is out of the following error window, a following error occurs. A following error may occur when a drive is blocked, unreachable profile velocity occurs, or at wrong closed-loop coefficients. The value shall be given in user defined position units. If the value of the following error window is FFFF FFFFh, the following control shall be switched off.

Object Description

Index

6065hName

Following Error WindowObject Code

VARData Type

Unsigned 32

Entry Description

Access

rPDO Mapping

n/aRange

Unsigned 32Default

n/a

Object 6066h — Following Error Timeout

This object shall indicate the configured time for a following error condition, after that the bit 13 of the statusword shall be set to 1. The reaction of the drive when a following error occurs is manufacturer-specific. The value shall be given in milliseconds.

Object Description

Index

6066hName

Following Error TimeoutObject Code

VARData Type

Unsigned 32

Entry Description

Access

rPDO Mapping

n/aRange

Unsigned 32Default

n/a

Object 6068h — Position Window Time

This object shall indicate the configured time, during which the actual position within the position window is measured. The value shall be given in milliseconds.

Object Description

Index

6068hName

Position Window TimeObject Code

VARData Type

Unsigned 16

Entry Description

Access

rPDO Mapping

n/aRange

Unsigned 16Default

Mfg-Specific

2-51Part 2: DSP-402 Implementation

Section 2.9Profile Velocity Mode

Controlword (6040h) of Profile Velocity Mode

15 9 8 7 6 3 0

See 1.3 Halt See 1.3 Reserved See 1.3

MSB LSB

Bit Name Value Description

8 Halt0 Execute the Motion

1 Stop axis

Table 2.8.1: Profile Velocity Mode Bits of Controlword

Statusword (6041h) of Profile Velocity Mode

9 14 13 12 11 10 9 0

See 1.4 Max Slippage Error Speed See 1.4 Target Reached See 1.4

MSB LSB

Bit Name Value Description

10 Target Reached

0 Halt=0: Target position not reached Halt=1: Axis decelerating

1 Halt=0: Target position reached Halt=1: Axis velocity is 0

12 Speed0 Speed is not equal to 0

1 Speed is equal 0

13 Max Slippage Error

0 Maximum slippage not reached

1 Maximum slippage reached

Table 2.8.2: Profile Velocity Mode Bits of Statusword

Object 606Ch — Velocity Actual Value

This object shall provide the actual velocity value derived either from the velocity sensor or the position sensor. The value shall be given in microsteps per second.

Object Description

Index

606ChName

Velocity Actual ValueObject Code

VARData Type

Integer 32

Entry Description

Access

roPDO Mapping

n/aRange

Integer 32Default

n/a

2-52 MDrivePlus CANopen R122006

Object 60FFh — Target Velocity

The Target Velocity is the input to the trajectory generator and the value is given in microsteps/second.

Object Description

Index

60FFhName

Target VelocityObject Code

VARData Type

Integer 32

Entry Description

Access

rwPDO Mapping

n/aRange

Integer 32Default

n/a

Object 60F8h — Maximum Slippage

This object shall indicate the configured maximal slippage of an asynchronous motor. When the max slippage has been reached, the corresponding bit 13 max slippage error in the statusword shall be set to 1. The reaction of the drive device, when the max slippage error occurs, is manufacturer-specific. This value shall be given in umicrosteps.

Object Description

Index

60FFhName

Maximum SlippageObject Code

VARData Type

Integer 32

Entry Description

Access

rwPDO Mapping

n/aRange

Integer 32Default

Mfg-Specific

2-53Part 2: DSP-402 Implementation

Section 2.10Optional Application FE (General I/O)

Object 60FDh — Digital Inputs

This object provides for digital inputs.

Object Description

Index

60FDhName

Digital InputsObject Code

VARData Type

Unsigned 32

Entry Description

Access

roPDO Mapping

n/aRange

Unsigned 32Default

n/a

LSBMSB

31 1623 15 4 3 2 1 0

Negative Limit Switch

Positive Limit Switch

Home Switch

Interlock (Not Supported)

Reserved

Inputs 12, 11, 10, 9, 4, 3, 2, 1

0b = Switched Off1b = Switched On

Figure 2.10.1: Object 60FD Structure

2-54 MDrivePlus CANopen R122006

Object 60FEh — Digital Outputs

This object provides for digital outputs.

Object Description

Index

60FEhName

Digital OutputsObject Code

ARRAYData Type

Unsigned 32

Entry Description

Sub-Index Description Category Access PDO Mapping

Value Range Default

00h Highest Supported Sub-Index Mandatory C No 02h Mfg-Specific

01h Physical Outputs Mandatory R/W Possible Unsigned 32 0000 0000h

02h Bit mask Mandatory R/W Possible Unsigned 32 0000 0000h

LSBMSB

31 1623 15 1 0

Brake (Not Supported)

ReservedOutputs 12, 11, 10,

9, 4, 3, 2, 1

0b = Switch Off1b = Switch On

Figure 2.10.2: Object 60FE Structure

TMExcellence in Motion

Appendix A: Motor Performance

Appendix B: Recommended Cable Configurations

Appendix C: Planetary Gearboxes

Appendix D: Cables and Converters

Appendices

TM

CANopen

A-2 MDrivePlus CANopen R100606

Page Intentionally Left blank

A-3Appendices

appendix A Motor Performance

Single Length Rotary Motor Double Length Rotary Motor Triple Length Rotary Motor

MDrive17Plus Speed-Torque

Figure A.1: MDrive17Plus CANopen Speed-Torque Curves

MDrive23Plus Speed-Torque

Single Length Rotary Motor Double Length Rotary Motor Triple Length Rotary Motor

Figure A.2: MDrive23Plus CANopen Speed-Torque Curves

200

225

175

150

125

100

75

50

25

0

141

159

124

106

88

71

53

35

18

0

Tor

que

in O

z -

In

Torque in N

- cm24 VDC45 VDC75 VDC

1000(300)

2000(600)

3000(900)

4000(1200)

5000(1500)

6000(1800)

7000(2100)

Speed in Full Steps per Second (RPM)

200

225

175

150

125

100

75

50

25

0

141

159

124

106

88

71

53

35

18

0

Tor

que

in O

z -

In

Torque in N

- cm

24 VDC45 VDC75 VDC

1000(300)

2000(600)

3000(900)

4000(1200)

5000(1500)

6000(1800)

7000(2100)

Speed in Full Steps per Second (RPM)

200

225

175

150

125

100

75

50

25

0

141

159

124

106

88

71

53

35

18

0

Tor

que

in O

z -

In

Torque in N

- cm

24 VDC45 VDC75 VDC

1000(300)

2000(600)

3000(900)

4000(1200)

5000(1500)

6000(1800)

7000(2100)

Speed in Full Steps per Second (RPM)

Torq

ue in

Oz-

In

Torque in N-cm

Speed in Full Steps per Second (RPM)

0 1000 2000 3000 4000 5000 6000 7000(300) (600) (900) (1200) (1500) (1800) (2100)

50

60

40

30

20

10

0

24 VDC48 VDC

42

35

28

21

14

7

Torq

ue in

Oz-

In

Torque in N-cm

Speed in Full Steps per Second (RPM)

0 1000 2000 3000 4000 5000 6000 7000(300) (600) (900) (1200) (1500) (1800) (2100)

50

60

40

30

20

10

0

35

42

28

21

14

724 VDC48 VDC

Torq

ue in

Oz-

In

Torque in N-cm

Speed in Full Steps per Second (RPM)

0 1000 2000 3000 4000 5000 6000 7000(300) (600) (900) (1200) (1500) (1800) (2100)

50

60

40

30

20

10

0

35

42

28

21

14

724 VDC48 VDC

900

1000

800

700

600

500

400

300

200

100

0

Torq

ue in

Oz

- In

Torque in N

- cm

465

494

423

706

635

353

282

211

140

71

45 VDC75 VDC

24 VDC

0 1000(300)

2000(600)

3000(900)

4000(1200)

5000(1500)

6000(1800)

7000(2100)

Speed in Full Steps per Second (RPM)

900

1000

800

700

600

500

400

300

200

100

0

Torq

ue in

Oz

- In

Torque in N - cm

465

494

423

706

635

353

282

211

140

71

45 VDC75 VDC

24 VDC

0 1000(300)

2000(600)

3000(900)

4000(1200)

5000(1500)

6000(1800)

7000(2100)

Speed in Full Steps per Second (RPM)

MDrive34Plus Speed-Torque

Single Length Rotary Motor Double Length Rotary Motor Triple Length Rotary Motor

MDrive34AC Plus Speed-Torque

Figure A.3: MDrive34Plus CANopen Speed-Torque Curves

Figure A.4: MDrive34AC Plus2 CANopen Speed-Torque Curves

MDrive34AC – 120VAC MDrive34AC – 240VAC

A-4 MDrivePlus CANopen R100606

MDrive42AC Plus Speed-Torque

Figure A.5: MDrive42AC Plus2 CANopen Speed-Torque Curves

MDrive42AC – 120VAC MDrive42AC – 240VAC

600

800

1000

1200

400

200

Torq

ue in

Oz-

In

Torque in N-cm

424

565

706

847

282

141

Speed – Full Steps/Second (RPM)

0 2000(600)

4000(1200)

6000(1800)

10000(3000)

8000(2400)

0

1400

1600

1800

989

1130

1271Double Motor LengthSingle Motor Length

600

800

1000

1200

400

200

Torq

ue in

Oz-

In

Torque in N-cm

424

565

706

847

282

141

Speed in full steps per second (RPM)

0 2000(600)

4000(1200)

6000(1800)

10000(3000)

8000(2400)

0

1400

1600

1800

989

1130

1271Double Motor LengthSingle Motor Length

A-5Appendices

appendix BRecommended Power and Cable Configurations (For DC MDrivePlus) Cable length, wire gauge and power conditioning devices play a major role in the performance of your MDrivePlus.

Example A demonstrates the recommended cable configuration for DC power supply cabling under 50 feet long. If cabling of 50 feet or longer is required, the additional length may be gained by adding an AC power supply cable (see Examples B & C).

Correct AWG wire size is determined by the current requirement plus cable length. Please see the MDrivePlus Supply Cable AWG Table at the end of this Appendix.

Example B – Cabling 50 Feet or Greater, AC Power to Full Wave Bridge

Example A – Cabling Under 50 Feet, DC Power

Example C – Cabling 50 Feet or Greater, AC Power to Power Supply

Shield to Earth Groundon Supply End Only

π Type RFI Filter≥ Required Current

120 or 240 VACDependent onPower Supply

Power Supply

+- To Cable A

DC Volts Out

Shielded Twisted Pair(Wire Size from

MDrive Supply Cable AWG Table)

Cable Lengthas required

NOTE:Connect the cable illustratedin Example A to the output ofthe Power Supply

NOTE: These recommendations will provide optimal

protection against EMI and RFI. The actual cable type, wire gauge, shield type and filtering devices used are dependent on the customer’s application and system.

NOTE: The length of the DC power supply cable to an MDrivePlus should

not exceed 50 feet.

NOTE: These recommendations will provide optimal protection against

EMI and RFI. The actual cable type, wire gauge, shield type and filtering devices used are dependent on the customer’s application and system.

NOTE: Always use Shielded/Twisted Pairs for

the MDrivePlus DC Supply Cable and the AC Supply Cable.

Shield to Earth Groundon Supply End Only

DC Voltage fromPower Supply

500 µfPer Amp

+-

FerriteBeads

π Type RFI Filter≥ Required Current

+-To MDrive

Shielded Twisted Pair(Wire Size from

MDrive Supply Cable AWG Table)

Cable Lengthless than 50 Feet

Figure B.1: DC Cabling - Under 50 Feet

Shield to Earth Groundon Supply End Only

π Type RFI Filter≥ Required Current

Transformer - 10 to 28 VAC RMS for 48 VDC Systems20 to 48 VAC RMS for 75 VDC Systems

Full Wave Bridge

+-To Cable A

Shielded Twisted Pair(Wire Size from

MDrive Supply Cable AWG Table)

Cable Lengthas required

NOTE:Connect the cable illustratedin Example A to the output ofthe Full Wave Bridge

Figure B.2: DC Cabling - 50 Feet or Greater - AC To Full Wave Bridge Rectifier

Figure B.3: AC Cabling - 50 Feet or Greater - AC To Power Supply

A-6 MDrivePlus CANopen R100606

Recommended IMS Power Supplies

IMS unregulated linear and unregulated switching power supplies are the best fit for MDrivePlus.

MDrive17Plus and MDrive23Plus

IP404 Unregulated Linear Supply

Input Range120 VAC Versions ...........................................................................................102-132 VAC240 VAC Versions ...........................................................................................204-264 VAC

Output (All Measurements were taken at 25˚C, 120 VAC, 60 Hz)No Load Output Voltage ........................................................................43 VDC @ 0 AmpsContinuous Output Rating .................................................................32 VDC @ 1.5 AmpsPeak Output Rating ...............................................................................26 VDC @ 3 Amps

ISP200-4 Unregulated Switching Supply

Input Range120 VAC Versions ...........................................................................................102-132 VAC240 VAC Versions ...........................................................................................204-264 VAC

Output (All Measurements were taken at 25˚C, 120 VAC, 60 Hz)No Load Output Voltage ........................................................................41 VDC @ 0 AmpsContinuous Output Rating .................................................................38 VDC @ 1.5 AmpsPeak Output Rating ...............................................................................35 VDC @ 3 Amps

MDrive34Plus

IP804 Unregulated Linear Supply

Input Range120 VAC Versions ...........................................................................................102-132 VAC240 VAC Versions ...........................................................................................204-264 VAC

Output (All Measurements were taken at 25˚C, 120 VAC, 60 Hz)No Load Output Voltage ........................................................................76 VDC @ 0 AmpsHalf Load Output ..................................................................................65 VDC @ 2 AmpsFull Load output ....................................................................................58 VDC @ 4 Amps

IP806 Unregulated Linear Supply

Input Range120 VAC Versions ...........................................................................................102-132 VAC240 VAC Versions ...........................................................................................204-264 VAC

Output (All Measurements were taken at 25˚C, 120 VAC, 60 Hz)No Load Output Voltage ........................................................................76 VDC @ 0 AmpsHalf Load Output ..................................................................................68 VDC @ 3 Amps

Full Load Output ...................................................................................64 VDC @ 6 Amps

ISP300-7 Unregulated Switching Supply

Input Range120 VAC Versions ...........................................................................................102-132 VAC240 VAC Versions ...........................................................................................204-264 VAC

Output (All Measurements were taken at 25˚C, 120 VAC, 60 Hz)No Load Output Voltage ........................................................................68 VDC @ 0 AmpsContinuous Output Rating ....................................................................63 VDC @ 2 AmpsPeak Output Rating ...............................................................................59 VDC @ 4 Amps

A-7Appendices

Recommended Power Supply Cabling

MDrivePlus Supply Cable AWG Table1 Ampere (Peak)

Length (Feet) 10 25 50* 75* 100*

Minimun AWG 20 20 18 18 16

2 Amperes (Peak)

Length (Feet) 10 25 50* 75* 100*

Minimun AWG 20 18 16 14 14

3 Amperes (Peak)

Length (Feet) 10 25 50* 75* 100*

Minimun AWG 18 16 14 12 12

4 Amperes (Peak)

Length (Feet) 10 25 50* 75* 100*

Minimun AWG 18 16 14 12 12

*Use the alternative methods illustrated in examples B and C when cable length is ≥ 50 feet. Also, use the same current rating when the alternate AC power is used.

Table B.1: Recommended Supply Cables

A-8 MDrivePlus CANopen R100606

Appendix CMDrivePlus with Planetary Gearbox

Section Overview

This section contains guidelines and specifications for MDrivePlus equipped with an optional Planetary Gearbox, and may include product sizes not relevant to this manual.

Shown are:

Product Overview

Selecting a Planetary Gearbox

Mechanical Specifications

Product Overview

All gearboxes are factory installed.

Mode of Function

Optional Planetary Gearbox operate as their name implies: the motor-driven sun wheel is in the center, transmit-ting its movement to three circumferential planet gears which form one stage. They are arranged on the bearing pins of a planet carrier. The last planet carrier in each sequence is rigidly linked to the output shaft and so ensures the power transmission to the output shaft. The planet gears run in an internally toothed outer ring gear.

Service Life

Depending on ambient and environmental conditions and the operational specification of the driving system, the useful service life of a Planetary Gearbox is up to 10,000 hours. The wide variety of potential applications prohib-its generalizing values for the useful service life.

Lubrication

All Planetary Gearbox are grease-packed and therefore maintenance-free throughout their life. The best possible lubricant is used for our MDrivePlus /Planetary Gearbox combinations.

Mounting Position

The grease lubrication and the different sealing modes allow the Planetary Gearbox to be installed in any position.

Operating Temperature

The temperature range for the Planetary Gearbox is between –30 and +140° C. However, the temperature range recommended for the Heat Sink of the MDrivePlus is 0 to +85º C.

Overload Torque

The permitted overload torque (shock load) is defined as a short-term increase in output torque, e.g. during the start-up of a motor. In these all-metal Planetary Gearbox, the overload torque can be as much as 1.5 times the permitted output torque.

Available Planetary Gearbox

The following lists available Planetary Gearbox, diameter and corresponding MDrivePlus.

Gearbox Diameter MDrive

42 mm MDrive17Plus

52 mm MDrive23Plus

81 mm MDrive34Plus and MDrive34AC Plus

105 mm MDrive42AC Plus

120 mm MDrive42AC Plus

A-9Appendices

Selecting a Planetary Gearbox

There are many variables and parameters that must be considered when choosing an appropriate reduction ratio for an MDrivePlus with Planetary Greabox. This Addendum includes information to assist in determining a suitable combi-

nation for your application.

Calculating the Shock Load Output Torque (TAB)

Note: The following examples are based on picking “temporary variables” which may be adjusted.

The shock load output torque (TAB) is not the actual torque generated by the MDrivePlus and Planetary Gearbox combination, but is a calculated value that includes an operating factor (CB) to compensate for any shock loads applied to the Planetary Gearbox due to starting and stopping with no acceleration ramps, payloads and directional changes. The main reason the shock load output torque (TAB) is calculated is to ensure that it does not exceed the maximum specified torque for a Planetary Gearbox.

Note: There are many variables that affect the calculation of the shock load output torque. Motor speed, motor voltage, motor torque and reduction ratio play an important role in determining shock load output torque. Some variables must be approximated to perform the calculations for the first time. If the result does not meet your requirements, change the variables and re-calculate the shock load output torque.

Use the equation compendium below to calculate the shock load output torque.

Factors

i = Reduction Ratio - The ratio of the Planetary Gearbox.

nM = Motor Speed - In Revolutions Per Minute (Full Steps/Second).

nAB = Output Speed - The speed at the output shaft of the Planetary Gearbox.

TN = Nominal Output Torque - The output torque at the output shaft of the Planetary Gearbox.

TM = Motor Torque - The base MDrivePlus torque. Refer to MDrivePlus Speed Torque Tables.

η = Gear Efficiency - A value factored into the calculation to allow for any friction in the gears.

TAB = Shock Load Output Torque - A torque value calculated to allow for short term loads greater than the nominal output torque.

CB = Operating Factor - A value that is used to factor the shock load output torque.

sf = Safety Factor - A 0.5 to 0.7 factor used to create a margin for the MDrivePlus torque requirement.

Reduction Ratio

Reduction ratio (i) is used to reduce a relatively high motor speed (nM) to a lower output speed (nAB).

With: i = nM ÷ nAB or: motor speed ÷ output speed = reduction ratio

Example:

The required speed at the output shaft of the Planetary Gearbox is 90 RPM.

You would divide motor speed (nM) by output speed (nAB) to calculate the proper gearbox ratio.

The MDrive speed you would like to run is approximately 2000 full steps/second or 600 RPM.

NOTE: In reference to the MDrivePlus speed values, they are given in full steps/second on the Speed/Torque Tables. Most speed specifications for the Planetary Gearbox will be given in RPM (revolutions per minute). To convert full steps/second to RPM, divide by 200 and multiply by 60.

Where: 200 is the full steps per revolution of a 1.8° stepping motor.

2000 full steps/second ÷ 200 = 10 RPS (revolutions per second) × 60 Seconds = 600 RPM

For the Reduction Ratio (i), divide the MDrivePlus speed by the required Planetary Gearbox output speed.

600 RPM ÷ 90 = 6.67:1 Reduction Ratio

Referring to the Available Ratio Table at the end of this section, the reduction ratio (i) of the Planetary Gearbox will be 7:1. The numbers in the left column are the rounded ratios while the numbers in the right column are the actual ratios. The closest actual ratio is 6.75:1 which is the rounded ratio of 7:1. The slight difference can be made up in MDrivePlus speed.

A-10 MDrivePlus CANopen R100606

Nominal Output Torque

Calculate the nominal output torque using the torque values from the MDrivePlus Speed/Torque Tables.

Nominal output torque (TN) is the actual torque generated at the Planetary Gearbox output shaft which includes reduction ratio (i), gear efficiency (η) and the safety factor (sf) for the MDrivePlus. Once the reduction ratio (i) is determined, the nominal output torque (TN) can be calculated as follows:

TN = TM × i × η÷ sf or:

Motor torque × reduction ratio × gear efficiency ÷ safety factor = nominal output torque.

For gear efficiency (η) refer to the Mechanical Specifications for the 7:1 Planetary Gearbox designed for your MDrivePlus.

For motor torque (TM) see the appropriate MDrivePlus Speed/Torque Table. Dependent on which MDrivePlus you have, the torque range will vary. The torque will fall between the high voltage line and the low voltage line at the indicated speed for the MDrivePlus. (See the example Speed/Torque Table below.)

The Speed/Torque Table above is for an MDrive23Plus Double Size This MDrivePlus will produce a torque range of 51 to 95 oz-in in the full voltage range at the speed of 2000 Full Steps/Second (600 RPM).

Please note that this is not the usable torque range. The torque output to the Planetary Gearbox must include a safety factor (sf) to allow for any voltage and current deviations supplied to the MDrivPluse.

The motor torque must include a safety factor (sf) ranging from 0.5 to 0.7. This must be factored into the nomi-nal output torque calculation. A 0.5 safety factor is aggressive while a 0.7 safety factor is more conservative.

Example:

The available motor torque (TM) is 51 to 95 oz-in.

NOTE: You may specify a torque less than but not greater than the motor torque range.

For this example the motor torque (TM) will be 35 oz-in.

A 6.75:1 reduction ratio (i) has been determined.

Gear efficiency (η) = 80% from the appropriate table for the Planetary Gearbox which is used with an MDrive23Plus.

Nominal output torque would be:

Motor torque (TM = 35) × reduction ratio (i = 6.75) ×gear efficiency (η = 0.8) ÷ safety factor (sf = 0.5 or 0.7)

35 × 6.75 = 236.25 × 0.8 = 189 ÷ 0.5 = 378 oz-in nominal output torque (TN)

or

35 × 6.75 = 236.25 × 0.8 = 189 ÷ 0.7 = 270 oz-in nominal output torque (TN)

With the safety factor (sf) and gear efficiency (η) included in the calculation, the nominal output torque (TN) may be greater than the user requirement.

140

120

100

80

60

40

20

0

99

85

71

56

42

28

14

0 1000 2000 3000 4000 5000 6000 7000

Speed in Full Steps per Second

Torq

ue in

Oz

- In

Torque in N - cm

24 VDC45 VDC75 VDC

Figure C.1: MDrive23 Torque-Speed Curve

A-11Appendices

Shock Load Output Torque

The nominal output torque (TN) is the actual working torque the Planetary Gearbox will generate. The shock load output torque (TAB) is the additional torque that can be generated by starting and stopping with no acceleration ramps, payloads, inertia and directional changes. Although the nominal output torque (TN) of the Planetary Gear-box is accurately calculated, shock loads can greatly increase the dynamic torque on the Planetary Gearbox.

Each Planetary Gearbox has a maximum specified output torque. In this example a 7:1 single stage MD23 Plan-etary Gearbox is being used. The maximum specified output torque is 566 oz-in. By calculating the shock load output torque (TAB) you can verify that value is not exceeding the maximum specified output torque.

When calculating the shock load output torque (TAB), the calculated nominal output torque (TN) and the operat-ing factor (CB) are taken into account. CB is merely a factor which addresses the different working conditions of a Planetary Gearbox and is the result of your subjective appraisal. It is therefore only meant as a guide value. The following factors are included in the approximate estimation of the operating factor (CB):

Direction of rotation (constant or alternating)

Load (shocks)

Daily operating time

Note: The higher the operating factor (CB), the closer the shock load output torque (TAB) will be to the maximum specified output torque for the Planetary Gearbox. Refer to the table below to calculate the approximate operating factor (CB).

With the most extreme conditions which would be a CB of 1.9, the shock load output torque (TAB) is over the maximum specified torque of the Planetary Gearbox with a 0.5 safety factor but under with a 0.7 safety factor.

The nominal output torque (TN) × the operating factor (CB) = shock load or maximum output torque (TAB).

With a 0.5 safety factor, the shock load output torque is greater than the maximum output torque specification of the MDrive23 Planetary Gearbox.

(378 × 1.9 = 718.2 oz-in.)

With a 0.7 safety factor the shock load output torque is within maximum output torque specification of the MDrive23 Planetary Gearbox.

(270 × 1.9 = 513 oz-in.)

The 0.5 safety factor could only be used with a lower operating factor (CB) such as 1.5 or less, or a lower motor torque.

Note: All published torque specifications are based on CB = 1.0. Therefore, the shock load output torque (TAB) = nominal output torque (TN).

WARNING! Excessive torque may damage your Planetary Gearbox. If the MDrive/Planetary Gearbox should hit an obstruction, especially at lower speeds (300 RPM or 1000 Full Steps/Second), the torque generated will exceed the maximum torque for the Planetary Gearbox. Precautions must be taken to ensure there are no obstructions in the system.

Determining the Operating Factor (CB)

Direction ofRotation

Load(Shocks) Daily Operating Time

3 Hours 8 Hours 24 Hours

Constant Low* CB=1.0 CB=1.1 CB=1.3

Medium** CB=1.2 CB=1.3 CB=1.5

Alternating Low† CB=1.3 CB=1.4 CB=1.6

Medium†† CB=1.6 CB=1.7 CB=1.9

* Low Shock = Motor turns in one direction and has ramp up at start.** Medium Shock = Motor turns in one direction and has no ramp up at start.† Low Shock = Motor turns in both directions and has ramp up at start.†† Medium Shock = Motor turns in both directions and has no ramp up at start.

Table C.1: Planetary Gearbox Operating Factor

A-12 MDrivePlus CANopen R100606

System Inertia

System inertia must be included in the selection of an MDrivePlus and Planetary Gearbox. Inertia is the resistance an object has relative to changes in velocity. Inertia must be calculated and matched to the motor inertia. The Planetary Gearbox ratio plays an important role in matching system inertia to motor inertia. There are many variable factors that affect the inertia. Some of these factors are:

The type of system being driven.

Weight and frictional forces of that system.

The load the system is moving or carrying.

The ratio of the system inertia to motor inertia should be between 1:1 and 10:1. With 1:1 being ideal, a 1:1 to 5:1 ratio is good while a ratio greater than 5:1 and up to 10:1 is the maximum.

Type of System

There are many systems and drives, from simple to complex, which react differently and possess varied amounts of inertia. All of the moving components of a given system will have some inertia factor which must be included in the total inertia calculation. Some of these systems include:

Lead screw

Rack and pinion

Conveyor belt

Rotary table

Belt drive

Chain drive

Not only must the inertia of the system be calculated, but also any load that it may be moving or carrying. The examples below illustrate some of the factors that must be considered when calculating the inertia of a system.

Lead Screw

In a system with a lead screw, the following must be considered:

The weight and preload of the screw

The weight of the lead screw nut

The weight of a table or slide

The friction caused by the table guideways

The weight of any parts

Preload onleadscrew

Weight oftable

Weight ofparts

Friction ofguideways

Weight ofnut

Weight ofscrew

Figure C.2: Lead Screw System Inertia Considerations

A-13Appendices

Rack and Pinion

In a system with a rack and pinion, the following must be considered:

The weight or mass of the pinion

The weight or mass of the rack

The friction and/or preload between the pinion and the rack

Any friction in the guidance of the rack

The weight or mass of the object the rack is moving

Conveyor Belt

In a system with a conveyor belt, the following must be considered:

The weight and size of the cylindrical driving pulley or roller

The weight of the belt

The weight or mass and size of the idler roller or pulley on the opposite end

The angle or elevation of the belt

Any load the belt may be carrying

Weight ofpinion and shaft

Preload or frictionbetween pinion and rack

Load onrack

Weight ofrack

Friction ofrack in guide

Gearbox

Motor

Weight and sizeof drive roller

Weight and sizeof idler roller

Weight ofconveyor belt

Weight ofparts

Frictionof belt

Elevation

Motor

Gearbox

Figure C.3: Rack and Pinion System Inertia Considerations

Figure C.4: Conveyor System Inertia Considerations

A-14 MDrivePlus CANopen R100606

Rotary Table

In a system with a rotary table, the following must be considered:

The weight or mass and size of the table

Any parts or load the table is carrying

The position of the load on the table, the distance from the center of the table will affect the inertia

How the table is being driven and supported also affects the inertia

Belt Drive

In a system with a belt drive, the following must be considered:

The weight or mass and size of the driving pulley

The tension and/or friction of the belt

The weight or mass and size of the driven pulley

Any load the system may be moving or carrying

Weight and sizeof drive pulley

Weight and sizeof driven pulley

Friction created bytension on belt

Weight ofshaft

Weight andsize of tableWeight and position

of parts on table

The position of parts relativeto the center of the

rotary table is important

Friction of anybearing or support

Motor

Gearbox

Figure C.5: Rotary Table System Inertia Considerations

A-15Appendices

Chain Drive

In a system with a chain drive, the following must be considered:

the weight and size of drive sprocket and any attaching hub

the weight and size of the driven sprocket and shaft

the weight of the chain

the weight of any material or parts being moved

Once the system inertia (JL) has been calculated in oz-in-sec2, it can be matched to the motor inertia. To match the system inertia to the motor inertia, divide the system inertia by the square of the gearbox ratio. The result is called Reflected Inertia or (Jref).

Jref = JL ÷Ζ2

Where:

JL = System Inertia in oz-in-sec2

Jref = Reflected Inertia in oz-in-sec2

Z = Gearbox Ratio

The ideal situation would be to have a 1:1 system inertia to motor inertia ratio. This will yield the best position-ing and accuracy. The reflected inertia (Jref) must not exceed 10 times the motor inertia.

Your system may require a reflected inertia ratio as close to 1:1 as possible. To achieve the 1:1 ratio, you must calculate an Optimal Gearbox Ratio (Zopt) which would be the square root of JL divided by the desired Jref. In this case since you want the system inertia to match the motor inertia with a 1:1 ratio, Jref would be equal to the motor inertia.

Zopt = JL ÷ Jref

Where:

Zopt = Optimal Gearbox Ratio

JL = System Inertia in oz-in-sec2

Jref = Desired Reflected Inertia in oz-in-sec2 (Motor Inertia)

Weight ofchain

Weight and sizeof drive

sprocket and hubWeight and size

of driven sprocket,shaft and any material or parts being moved

Figure C.6: Chain Drive System Inertia Considerations

A-16 MDrivePlus CANopen R100606

The MDrive17Plus is available with a Planetary Gearbox option developed to increase torque at lower speeds, enable better inertia matching and produce finer positional resolutions. These efficient, low maintenance Planetary Gearbox come fully assembled with the MDrive and are offered in a large number of reduction ratios in 1-, 2- and 3-stage configurations.

An optional NEMA Flange allows mounting the Planetary Gearbox to the load using a standard NEMA bolt circle. Planetary Gearbox may be combined with other MDrive17Plus options.

MDrive17Plus with Planetary Gearbox

MDrive17Plus Planetary Gearbox

Dimensions in Inches (mm)

Key DIN 6885-A-3x3x16mm

Ctrg. DIN 332-D M3

M4 x 0.394 (10.0) DeepM3 x 0.394 (10.0) Deep

0.08(2.0)

Ø 0

.315

+0/

-0.0

004

(Ø 8

.0 +

0/-0

.009

)

Ø 0

.984

+0/

-0.0

02(Ø

25.

0 +0

/-0.0

52)

0.984(25.0) k1 ±0.02 (±0.5)

Ø 1

.654

(Ø 4

2.0)

Ø 1.26(Ø 32.0)

Ø 1.417(Ø 36.0)

1.65

7 S

Q.

(42.

1 S

Q.)

MD

rive1

7Plu

s

Gearbox Lengths Inches (mm)

Figure C.7: Planetary Gearbox Specifications for MDrive17Plus

Permitted Output Torque

(oz-in/Nm)

Gearbox Efficiency

Maximum Backlash

Output Side with Ball BearingMaximum Load

(lb-force/N)Weight(oz/g)

Radial Axial Gearbox with Flange1-STAGE 425/3.0 0.80 0.80º 36/60 11/50 14.3/406 14.8/4202-STAGE 1062/7.5 0.75 0.85º 52/230 18/80 17.9/508 18.5/5253-STAGE 2124/15.0 0.70 0.90º 67.5/300 25/110 21.5/609 22.2/630

MDrive17Plus Gearbox Ratios and Inertia Moments

Planetary Gearbox

Ratio(Rounded)

Inertia Moments

(oz-in-sec2)*Planetary Gearbox

Ratio(Rounded)

Inertia Moments

(oz-in-sec2)*1-Stage 3.71:1 0.00006627 3-Stage 50.89:1 0.000062451-Stage 5.18:1 0.00004362 3-Stage 58.86:1 0.000050841-Stage 6.75:1 0.0003328 3-Stage 68.07:1 0.00005070

3-Stage 71.16:1 0.000041492-Stage 13.73:1 0.00006245 3-Stage 78.72:1 0.000050702-Stage 15.88:1 0.00005084 3-Stage 92.70:1 0.000032002-Stage 18.37:1 0.00005070 3-Stage 95.18:1 0.000041352-Stage 19.20:1 0.00004149 3-Stage 99.51:1 0.000041212-Stage 22.21:1 0.00004135 3-Stage 107.21:1 0.000031862-Stage 25.01:1 0.00003200 3-Stage 115.08:1 0.000041212-Stage 26.85:1 0.00004121 3-Stage 123.98:1 0.000031862-Stage 28.93:1 0.00003186 3-Stage 129.62:1 0.000031862-Stage 34.98:1 0.00003186 3-Stage 139.14:1 0.000041212-Stage 45.56:1 0.00003186 3-Stage 149.90:1 0.00003186

3-Stage 168.85:1 0.00003186*To calculate the inertia in kg-cm2 (kilograms-centimeter squared) multiply oz-in-sec2 by 70.6154.

3-Stage 181.25:1 0.000031863-Stage 195.27:1 0.000031863-Stage 236.10:1 0.000031863-Stage 307.55:1 0.00003186

MDrive17Plus Planetary Gearbox Parameters

Table C.2: MDrive17Plus Planetary Gearbox Parameters

1-Stage 2-Stage 3-Stage

k1Gearbox 2.736(69.5)

3.248(82.5)

3.76(95.5)

Table C.3: MDrive17Plus Planetary Gearbox Ratios and Inertia Moments

A-17Appendices

M3 x 0.276 (7.0) Deep

1.22

(31.

0)

1.22(31.0)

1.657 SQ.(42.1 SQ.)

Key DIN 6885-A-3x3x16mmCtrg. DIN 332 - D M3

0.08(2.0)

Ø 0

.315

+0/

-0.0

004

(Ø 8

.0 +

0/-0

.009

)

Ø 0

.866

+0/

-0.0

02(Ø

22.

0 +0

/-0.0

52)

0.846(21.5) k2 ±0.02 (±0.5)

Ø 1

.654

(Ø 4

2.0)

1.20(30.5)

MD

RIV

E17

1-Stage 2-Stage 3-Stagek2Gearboxw/

NEMAFlange2.858(72.6)

3.37(85.6)

3.882(98.6)

MDrive17Plus Planetary Gearbox With Optional NEMA Output Flange

Dimensions in Inches (mm)

Figure C.8: Planetary Gearbox Specifications for MDrive17Plus with NEMA Output Flange

Gearbox Lengths Inches (mm)

MDrive23Plus with Planetary Gearbox

The MDrive23Plus is available with a Planetary Gearbox option developed to increase torque at lower speeds, enable better inertia matching and produce finer positional resolutions. These efficient, low maintenance Planetary Gearbox come fully assembled with the MDrive and are offered in a large number of reduction ratios in 1-, 2- and 3-stage configurations.

An optional NEMA Flange allows mounting the Planetary Gearbox to the load using a standard NEMA bolt circle. Planetary Gearbox may be combined with other MDrive23Plus options.

Permitted Output Torque

(oz-in/Nm)

Gearbox Efficiency

Maximum Backlash

Output Side with Ball BearingMaximum Load

(lb-force/N)Weight(oz/g)

Radial Axial Gearbox with Flange1-STAGE 566/4.0 0.80 0.70º 45/200 13/60 25.0/711 25.9/7352-STAGE 1699/12.0 0.75 0.75º 72/320 22/100 32.2/914 33.3/9453-STAGE 3540/25.0 0.70 0.80º 101/450 34/150 39.4/1117 40.7/1155

MDrive23Plus Gearbox Ratios and Inertia Moments

Planetary Gearbox

Ratio(Rounded)

Inertia Moments

(oz-in-sec2)*Planetary Gearbox

Ratio(Rounded)

Inertia Moments

(oz-in-sec2)*1-Stage 3.71:1 0.00025986 3-Stage 50.89:1 0.000242301-Stage 5.18:1 0.00017461 3-Stage 58.86:1 0.000204061-Stage 6.75:1 0.00016030 3-Stage 68.07:1 0.00020335

3-Stage 71.16:1 0.000165122-Stage 13.73:1 0.00024230 3-Stage 78.72:1 0.000203352-Stage 15.88:1 0.00020406 3-Stage 92.70:1 0.000164412-Stage 18.37:1 0.00020335 3-Stage 95.18:1 0.000203352-Stage 19.20:1 0.00016512 3-Stage 99.51:1 0.000164412-Stage 22.21:1 0.00016469 3-Stage 107.21:1 0.000134252-Stage 25.01:1 0.00013453 3-Stage 115.08:1 0.000164412-Stage 26.85:1 0.00016441 3-Stage 123.98:1 0.000134252-Stage 28.93:1 0.00013425 3-Stage 129.62:1 0.000134112-Stage 34.98:1 0.00013411 3-Stage 139.14:1 0.000164412-Stage 45.56:1 0.00013411 3-Stage 149.90:1 0.00013411

3-Stage 168.85:1 0.00013411*To calculate the inertia in kg-cm2 (kilograms-centimeter squared) multiply oz-in-sec2 by 70.6154.

3-Stage 181.25:1 0.000134113-Stage 195.27:1 0.000134113-Stage 236.10:1 0.000134113-Stage 307.55:1 0.00013411

MDrive23Plus Planetary Gearbox Parameters

Table C.4: MDrive23Plus Planetary Gearbox Parameters

Table C.5: MDrive23Plus Planetary Gearbox Ratios and Inertia Moments

A-18 MDrivePlus CANopen R100606

Ctrg. DIN 332-D M4x10

Key DIN 6885-A-4x4x16mm

4x Ø 0.197 (Ø 5) Hole0.925(23.5)

0.06(1.5)

k2 ±0.02 (±0.5)

Ø 0

.472

+0/

-0.0

007

(Ø 1

2.0

+0/-0

.018

)

1.854(47.1)

1.85

4(4

7.1)

Ø 1

.50

+0/-0

.001

5(Ø

38.

1 +0

/-0.0

39)

2.22 SQ.(56.4 SQ.)

0.236(6.0)

Ø 2

.047

(Ø 5

2.0)

MDR

IVE2

3

Key DIN 6885-A-4x4x16mmCtrg. DIN 332-D M4x10

M5 x 0.394 (10.0) Deep

0.984(25.0)

0.106(2.7)

Ø 1.575(Ø 40.0)

Ø 2

.047

(Ø 5

2.0)

k1 ±0.02 (±0.5)

Ø 0

.472

+0/

-0.0

007

(Ø 1

2.0

+0/-0

.018

)

Ø 1

.26

+0/-0

.001

5(Ø

32.

0 +0

/-0.0

39)

MDR

IVE2

3

Gearbox Lengths Inches (mm)

1-Stage 2-Stage 3-Stagek2Gearboxw/

NEMAFlange3.035(77.1)

3.59(91.2)

4.146(105.3)

Figure C.10: Planetary Gearbox Specifications for MDrive23Plus with NEMA Flange

MDrive23Plus Planetary Gearbox

Dimensions in Inches (mm)

Gearbox Lengths Inches (mm)

1-Stage 2-Stage 3-Stage

k1Gearbox 2.976(75.6)

3.537(89.7)

4.087(103.8)

Figure C.9: Planetary Gearbox Specifications for MDrive23Plus

MDrive23Plus Planetary Gearbox With Optional NEMA Output Flange

Dimensions in Inches (mm)

A-19Appendices

MDrive34Plus2 (DC and AC) with Planetary Gearbox

The MDrive34Plus2 is available with a Planetary Gearbox option developed to increase torque at lower speeds, enable better inertia matching and produce finer positional resolutions. These efficient, low maintenance Planetary Gearbox come fully assembled with the MDrivePlus and are offered in a large number of reduction ratios in 1-, 2- and 3-stage configurations.

An optional NEMA Flange allows mounting the Planetary Gearbox to the load using a standard NEMA bolt circle. Planetary Gearbox may be combined with other MDrive34Plus2 options.

Permitted Output Torque

(oz-in/Nm)

Gearbox Efficiency

Maximum Backlash

Output Side with Ball BearingMaximum Load

(lb-force/N)Weight(oz/g)

Radial Axial Gearbox with Flange1-STAGE 2832/20.0 0.80 1.0° 90/400 18/80 64.4/1827 66.7/18902-STAGE 8496/60.0 0.75 1.5° 135/600 27/120 89.5/2538 92.6/26253-STAGE 16992/120.0 0.70 2.0° 225/1000 45/200 92.6/2625 118.5/3360

MDrive34Plus Planetary Gearbox Parameters

Table C.6: MDrive34Plus2 Planetary Gearbox Parameters

MDrive34Plus Gearbox Ratios and Inertia Moments

Planetary Gearbox

Ratio(Rounded)

Inertia Moments

(oz-in-sec2)*Planetary Gearbox

Ratio(Rounded)

Inertia Moments

(oz-in-sec2)*1-Stage 3.71:1 0.00233660 3-Stage 50.89:1 0.002180821-Stage 5.18:1 0.00154357 3-Stage 58.86:1 0.001784311-Stage 6.75:1 0.00128867 3-Stage 68.07:1 0.00179847

3-Stage 71.16:1 0.001472762-Stage 13.73:1 0.00219499 3-Stage 78.72:1 0.001798472-Stage 15.88:1 0.00179847 3-Stage 92.70:1 0.001246192-Stage 18.37:1 0.00182679 3-Stage 95.18:1 0.001477262-Stage 19.20:1 0.00141612 3-Stage 99.51:1 0.001486932-Stage 22.21:1 0.00148693 3-Stage 107.21:1 0.001246192-Stage 25.01:1 0.00177015 3-Stage 115.08:1 0.001486932-Stage 26.85:1 0.00148693 3-Stage 123.98:1 0.001246192-Stage 28.93:1 0.00124619 3-Stage 129.62:1 0.001246192-Stage 34.98:1 0.00126035 3-Stage 139.14:1 0.001444442-Stage 45.56:1 0.00126035 3-Stage 149.90:1 0.00124619

3-Stage 168.85:1 0.00126035*To calculate the inertia in kg-cm2 (kilograms-centimeter squared) multiply oz-in-sec2 by 70.6154.

3-Stage 181.25:1 0.001246193-Stage 195.27:1 0.001260353-Stage 236.10:1 0.001260353-Stage 307.55:1 0.00126035

Table C.7: MDrive34Plus2 Planetary Gearbox Ratios and Inertia Moments

MDrive34Plus Planetary Gearbox

Dimensions in Inches (mm)

Gearbox Lengths Inches (mm)

Figure C.11: Planetary Gearbox Specifications for MDrive34Plus2

k1GEARBOX* with FLANGE†

1-Stage 4.315(109.6) 4.433(112.6)2-Stage 5.169(131.3) 5.287(134.3)3-Stage 6.024(153.0) 6.142(156.0)

A-20 MDrivePlus CANopen R100606

MDrive42AC Plus2 with Planetary Gearbox

The MDrive42AC Plus2 is available with two Planetary Gearbox options, 105 mm and 120 mm, developed to increase torque at lower speeds, enable better inertia matching and produce finer positional resolutions. These efficient, low maintenance Planetary Gearbox come fully assembled with the MDrivePlus and are offered in a large number of reduc-tion ratios in 1-, 2- and 3-stage configurations.

An optional NEMA Flange allows mounting the Planetary Gearbox to the load using a standard NEMA bolt circle. Planetary Gearbox may be combined with other MDrive42AC Plus2 options.

Permitted Output Torque

(oz-in/Nm)

Gearbox Efficiency

Maximum Backlash

Output Side with Ball BearingMaximum Load

(lb-force/N)Weight(oz/g)

Radial Axial Gearbox with Flange1-STAGE 4956/35.0 0.80 1.0° 135/600 27/120 64.4/1827 9.7/4.42-STAGE 14869/105.0 0.75 1.5° 202/900 40/180 89.5/2538 13.2/6.03-STAGE 27614/195.0 0.70 2.0° 337/1500 67/300 92.6/2625 16.8/7.6

MDrive42AC Plus 105 mm Planetary Gearbox Parameters

Table C.8: MDrive42AC Plus2 105mm Planetary Gearbox Parameters

MDrive42AC Plus 105 mm Gearbox Ratios and Inertia Moments

Planetary Gearbox

Ratio(Rounded)

Inertia Moments

(oz-in-sec2)*Planetary Gearbox

Ratio(Rounded)

Inertia Moments

(oz-in-sec2)*1-Stage 3.71:1 TBD 3-Stage 50.89:1 TBD1-Stage 5.18:1 TBD 3-Stage 58.86:1 TBD1-Stage 6.75:1 TBD 3-Stage 68.07:1 TBD

3-Stage 71.16:1 TBD2-Stage 13.73:1 TBD 3-Stage 78.72:1 TBD2-Stage 15.88:1 TBD 3-Stage 92.70:1 TBD2-Stage 18.37:1 TBD 3-Stage 95.18:1 TBD2-Stage 19.20:1 TBD 3-Stage 99.51:1 TBD2-Stage 22.21:1 TBD 3-Stage 107.21:1 TBD2-Stage 25.01:1 TBD 3-Stage 115.08:1 TBD2-Stage 26.85:1 TBD 3-Stage 123.98:1 TBD2-Stage 28.93:1 TBD 3-Stage 129.62:1 TBD2-Stage 34.98:1 TBD 3-Stage 139.14:1 TBD2-Stage 45.56:1 TBD 3-Stage 149.90:1 TBD

3-Stage 168.85:1 TBD*To calculate the inertia in kg-cm2 (kilograms-centimeter squared) multiply oz-in-sec2 by 70.6154.

3-Stage 181.25:1 TBD3-Stage 195.27:1 TBD3-Stage 236.10:1 TBD3-Stage 307.55:1 TBD

Table C.9: MDrive42AC Plus2 105mm Planetary Gearbox Ratios and Inertia Moments

MDrive42AC Plus 105mm Planetary Gearbox

Dimensions in Inches (mm)

Gearbox Lengths Inches (mm)

Figure C.12: 105mm Planetary Gearbox Specifications for MDrive42AC Plus2

4.20

SQ

.(1

06.7

SQ

.)

3.35 ±0.004 SQ.*(85.0 ±0.1 SQ.)

k1 ±0.02 (±0.5)

M8 x 0.630 (16.0) Deep*

4x 0.33 (Ø 8.5) Hole

*Gearbox without Flange†Gearbox with Flange

Ctrg. DIN 332-D M10

Key DIN 6885-A-8x7x40mm

0.20*(5.0)

0.079(2.0)

2.33 ±0.02*(59.1 ±0.5)

2.04 ±0.02(51.7 ±0.5)

Ø 2

.76*

(Ø 7

0.0)

Ø 0

.98

(Ø 2

5.0)

Ø 4

.13

(Ø 1

05.0

)

MD

rive4

2AC

Plu

s

0.35*(9.0)

††

Ø 2

.187

(Ø 5

5.54

)†

†3.50(88.9)

or

or

0.50(12.7)

or

k1GEARBOX* with FLANGE†

1-Stage 5.73(145.5) 6.02(152.9)2-Stage 7.07(179.6) 7.36(187.0)3-Stage 8.41(213.7) 8.70(221.1)

A-21Appendices

Permitted Output Torque

(oz-in/Nm)

Gearbox Efficiency

Maximum Backlash

Output Side with Ball BearingMaximum Load

(lb-force/N)Weight(oz/g)

Radial Axial Gearbox with Flange1-STAGE 7080/50.0 0.80 0.55° 135/600 27/120 64.4/1827 12.3/5.62-STAGE 21242/150.0 0.75 0.60° 202/900 40/180 89.5/2538 17.6/8.03-STAGE 42484/300.0 0.70 0.65° 337/1500 67/300 92.6/2625 22.9/10.4

MDrive42AC Plus 120 mm Planetary Gearbox Parameters

Table C.10: MDrive42AC Plus2 120mm Planetary Gearbox Parameters

MDrive42AC Plus 120 mm Gearbox Ratios and Inertia Moments

Table C.11: MDrive42AC Plus2 120mm Planetary Gearbox Ratios and Inertia Moments

MDrive42AC Plus 120mm Planetary Gearbox

Dimensions in Inches (mm)

Figure C.13: 120mm Planetary Gearbox Specifications for MDrive42AC Plus2

Planetary Gearbox

Ratio(Rounded)

Inertia Moments

(oz-in-sec2)*

1-Stage 3.71:1 TBD1-Stage 6.75:1 TBD

2-Stage 13.73:1 TBD2-Stage 25.01:1 TBD2-Stage 45.56:1 TBD

3-Stage 50.89:1 TBD3-Stage 92.70:1 TBD3-Stage 168.85:1 TBD3-Stage 307.55:1 TBD

MD

rive4

2AC

Plu

s

*Gearbox without Flange†Gearbox with Flange

Ø 3

.15*

(Ø 8

0.0)

Ø 2

.187

(Ø 5

5.54

)

or

M10 x 0.866 (22.0) Deep*

4x 0.35 (Ø 9.0) Hole†

† †or

or

k1 ±0.02 (±0.5)

Ctrg. DIN 332-D M12

Key DIN 6885-A-10x8x50mm

0.20*(5.0)

†0.079(2.0)

†0.24(6.2)

0.59*(15.0)

2.86 ±0.02*(72.7 ±0.5)

2.53 ±0.02(64.2 ±0.5)

Ø 1

.26

(Ø 3

2.0)

Ø 4

.72

(Ø 1

20.0

)

4.33

SQ

.(1

10.0

SQ

.)

3.94 SQ.*(100.0 SQ.)

3.50 SQ.(88.9 SQ.)

or

0.59(15.0)

k1GEARBOX* with FLANGE†

1-Stage 6.23(158.2) 6.58(167.2)2-Stage 7.57(192.4) 7.93(201.4)3-Stage 8.92(226.6) 9.28(235.6)

Gearbox Lengths Inches (mm)

A-22 MDrivePlus CANopen R100606

appendix D Optional Cables and Cordsets

MDrive17Plus2 Recommended Cables

P1: PD16-1417-FL3 — Power and I/O

The PD16-1417-FL3 is a 10’ (3.0 M) Prototype Development Cable used to connect to the 16-Pin Locking Wire Crimp Connector. The Connector end plugs into the P1 Connector of the MDrivePlus. The Flying Lead end connects to a Control Interface such as a PLC.

Wire Color CodePair Number Color Combination Signal Name (Color)

1 Black Paired with Red Power Ground (Black) / +V (Red)

2 Black Paired with White Not Used

3 Black Paired with Green Analog In (Black) / Not Used

4 Black Paired with Blue I/O 12 (Black) / I/O 11(Blue)

5 Black Paired with Yellow I/O 10 (Black) / I/O 9 (Yellow)

6 Black Paired with Brown I/O 4 (Black) / I/O 3 (Brown)

7 Black Paired with Orange I/O 2 (Black) / I/O 1 (Orange)

8 White Paired with Red I/O GND (White) / I/O PWR (Red)

Table D.1: PD16-1417-FL3 Wire Color Codes

Pair #1

Pair #2

Pair #3

Pair #4

Pair #5

Pair #6

Pair #7

Pair #8General SpecificationsLength: 10 Feet (3.0 Meters)Conductor: 22 AWG Twisted PairsShield: Tinned Copper BraidJacket: Gray PVC

Ensure Black-Color pair match is correct priorto connecting.

Flying Lead End To Control Interface

Connector EndPlugs Into MDrive P1

Pin 1

15131197531

161412108642

P1

MDI 17 16-Pin Locking Wire Crimp

Figure D1: PD16-1417-FL3 Prototype Development Cable

MDrive23Plus and 34Plus Recommended Cables

P1: PD16-1417-FL3 — Power and I/O

IMS recommends the Prototype Development Cable PD14-2334-FL3 for interfacing I/O and Logic to the MDrive-23Plus and MDrive34Plus CANopen. IMS recommends the Prototype Development Cable PD14-2334-FL3 with the first order to mate with the 14-pin locking wire crimp connector P1. 14 (7 Twisted Pair) Flying Leads interface to the user’s control electronics at the un-terminated end of the cable.

Care should be observed to ensure that the black leads are connected in the correct location in relation to their paired color.

Wire Color CodePair Number Color Combination Signal Name (Color)

1 Black Paired with White Not Used

2 Black Paired with Green Analog In (Black) / Not Used

3 Black Paired with Blue I/O 12 (Black) / I/O 11(Blue)

4 Black Paired with Yellow I/O 10 (Black) / I/O 9 (Yellow)

5 Black Paired with Brown I/O 4 (Black) / I/O 3 (Brown)

6 Black Paired with Orange I/O 2 (Black) / I/O 1 (Orange)

7 White Paired with Red I/O GND (White) / I/O PWR (Red)

Table D.2: PD16-1417-FL3 Wire Color Codes

A-23Appendices

Figure D.2: PD14-2334-FL3 Prototype Development Cable

Pair #1

Pair #2

Pair #3

Pair #4

Pair #5

Pair #6

Pair #7General SpecificationsLength: 10 Feet (3.0 Meters)Conductor: 22 AWG Twisted PairsShield: Tinned Copper BraidJacket: Gray PVC

Ensure Black-Color pair match is correct priorto connecting.

MDrive23Plus Top

MDrive34Plus Top

131197531

1412108642

2468

101214

135791113

MDI 23 14-Pin Locking Wire Crimp

MDI 34 14-Pin Locking Wire Crimp

P1

P1

Flying Lead End To Control Interface

Connector EndPlugs Into MDrive P1

Pin 1

P3: PD02-2300-FL3 — MDrive23Plus Power

IMS recommends the Prototype Development Cable PD02-2300-FL3 for interfacing Power to the MDrive23Plus

CANopen.

P3 - MDrive23Plus PowerMDrive P3 Function Wire Color

Pin 1 Power (+12 to +75 VDC) RedPin 2 Ground Black

Table D.3: PD02-2300-FL3 Wire Color Codes

Motor Power (+12 to +75 VDC)

Power Supply Return (Ground)

Drain Wire (Connect to Earth at Power Supply)

Pin 1 (Red Wire)

General SpecificationsLength: 10 Feet (3.0 Meters)Conductor: 20 AWG Twisted PairsShield: Z-FoldDrain Wire: 22 AWG Tinned CopperJacket: Beige PVC

MDrive23Plus Top

P3

P312

Figure D.3: PD02-2300-FL3 Prototype Development Cable

P3: PD02-3400-FL3 — MDrive34Plus Power

IMS recommends the Prototype Development Cable PD02-3400-FL3 for interfacing Power to the MDrive34Plus

CANopen.

P3 - MDrive34Plus PowerMDrive P3 Function Wire Color

Pin 1 Power (+12 to +75 VDC) RedPin 2 Ground Black

Table D.4: PD02-2300-FL3 Wire Color Codes

General SpecificationsLength: 10 Feet (3.0 Meters)Conductor: 18 AWG Twisted PairShield: Alum/Mylar TapeDrain Wire: 20 AWG Tinned CopperJacket: Gray PVC

Motor Power (+12 to +75 VDC)

Power Supply Return (Ground)

Drain Wire (Connect to Earth at Power Supply)

Pin 1 (Red Wire)

MDrive34Plus Top

P3

Pin 1

Figure D.4: PD02-3400-FL3 Prototype Development Cable

A-24 MDrivePlus CANopen R100606

Recommended Cordsets for MDrive17Plus2-65 and MDrive23Plus2-65

P1 — Power and I/O

Table D.5: MD-CS10x-000 Wire Color Chart

19-pin M23 single-ended cordsets are offered to speed prototyping of sealed MDrivePlus2 units. Measuring 13.0’ (4.0m) long, either straight or right-angle termination is available. PVC jacketed cables come with a foil shield and an unconnected drain wire.

Straight Termination ............................................................................................. MD-CS100-000Right Angle Termination ....................................................................................... MD-CS101-000

Pin Assignment and Wire Colors

P1 - Expanded I/O ConfigurationMDrive P1 Function Cordset Wire Color

Pin 1 I/O 9 VioletPin 2 I/O 11 RedPin 3 Not Used GreyPin 4 I/O 1 Red/BluePin 5 Not Used GreenPin 6 +V BluePin 7 Not Used Gray/PinkPin 8 Not Used White/GreenPin 9 I/O 3 White/Yellow

Pin 10 I/O GND White/GrayPin 11 I/O PWR BlackPin 12* Earth Ground* Green/Yellow*Pin 13 I/O 12 Yellow/BrownPin 14 Not Used Brown/GreenPin 15 AIN WhitePin 16 I/O 2 YellowPin 17 I/O 4 PinkPin 18 I/O 10 Gray/BrownPin 19 GND Brown

*Pin 12 makes electrical contact with the connector shell

MD-CS100-000

MD-CS101-000

2.815”(71.5 mm)

13.0’(4.0 m)

2.37”(60.2 mm)

Pin 4Pin 5

Pin 7

Pin 8Pin 10Pin 11

Pin 1

Pin 2

Pin 19

Pin 18

Pin 17

Pin 14

Pin 15

Pin 16

Outside: Pins 1 -12

Inside: Pins 13 - 19

Pin 3

Pin 12

Pin 6

Pin 9

Pin 13

Ensure adequate space is available withinyour enclosure for the cordset connector!

Figure D.5: MD-CS10x-000 Prototype Development Cordset

A-25Appendices

Recommended Cordsets for MDrive34AC Plus2-65 and MDrive42AC Plus2-65

P1 — I/O

Table D.6: MD-CS10x-000 Wire Color Chart

19-pin M23 single-ended cordsets are offered to speed prototyping of sealed MDrivePlus2 units. Measuring 13.0’ (4.0m) long, either straight or right-angle termination is available. PVC jacketed cables come with a foil shield and an unconnected drain wire.

Straight Termination ............................................................................................. MD-CS100-000Right Angle Termination ....................................................................................... MD-CS101-000

Pin Assignment and Wire Colors

P1 - Expanded I/O ConfigurationMDrive P1 Function Cordset Wire Color

Pin 1 I/O 9 VioletPin 2 I/O 11 RedPin 3 Not Used GreyPin 4 I/O 1 Red/BluePin 5 Not Used GreenPin 6 Not Used BluePin 7 Not Used Gray/PinkPin 8 Not Used White/GreenPin 9 I/O 3 White/Yellow

Pin 10 I/O GND White/GrayPin 11 I/O PWR BlackPin 12* Earth Ground* Green/Yellow*Pin 13 I/O 12 Yellow/BrownPin 14 Not Used Brown/GreenPin 15 AIN WhitePin 16 I/O 2 YellowPin 17 I/O 4 PinkPin 18 I/O 10 Gray/BrownPin 19 Not Used Brown

*Pin 12 makes electrical contact with the connector shell

MD-CS100-000

MD-CS101-000

2.815”(71.5 mm)

13.0’(4.0 m)

2.37”(60.2 mm)

Pin 4Pin 5

Pin 7

Pin 8Pin 10Pin 11

Pin 1

Pin 2

Pin 19

Pin 18

Pin 17

Pin 14

Pin 15

Pin 16

Outside: Pins 1 -12

Inside: Pins 13 - 19

Pin 3

Pin 12

Pin 6

Pin 9

Pin 13

Ensure adequate space is available withinyour enclosure for the cordset connector!

Figure D.6: MD-CS10x-000 Prototype Development Cordset

A-26 MDrivePlus CANopen R100606

P3: MD-CS20x-000 — AC Power

The single-end three conductor cordsets are used with the MDrive AC. Measuring 13.0' (4.0m) long, they are available in either straight or right angle termination. Euro AC Color Code, Oil-resistant yellow PVC jacket, IP68 and NEMA 6P rated.

Straight Termination ............................MD-CS200-000 Right Angle Termination .....................MD-CS201-000

Euro AC CordsetEuro AC Euro Cordset Color Code

Pin 1 Yellow/Green

Pin 2 Brown

Pin 3 Blue

Table D.7: Euro AC Wire Color Chart

MD-CS200-000

MD-CS201-000

13.0’(4.0 m)

Ensure adequate space is available withinyour enclosure for the cordset connector!

2.54”(64.5 mm)

1.70”(43.3 mm)

Pin 1

Pin 3

Pin 2

3-Pin Euro AC Connector

Figure D.7: MD-CS20x-000 Euro AC Power

A-27Appendices

CANopen Communications

In order to use the IMS GUI and upgrade utility for the CANopen MDrivePlus you must purchase the MD-CC500-000. When purchased from IMS, the User Interface software for upgrading and prototyping is included. This is required to upgrade the firmware in the MDrivePlus as updates become available.

This device is also available from Phytec at: http://www.phytec.com/can/hardware/pccaninterface/peakusb.htm, but does not include the IMS Interface and Upgrader software.

Interface Cable Construction

To connect the PCAN-USB dongle to the MDrivePlus an interface cable will need to be constructed. Figure 1.7.3.0 shows the parts and connections.

Installation Instructions

Install the Phytec PCAN-USB adapter per the Phytec Operating Instructions included on the CD.

Install the CANOpen_Tester Interface provided by IMS.

Using the interface cable, connect the MDrivePlus to the Phytec PCAN-USB adapter.

Apply Power to the MDrivePlus CANopen.

1.

2.

3.

4.

NOTE: The Phytec PCAN-USB Adapter is required to upgrade the

firmware in the MDrivePlus Motion Control with CANOpen Interface. Any CAN adapter/Controller can be used to communicate to the device using CANOpen Objects and Indexes.

Figure D.8: Interface Cable, Phytec PCAN-USB to MDrivePlus

A-28 MDrivePlus CANopen R100606

Page Intentionally Left blank

WARRANTYTWENTY-FOUR (24) MONTH LIMITED WARRANTY

Intelligent Motion Systems, Inc. (“IMS”), warrants only to the purchaser of the Product from IMS (the “Customer”) that the product purchased from IMS (the “Product”) will be free from defects in materials and workmanship under the normal use and service for which the Product was designed for a period of 24 months from the date of purchase of the Product by the Customer. Customer’s exclusive remedy under this Limited Warranty shall be the repair or replacement, at Company’s sole option, of the Product, or any part of the Product, determined by IMS to be defective. In order to exercise its warranty rights, Customer must notify Company in accordance with the instructions described under the heading “Obtaining Warranty Service.”

NOTE: MDrivePlus Motion Control electronics are not removable from the motor in the field. The entire unit must be returned to the factory for repair.

This Limited Warranty does not extend to any Product damaged by reason of alteration, accident, abuse, neglect or misuse or improper or inadequate handling; improper or inadequate wiring utilized or installed in connection with the Product; installation, operation or use of the Product not made in strict accordance with the specifications and written instructions provided by IMS; use of the Product for any purpose other than those for which it was designed; ordinary wear and tear; disasters or Acts of God; unauthorized attachments, alterations or modifications to the Product; the misuse or failure of any item or equipment connected to the Product not supplied by IMS; improper maintenance or repair of the Product; or any other reason or event not caused by IMS.

IMS HEREBY DISCLAIMS ALL OTHER WARRANTIES, WHETHER WRITTEN OR ORAL, EXPRESS OR IMPLIED BY LAW OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. CUSTOMER’S SOLE REMEDY FOR ANY DEFECTIVE PRODUCT WILL BE AS STATED ABOVE, AND IN NO EVENT WILL THE IMS BE LIABLE FOR INCIDENTAL, CONSEQUENTIAL, SPECIAL OR INDIRECT DAMAGES IN CONNECTION WITH THE PRODUCT.

This Limited Warranty shall be void if the Customer fails to comply with all of the terms set forth in this Limited Warranty. This Limited Warranty is the sole warranty offered by IMS with respect to the Product. IMS does not assume any other liability in connection with the sale of the Product. No representative of IMS is authorized to extend this Limited Warranty or to change it in any manner whatsoever. No warranty applies to any party other than the original Customer.

IMS and its directors, officers, employees, subsidiaries and affiliates shall not be liable for any damages arising from any loss of equipment, loss or distortion of data, loss of time, loss or destruction of software or other property, loss of production or profits, overhead costs, claims of third parties, labor or materials, penalties or liquidated damages or punitive damages, whatsoever, whether based upon breach of warranty, breach of contract, negligence, strict liability or any other legal theory, or other losses or expenses incurred by the Customer or any third party.

OBTAINING WARRANTY SERVICE

Warranty service may obtained by a distributor, if the Product was purchased from IMS by a distributor, or by the Customer directly from IMS, if the Product was purchased directly from IMS. Prior to returning the Product for service, a Returned Material Authorization (RMA) number must be obtained. Complete the form at http://www.imshome.com/rma.html after which an RMA Authorization Form with RMA number will then be faxed to you. Any questions, contact IMS Customer Service (860) 295-6102.

Include a copy of the RMA Authorization Form, contact name and address, and any additional notes regarding the Product failure with shipment. Return Product in its original packaging, or packaged so it is protected against electrostatic discharge or physical damage in transit. The RMA number MUST appear on the box or packing slip. Send Product to: Intelligent Motion Systems, Inc., 370 N. Main Street, Marlborough, CT 06447.

Customer shall prepay shipping changes for Products returned to IMS for warranty service and IMS shall pay for return of Products to Customer by ground transportation. However, Customer shall pay all shipping charges, duties and taxes for Products returned to IMS from outside the United States.

©2006IntelligentMotionSystems,Inc.AllRightsReserved.REV122006IMS Product Disclaimer and most recent product information at www.imshome.com.

intelligent motion systems, INC.Excellence in Motionwww.imshome.com

IMS UK Ltd. 25BarnesWallisRoad SegensworthEastFareham,HampshirePO155TT Phone:+44/01489-889825 Fax:+44/01489-889857 E-mail:[email protected]

IMS ASIA PACIFIC OFFICE 30RafflesPl.,23-00CaltexHouse Singapore048622 Phone:+65/6233/6846 Fax:+65/6233/5044 E-mail:[email protected]

DISTRIBUTED BY:

IMSEUROPE GmbH Hahnstrasse10,VS-Schwenningen GermanyD-78054 Phone:+49/7720/94138-0 Fax:+49/7720/94138-2 E-mail:[email protected] Sales Management 4QuaiDesEtroits 69005Lyon,France Phone:+33/472565113 Fax:+33/478381537 E-mail:[email protected] Sales Phone:+49/35205/4587-8 Fax:+49/35205/4587-9 E-mail:[email protected]/UK Technical Support Phone:+49/7720/94138-0 Fax:+49/7720/94138-2 E-mail:[email protected]

U.S.A. SALES OFFICES Eastern Region Phone:862/208-9742 Fax:973/661-1275 E-mail:[email protected] Region Phone:260/402-6016 Fax:419/858-0375 E-mail:[email protected] Region Phone:602/578-7201 E-mail:[email protected]

IMS MOTORS DIVISION 105CopperwoodWay,SuiteH Oceanside,CA92054 Phone:760/966-3162 Fax:760/966-3165 E-mail:[email protected]

370 N. Main St., P.O. Box 457 Marlborough, CT 06447 U.S.A.Phone: 860/295-6102 Fax: 860/295-6107 E-mail: [email protected]

TECHNICAL SUPPORT Phone:860/295-6102(USA) Fax:860/295-6107 E-mail:[email protected]/UK Phone:+49/7720/94138-0 Fax:+49/7720/94138-2 E-mail:[email protected]

TM

CANopen