2.1 methods used for the analysis of pesticides -...

36
45 2.1 Methods used for the analysis of pesticides Pesticides have become the part and parcel of modern day agriculture. The absence of pesticides will jeopardize the health of plants, animals and humans. Pesticides are not only an agricultural commodity but find use in non-agricultural regions. But the very nature of the pesticides to kill renders them harmful for the humans and other living beings. Their extensive use has contaminated our soil, water and food, thus risking our wellbeing. Many persistent pesticides and their degradation products penetrate into the plant tissues or stay in the water and soil thus appearing in our food chain. The pesticide residues are magnified during food processing [1] thus making even the processed foods, storage house of harmful chemicals. Taking into account the rampant use of pesticides which has lead to the contamination of various strata, continuous monitoring of environmental and food samples is of utmost importance. Over the years, pesticides have been determined by many conventional as well as modern day methods like spectrophotometry [2-43], Polarography [44-50], TLC [51,52] FTIR [53], HPLC methods using different detectors [54-150], Gas chromatographic technique, using various detectors or in combination with MS [151- 164], Capillary electrophoresis [165-169], Micellar electrokinetic chromatography [170, 171]. Extensive research has been carried out on the analysis of pesticide residues in foodstuffs and environmental matrices. [1,149,162,163,172-182]. The effect of pesticide exposure on the agricultural workers and children has also been the topic of research for many scientists [172-174]. 2.2 Spectrophotometric methods for pesticide analysis Spectrophotometry is a very valuable technique which has proven its worth in the field of pesticide analysis over the years. It is particularly popular because of its

Upload: lekiet

Post on 10-Apr-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

45

2.1 Methods used for the analysis of pesticides

Pesticides have become the part and parcel of modern day agriculture. The absence

of pesticides will jeopardize the health of plants, animals and humans. Pesticides are

not only an agricultural commodity but find use in non-agricultural regions. But the

very nature of the pesticides to kill renders them harmful for the humans and other

living beings. Their extensive use has contaminated our soil, water and food, thus

risking our wellbeing. Many persistent pesticides and their degradation products

penetrate into the plant tissues or stay in the water and soil thus appearing in our food

chain. The pesticide residues are magnified during food processing [1] thus making

even the processed foods, storage house of harmful chemicals. Taking into account

the rampant use of pesticides which has lead to the contamination of various strata,

continuous monitoring of environmental and food samples is of utmost importance.

Over the years, pesticides have been determined by many conventional as well as

modern day methods like spectrophotometry [2-43], Polarography [44-50], TLC

[51,52] FTIR [53], HPLC methods using different detectors [54-150], Gas

chromatographic technique, using various detectors or in combination with MS [151-

164], Capillary electrophoresis [165-169], Micellar electrokinetic chromatography

[170, 171]. Extensive research has been carried out on the analysis of pesticide

residues in foodstuffs and environmental matrices. [1,149,162,163,172-182]. The

effect of pesticide exposure on the agricultural workers and children has also been the

topic of research for many scientists [172-174].

2.2 Spectrophotometric methods for pesticide analysis

Spectrophotometry is a very valuable technique which has proven its worth in the

field of pesticide analysis over the years. It is particularly popular because of its

46

features like ruggedness, economical, suitable for wide range of pesticides by using

different reagents, detectors and techniques like flow injection, PLS (Partial least

square) etc.The spectrophotometric analysis of dithiocarbamate (DTC) fungicides has

been extensively carried out in literature [2-4]. Malik et al have developed several

methods for the determination of DTC fungicides spectrophotometrically [10, 12, 14].

Six DTC fungicides were analyzed in a method developed by Malik et al [10],

whereby the fungicides were converted into Se complex for analysis. In another

method three DTC fungicides were decomposed and converted into

diphenylcarbazone complexes for determination [12]. A sensitive spectrophotometric

procedure is mentioned by Jhangel and Pervez [17] for the analysis of acaricide;

kelthane. This method shows good sensitivity in sub parts per million levels. The

alkaline hydrolysis of kelthane produces chloroform which after a series of steps

forms a yellow-red complex with benzidine showing absorption maxima at 490 nm. A

spectrophotometric method for determination of carbamate pesticides; carbaryl,

bendiocarb, carbofuran, methiocarb, promecarb and propoxur has been proposed by

Rodriguez et al [18]. After hydrolysis the pesticides are coupled with diazotized

trimethylaniline (TMA) in a micellar medium. The micellar medium is used to

increase the solubility and sensitivity. The method was applied for carbaryl

determination in spiked tap, river and pond waters. Demibras [19] has described

another method for spectrophotometric analysis of carbaryl in soil and strawberries.

Carbaryl on hydrolysis gave 1-naphthol which reacted with diazotized sulphanilic

acid to form a product showing absorption maximum at 475 nm.Two new methods for

the determination of carbamate pesticide; carbendazim have been reported by workers

[20]. The first method involves the oxidation and complex formation with 2, 2-

Bipyridyl-Fe (III). The complex formed has λmax at 512 nm. In the second method the

pesticides reacts with potassium ferricyanide to form a complex absorbing at 478 nm.

47

Zanella et al [21] have reported a flow injection spectrophotometric method for the

analysis of carbofuran in commercial preparations. The pesticide after hydrolysis with

NaOH is complexed with diazotized 4-aminobenzoic acid and the resultant is

spectrophotometrically determined. Jan et al [22] describe a new spectrophotometric

method for carbofuran determination. The hydrolyzed product of this pesticide reacts

with sodium nitroprusside to make a purple colored complex having λmax at 530 nm.

Carbosulfan has been spectrophotometrically determined by Sao et al [23] by a

sensitive and extractive method. The alkaline hydrolysis of carbosulfan is followed by

its coupling with diazotized p-amino acetophenone, resulting in a red-brown dye

having λmax at 465 nm. The method has been applied to carbosulfan detection in

environmental samples. Rao et al [24] present a novel method for carbosulfan

analysis in environmental samples. The pesticide is hydrolysed and the resultant is

reacted with 2, 4-di-methoxy aniline. The formed dye is extracted into chloroform and

absorbance is measured at 430 nm. Murthy and co-workers [25] have come up with a

novel and sensitive method for the analysis of carbamate pesticide; carbosulfan. A

yellow complex is formed in this method; the procedure has been applied to the

carbosulfan detection in water and grains. Gouda et al [26] have developed three

methods for the analysis of OP pesticides; malathion and dimethoate in formulations

and vegetable samples. Two of the methods are based on the addition of excess Ce+4

in sulphuric acid and determination of unreacted oxidant. The third method involves

the oxidation of the two pesticides by N-bromosuccinimide (NBS) and using

Amaranth dye for unreacted oxidizing agent. A highly sensitive method has been

reported for cypermethrin determination [27]. The insecticide is hydrolysed and then

reacted with KI and leuco crystal violet. The dye formed has very high molar

absorptivity. Jan and co-workers [28] have performed analysis of OP pesticides. In

this method the pesticides are first hydrolysed and then reacted with molybdate

48

solution to yield a blue complex. Jhangel et al [29] developed a sub ppm method for

spectrophotometric analysis of dichlorvos. Hydrolysis of the insecticide is followed

by its coupling with diphenyl carbazide (DPC) resulting in a wine red dye with

absorption maxima 490 nm.

A flame atomic absorption spectrometric method for indirect determination of

dithiocarbamate fungicides; zineb and ferbam has been reported [30]. The fungicides

were decomposed and the metal content was analyzed and hence amounts of zineb

and ferbam were calculated from their stoichiometric composition. Sensitive

analytical methods have been reported for highly hazardous containing pesticide;

Endosulfan [31, 32]. Venugopal and Sumalatha describe a method for endosulfan

determination, whereby the SO2 liberated on its hydrolysis forms a violet dye with

diphenylbenzidine. The method was applied for endosulfan detection in water soil and

vegetable samples. Raju and Gupta describe an endosulfan analysis method whereby,

a pink dye is formed by using the reagents; malonyldihydrazide, p-aminobenzene and

formaldehyde. Tunceli et al [33] discuss a new method for preconcentration and

analysis of pesticides in river water samples. Column sorption technique was

employed for the preconcentration of the analytes. Skoworn et al [34] have performed

the spectrophotometric analysis of thiophanate-methyl has been carried out on the

basis of iodine-azide reaction. Jan et al [35] discuss a spectrophotometric method for

the determination of methyl-parathion by complexing it with different metal ions. Its

complex with Co+2

yielded lowest detection limit of 1.1 ppb and its absorbance was

measured at 345 nm. A sensitive catalytic kinetic spectrophotometric method has been

described for analysis of OP pesticides [36]. OP compounds act as catalysts in the

oxidation reaction of LCV with iodate in presence of HCl and a violet dye is produced

with λmax at 592 nm. A flow injection (FI) method has been studied for the analysis of

phenols and carbamate pesticides [37]. The analytes were detected when a dye was

49

formed on their coupling with diazotized 2,4,6-trimethyl aniline. The method was

applied for pesticides detection in pesticide formulations and water samples.

Derivative spectrophotometry (DS) is a very useful technique for the analysis of

pesticide residues in various matrices. DS increases the sensitivity of the simple

spectrophotometric method, enhances the resolution of zero order spectra and

eliminates the background noise in spectra. Baranowiska and Pieszko [38] discuss a

very useful method for the determination of phenylurea herbicides. Sharma et al [39]

discuss a fourth derivative spectrophotometric method for the analysis of fungicide

thiram. Sodium molybdate reagent has been used to form coloured complex with

thiram. The method has been applied for analysis of thiram in various food stuffs. A

pesticide Azinphos-methyl has been determined using first derivative

spectrophotometric technique [40]. A mixture of acetophenone and blue dye

erioglaucine was used for analysis of the pesticide in commercial formulations. A

simple first order derivative spectrophotometric method has been reported for the

analysis of insecticide imidacloprid [41]. The procedure was used for the

determination of the insecticide in commercial formulations and it yielded good

results.

2.3 HPLC methods for pesticide analysis

Chromatographic analysis is the most sought after technique for pesticide residue

analysis whether GC, LC or in combination with LC and applying from the wide

range of detectors available like UV, DAD, chemiluminescence, ECD, NPD, FD etc.

[184]. HPLC is a creditable method for the analysis of wide variety of pesticides.

Several heat unstable and polar pesticides show better detection with this technique. A

wide range of reviews are available [185-206] on HPLC methods and sample

50

preparation techniques used for pesticide residue analysis from different

environmental and food matrices.

2.3.1 HPLC-UV Methods

HPLC-UV is one of the most popular, efficient and cost effective methods of

detection for microanalysis and separation of pesticides in different environmental

matrices. The hyphenation of HPLC with UV is useful for a large number of

pesticides as most of these are amenable to UV detection. Basheer et al [90] analyzed

the carbamate pesticides by making use of an HPLC-UV method. Five pesticides;

simazine, fenulfothion, etridiazole, mepronil and bensulide were detected by He and

co-workers [91]. A multiresidue analysis of carbamate pesticides was carried out by

Sánchez-Brunete et al [97]. Work has also been done on the separation of N-methyl

carbamate [102] and carbamate pesticides [103]. A method was developed by Gou et

al [111] for the determination of six carbamate pesticides in water with HPLC. HPLC

with UV detection was used to study the extraction of organochlorine pesticides from

spiked seaweed samples [93]. Chen et al [98] employed the HPLC-UV technique for

analysis of organochlorine pesticides. Moreno et al describe procedures for analysis

of organochlorine pesticides [104, 112]. Moreno et al [112] determined

organochlorine pesticides in agricultural soils. HPLC-UV has been used for the

determination of 4 pesticides in tap water and well water [114]. A paper [99]

describes the use of an LC-LC method for the determination of acidic pesticides in

soil. Liu et al [100] describe a method for the separation of 12 pesticides using a C18

capillary column. Linuron and diuron have been determined in human urine on a poly

(methyloctylsiloxane) column [101]. In another work 11 phenylurea herbicides have

been determined with HPLC [115]. Four Organophosphorous pesticides (OP) were

analyzed in water by Salleh et al [105]. Another method [106] explains the

51

determination of 8 OP pesticides in soil using Methanol/Water mobile phase.

Lourencetti [108] used HPLC-UV for the analysis of three pesticides. A method was

developed to analyze cypermethrin from leaves of gingko biloba [117]. Mauldin et al

[118] developed a new method for chlorpyrifos analysis. OP pesticides were

quantified in water, fruit juices and fruits by Farajzadeh and associates [119]. Khan

and co-workers [121] developed a new method for the analysis of two pesticides. Five

pesticides were analyzed from river water by external standard method by Brondi et

al [122]. Sanagi and associates [124] describe a new method for pesticides

determination in water samples. He et al [125] have discussed a new HPLC-UV

method for the detection of four pesticides. One of the methods elaborates the method

for pesticides residue analysis from parts of eggplant [126], while in another method

18 herbicides are determined in tap water whereby they undergo a photochemical

reaction followed by HPLC-UV separation [127]. HPLC-UV analysis of pesticide

residues has been carried out in different vegetables by several workers [129,132,

133]. Brito et al [131] developed a procedure for the determination of pesticide

residues in coconut water. A method explains the quantification of ten pesticides in

egg samples with HPLC-UV detection [134].

2.3.2 HPLC-DAD Methods

HPLC analysis using a Diode Array Detector (DAD) is a very sensitive technique

which has been widely used for pesticide determination. Jeannot et al [66] used diode

array detector in conjunction with HPLC for the analysis of phenylurea herbicides. In

a method developed by Thompson et al [76], Azadirachtin (Az), the natural pesticide

derived from Neem has been determined by HPLC-DAD. Ferrer and co-workers [81]

analyzed phenylurea herbicides by HPLC technique using diode array detection.

HPLC-DAD of OP pesticides in bovine tissue was done by Valencia [92] et al. Five

52

OP pesticides (chlorpyrifos, chlorfenvinphos, diazinon, fenitrothion, parathion-

methyl) were analyzed in bovine liver muscle by Llasera et al [107]. HPLC-DAD has

been an important tool in detecting pesticide residues in various fruit and vegetable

samples. Melo et al [94] determined ten commonly used pesticides on lettuce with

LC-DAD. Kaihara et al [116] developed a new method for the analysis of 27

pesticides in various fruit and vegetable samples with photodiode array detection.

Liang et al [123] have determined phoxim in water. A new method was applied to the

pesticide determination in strawberries [130]. HPLC-DAD is instrumental in detecting

pesticides in water matrices also. HPLC-DAD of 16 pesticides in groundwater

samples was carried out by D’Archivio et al [95]. Salleh et al [109] detected 5

pesticides from water by using this technique. HPLC-DAD has been used to

determine pesticides in surface waters [113, 120].

2.3.3 HPLC-MS Methods

Mass spectrometry (MS) in conjunction with LC (Liquid Chromatography) provides

one of the most sensitive and selective methods for pesticide analysis. Ingelse et al

[78] determined polar OP pesticides in aqueous samples using liquid chromatography

tandem mass spectrometry. Lacorte et al [79] analyzed the OP pesticides with a very

sensitive method using LC-APCI-MS. (Liquid chromatography-Atmospheric pressure

chemical ionization- Mass Spectrometry). In one of the methods, pesticide residues of

17 pesticides were detected in agricultural products by LC/MS [80]. Ferrer et al [81]

analyzed pesticides with the help of an LC-APCI-MS method. Mattina et al [82]

developed a particle beam MS method for the analysis of phenylurea herbicides in

water matrices. Schaaf et al [83] performed analysis of Az and tetranortriterpenoids

from Neem parts. The method was based on the Reversed Phase HPLC and Atomic

Pressure Chemical Ionization (APCI) mass spectrometry. Barrek et al [84] analyzed

53

the content of Azadirachtin A (Az A) in Neem Oil by LC-MS/MS and studied the

chemical decomposition of Az A. Sarais et al [85] analyzed Az and azadirachtoid

substances; salanin and nimbin. Sannino [86] detected three natural origin pesticides

namely, abamectin, spinosad and azadirachtin in fruit and vegetable samples with LC

and tandem mass spectrometry. Ambrosino et al [87] determined Az A extracts from

neem seed kernels and Pozo et al [89] analyzed Az residues in oranges.

2.3.4 Other HPLC Methods

The feature of HPLC technique can be enhanced to suit the different type of analytes

by using various modes of detection. Post column derivatization and

chemiluminescence detection are the viable options which can be put into use for

different pesticides. Nakazawa et al [57] analyzed the dithiocarbamate fungicides in

vegetable samples by using reversed phase ion pair liquid chromatography with

chemiluminescence detection. N-Methyl carbamates were analysed by post column

photolysis and chemiluminescence detection in water, apple and pears [110]. Patsias

et al 1 developed a photo diode array/post column derivatization with fluorescence

detection method for the analysis of pesticides. De la P na [77] analysed five

herbicides in river water with photochemically induced fluorescence detection. Koc

and associates [128] have come up with a novel method to analyze aldicarb, propoxur,

carbofuran, crabaryl and methiocarb in honey samples involving post column

derivatization and fluorescence detection.

2.4 Sample Preparation techniques

Sample preparation is an important and often the limiting step in the sensitive analysis

of pesticides from myriad range of matrices. A wide range of techniques are available

for sample preparation and pre-concentration of pesticides from complex matrices

54

prior to their detection. Sample preparation is often a multistep process involving

sampling, cleanup, elution etc.

The literature is replete with the examples of different kind of sample preparation

techniques used for the pesticide residue analysis from various matrices. A number of

useful reviews are available to study the different detection and sample preparation

techniques used in the pesticide determination [185-205]. Liquid liquid extraction

(LLE) is one of the earliest and most commonly used extraction techniques employed

for pesticide residue analysis in complex media. Lacorte et al [79] carried out liquid-

solid extraction of pesticides prior to their analysis. Sannino [86] extracted the

Figure 2.1: Steps in the pesticide residue analysis

pesticides from fruit and vegetable matrices using acetone followed by liquid-liquid

partitioning. LLE was used by workers [117,118,128] for extraction of pesticide

residues from plant parts. Khan et al [121] employed ethylacetate and hexane for the

LLE of pentachloronitrobenzene and hexachlorobenzene and its metabolites prior to

Sample Preparation

(Sampling, homogenization)

Extraction with solvents

Clean-up to remove interferences

Elution, concentration of analytes

Redissolving in solvent for

Chromatographic Analysis

55

their HPLC determination. Baig and co-workers [133] used this technique for

extraction of three pesticides from vegetable samples.

Sonication assisted extraction has been used by Sánchez-Brunete [97] for carbamate

pesticides. Koc et al [128] have successfully made use of florisil column and

subsequent elution with hexane/dichloromethane for pesticide extraction.

Solid Phase extraction is one of the most commonly used and preferred technique for

literature using SPE technique to extract pesticide residues of 5 herbicides from river

water [77]. Ingelse and co-workers [78] used SPE for the pre-concentration of polar

OP pesticides. Porous polypropylene membrane protected Micro-SPE technique was

used by Basheer et al [90] for carbamate pesticides detection from soil samples. SPE

cartridges with different sorbent materials were used for pre-concentration of

pesticides of which Oasis HLB and Strata-X were found to give better results [95].

Chen et al [98] presented an online SPE method subsequent to dynamic MAE for the

analysis of organochlorine pesticides. Quantitative determination of pesticides was

achieved with a 250 fold enrichment through SPE method developed by Liu et al

[100]. SPE was used as an extraction and sample preparation technique for the

analysis of pesticides in human urine [101]. Sugarcane herbicides were analysed by

Lourencetti and co-workers [108] using C18 SPE discs. Another paper discusses the

determination of N-methyl carbamate pesticides through the use of automated SPE

[110]. Bondelut PPL cartridges were used in the SPE procedure developed to detect

pesticides in the Macedonian lake waters [113]. Multivariate C-nanotubes were

employed for the SPE of highly leachable pesticide residues in water samples [114].

In another method phenylurea herbicides were determined in drinking water by using

C18 cartridges [115]. Another paper presents comparison between LLE, SPE and SFE

modes for pesticide residue determination [122]. Lee et al [127] used an online SPE

method for the pre-concentration and extraction of herbicides in water. Brito and co-

56

workers [131] used SPE with C18 cartridges to analyze pesticide residues in coconut

water. A useful review is resented by Picó et al [139] on the advances made in the

SPE technique for analysis of quaternary ammonium herbicides determination.

Sanchiz-Mallos et al [141] developed an SPE-HPLC method for analysis of phenoxy

acid herbicides from drinking water. Vitali et al [143] used SPE for the HPLC-UV

analysis of triazines and dinitroanilines from real water samples. Many papers in

literature present SPE as a suitable enrichment technique for the Neem derived

pesticide; Azadirachtin [144-146].

Microwave assisted extraction (MAE) is an effective technique for extraction of

pesticide residues from several environmental and food samples. Chen et al [98] made

use of MAE for the followed by on-line SPE of organochlorine pesticides.

The conventional extraction methods are popular but they suffer from many

drawbacks like use of large volume of solvents, agitation or heating with the solvent

for long time thus increasing the risk of thermal degradation of many pesticides. But

the new innovations in the field of extraction address these concerns. The novel

methods of extraction like MAE, Pressurized fluid extraction, Supercritical fluid

extraction (SFE), Solid phase microextraction (SPME) etc. overcome these problems

as these are fast, use solvent economically, thus are environment friendly [206,207].

Moreno et al [93] performed Microwave assisted microextraction (MAME)-SPE and

MAME-SPME (solid phase microextraction) with organochlorine pesticides. SPME

with four different coatings of fibre like PDMS (poly dimethyl siloxane),

PDMS/divinylbenzene, Carbowax/Tempelated resin and polyacrylate was made use

of to determine 10 pesticides [94]. MAME-SPME was also used by researchers to

analyze organochlorine pesticides [104]. Salleh et al [105] used SPME and online

SFCO2 for OP pesticide analysis. Automated intube SPME analysis of carbamate

pesticides was performed by Gou et al [111]. Focused microwave assistance followed

57

by SPME was used by some researchers for pesticide residue analysis from

strawberries [130]. In another paper, authors focus on the optimization of conditions

for Headspace-SPME for the determination of seven OP pesticides in natural waters

[183].

Microwave assisted solvent extraction (MWASE) has been employed by Hogendoorn

et al [99] for multiresidue analysis of pesticides in soil. In one of the methods,

MAME and soxhlet extraction were used for the determination of OP pesticides from

soil [106]. Moreno and associates [112] employed MAE with surfactants for pesticide

residue analysis in soils. Singh, Foster and Khan [129] used MAE to determine

pesticide residues in cooked and raw vegetables.

Continuous flow microextraction (CFME) was used by He et al [91] whereby a single

drop of solvent is immersed in a continuous flowing sample solution in a 0.5 ml glass

chamber. Matrix Solid Phase Dispersion (MSPD) coupled with SPE has been used as

sample preparation technique by Valencia et al [92]. An MSPD method was validated

for the pesticide analysis from the bovine tissues, involving C18 extraction and silica-

gel cleanup [107].

A green extraction technique Supercritical fluid extraction (SFE) has also been used

for pesticide residue extraction from varied matrices. Ambrosino et al [87] used

SFCO2 and liquid CO2 as extracting agents. Carbamates were determined by Sun et al

[103] using MAE and their subsequent extraction with SFE. Kaihara and associates

[116] used SFE for multiresidue analysis in food stuffs.

Liquid phase microextraction (LPME) was employed by Liang et al [123] for phoxim

determination. Cunha et al [184] have discussed at length the current trends in the

liquid liquid microextraction (LLME) for the pesticide residue analysis in food and

water. Dispersive liquid liquid microextraction (DLLME) uses an extraction solvent

mixture made of a highly non-polar and a water soluble polar solvent. This method

58

fetches high pre-concentration in a short time [208]. In recent times DLLME is

gaining popularity as extraction technique for pesticide residue analysis in water

samples [119,120]. He et al [125] have employed DLLME with ionic liquid extraction

of pesticides from water samples. Liquid membrane microextraction is a relatively

new concept in pesticide extraction which leads to high enrichment factor. Hylton et

al [102] used barrier film protected, mixed solvent optimized micro-scale membrane

extraction for pesticide analysis. Double phase liquid liquid microextraction

(DPLMME) has been used for pesticide extraction by Sanagi et al [124] whereby,

polypropylene tubular membrane has been used. Soxhlet extraction followed by

membrane separation has also been used for high lipid containing matrices [134].

A new concept, molecularly imprinted polymers (MIPS) are being used up for

pesticide detection. The MIPs are inexpensive, easy to synthesize, highly selective

and very sensitive, these qualities make them very desirable for extracting various

pesticides from varied matrices. Linuron and isoproturon were used as templates for

MIPs in the analysis of phenyl urea herbicides from plant extracts [132].

Microextraction by packed sorbent (MEPS) is an innovative technique which is

miniaturization of SPE. This technique is quite advantageous as it is fast, uses less

solvent, requires small sample size and can be automated. Bagheri et al [209] mention

the use of reinforced MEPS syringe for the analysis of triazine, OP, organochlorine

and aryloxy phenoxy propionic acid pesticides in aquatic environment. MEPS

procedure for the analysis carbamate pesticide; aldicarb has also been described [210].

59

Table 2.1 Sample Preparation Methods used in the Analysis of Pesticides

S.

No.

Matrix Pesticide Cleanup

technique

Method Analysis Recovery

(RSD%)

Detection

Limits

Ref

1. Soil Carbamates (carbaryl,

propham, methiocarb,

promecarb, chlorprophan,

barban)

Micro spe,

Oasis HLB

cartridge

C18 disc in

polypropylene

membrane

HPLC-UV,

ACN/water 40/60,

225 nm

93-110(4-11%) LOD 0.01-

0.4 ng g-1

90

2. Natural

water

sample

Simazine, fensulforthion,

etridiazole, mepronil,

bensulide

CFME Single drop of

sample collected

in microsyringe,

injected to

HPLC

HPLC-UV,

ACN/water 50/50,

220 nm

86.9-106 LOD 0.6-3ng

mL-1

91

3. Bovine

tissue

Parathion-methyl,

fenitrothion, parathion,

chlorfenvinphos, diazinon,

ethion, fenchlophos,

chlorpyrifos, carbofenothion

MSPD

coupled

with SPE

C18, silica HPLC-DAD 89.7-99.9(0.7-

4.7)

0.04-.25

µg g-1

92

4. Seaweed

sample

4,4´DDD, dieldrin, 4,4´ DDT,

2,4´ DDT, 4,4´ DDE, aldrin

MAME-

SPME

MAME-

SPE

PDMS-DVB

Bond elut ENV,

C18, Oasis HLB

HPLC-UV,

MeOH/Water

84/16

87.4-101

(7.9-10.3)

78.8-107.7

(2.8-5.3)

138-348

ng g-1

2-38 ng g-1

93

5. Lettuce 10 pesticides (acetamiprid,

azoxystrobin, cyprodinil,

fenhexamid,

fludioxonil,folpet, iprodione,

metalaxyl,

primicarb,tolyfluanid)

SPME PDMS,

PDMS/DVB,

CW/TPR, PA

HPLC-DAD,

MeOH/Water

(0.1%

trifluroacetic acid),

224 nm

N. R. 0.28-1.54 mg

Kg-1

94

6. Ground

water

16 pesticides (aldicarb,

atrazine, desethylatrazine,

SPE C18, graphitised

carbon black,

HPLC-UV,

ACN/water(0.1%

Oasis HLB

71-111(1-10%)

0.003-0.014

µg L-1

95

60

desysopropylatrazine,

carbofuran, 2,4-D, dicloran,

fenitrothion, iprodione,

linuron, metalaxyl,

metazachlor, phenmedipham,

procymidone, simazine,

vinclozolin)

Oasis HLB,

Lichrolut EN,

Strata-X

phosphoric acid)

50/50, 200-400 nm

Stata X

71-113(1-10%)

7. Tomatoes Benomyl,

tebuthiuron,simazine,

atrazine, diuron, ametryn

SPE C18, aminopropyl HPLC-UV,

ACN/0.01%

aqueous NH4OH

(35/65), 235 nm

Commercial

NH2

81-106(0.7-41)

Commercial

C18

29-57(9.2-

55%)

14-28

µg Kg-1

96

8 Soil Oxamyl, methomyl,

Propoxur, carbofuran,

carbaryl, methiocarb

SAESC Ultrasonication,

MeOH

extsssraction

HPLC-Fl, 82.9-99.8

(0.4-10%)

1.6-3.7

µg Kg-1

97

9. Wheat, rice,

corn, bean

Pentachloronitrobenzene, p,p´

DDE, p,p´DDT, o,p´DDE,o,p

DDT, o,p´DDD

DMAE-SPE Online spe C18 HPLC-UV,

ACN/water,

238 nm

89-101(0.8-

6.5%)

Wheat

19-37

(ng g-1

)

98

10. Soil 10 pesticides (bentazone,

bromoxynil, metsulfuron-

methyl, 2,4-D, MCPA,

MCPP, 2,4-DP, 2,4,5-T, 2,4-

DB, MCPB)

MASE -- LC-LC 60-90(5-25%) 5-50

µg Kg-1

99

11. Tap water

and apples

Simazine, fensulfothion,

isoprocarb, fenobucarb,

chlorothalonil, etridiazole,

mepronil, pronamide,

mecoprop, bensulide,

isofenphos, terbutol

SPE Octyl bonded

silica

Capillary HPLC 85-107

(4.1-10.7%

apples,

4.1-8.4 water)

0.15-0.8

µg mL-1

100

61

12. Urine Diuron, linuron SPE Microwaved

PMOS on silica

HPLC-UV

ACN/water

(40/60) 254 nm

85-103(0.37-

1.8%)

14 µg L-1

(diuron)

2.8 µg L-1

(linuron)

101

13. Methanol Carbamate pesticides

(Aldicarb, propoxur,

carbofuran, carbaryl,

methiocarb)

Barrier film

membrane

extraction

Octanol barrier

film used

HPLC-UV,

ACN/water/MeOH

214 nm

(1.9-9.5%) 0.001-5.5

µg L-1

102

14. Soil Carbamate pesticides

(propoxur, chlorpropham,

propham, methiocarb)

MAE

SFE

OAD

Methanol

CO2 + Methanol

HPLC-UV,

ACN /water

(40/60)

225 nm

81.8-

102(4.9%)

66-98(5.5%)

N. R. 103

15. Agricultural

soil

Organochlorine pesticides

(4,4´-DDD, dieldrin, 4,4´-

DDT, 2,4´-DDT, 4,4´-DDE)

MAME-

SPME

POLE

PDMS/DVB

HPLC-UV,

MeOH/Water

(85/15)

(5.5-8.4%) 56-96

ng g-1

104

16. Water Organophosphorous

pesticides (bensulide,

diazinon, EPN, chlorpyrifos)

SPME-

SFCO2

PA(spme) HPLC-UV,

MeOH/Water

(80/20)

(8.6-13.5%) 40-600 µgL-1

105

17. Soil 8 OP pesticides (dimethoate,

methidathion, parathion-

methyl, malathion,

ethoprophos, parathion-ethyl,

diazinon, chlorpyrifos)

MAME

Soxhlet

extraction

POLE, Genapol

X-080

Hexane/Acetone

HPLC/UV,

MeOH/Water(35/6

5)

20.5-82 (0.8-

2.1%) with

Genapole-

X080

0.2-11.3

ng mL-1

(Genapol-

X080)

106

18. Bovine

muscle,

liver

5 OPPs (chlorpyrifos,

chlorfenvinphos, diazinon,

fenitrothion, parathion-

methyl)

MSPD C18 extraction,

silica gel clean-

up

HPLC-DAD,

MeOH/Water,

gradient flow, 244-

287 nm

55-100

(1.9-5.2%) in

liver samples

50-100

ng g-1

(liver),

25-50 ng g-1

(muscle)

107

62

19. Soil, soil-

vinasse

Diuron, hexazinone,

tebuthiuron

SPE C18 HPLC-UV,

MeOH/water

(45/55), 247 nm

78-120 (>10%) 0.025-0.05

mg Kg-1

108

20. Water Simazine, chlorothalonil,

bensulide, thiobencarb, EPN

SPME/SFE PA/

SFCO2

HPLC-PDA,

ACN/water(60/40)

(7.4-12%) 0.07-0.219

mg L-1

109

21. Water,

Apple, pear

N-methyl carbamate

pesticides (Propoxur,

bediocarb, carbaryl,

promecarb)

SPE C18 HPLC-CL 99-96

(0.49-0.81%,

water)

80-89(fruits)

3.9-36.7

ng L-1

110

22. Water Carbamate pesticides

(carbaryl, propham,

methiocarb, promecarb,

chlorpropham, barban

SPME In-tube spme HPLC-UV,

ACN/water

(50/50)

220 nm

97.3-100

(1.7-5.3%)

1-15 µg L-1

111

23. Agricultural

Soil

Oraganochlorine pesticides

(4,4’-DDD, Dieldrin, 4,4’-

DDT, 2,4’-DDT, 4,4’-DDE,

Aldrin)

MAE (POLE+Polyoxy

ethylene10 Cetyl

ether),

(POLE+Polyoxy

ethylene 10

Stearyl ether),

surfactant

mixtures used

HPLC-UV,

MeOH/Water

(85/15) at 220 and

238 nm

44.7-99.1

(Cetyl

mixture)

44.8-103.6

(Stearyl

mixture)

(0.275-

0.655%)

86.4-806.4

ng g-1

(cetyl

mixture)

150.8-734

ng g-1

(stearyl

mixture)

112

24. Surface

waters

Dimethoate, 2,4-D, linuron

and MCPP

SPE Bond Elut PPL

cartridges

HPLC-UV-DAD,

ACN/Water/

Acetic acid

(39/59/2)

229,249 nm

64-92%

(2.6-8.3%)

0.01-0.31

µgL-1

113

63

25. Tap Water

Well water

Atrazine, dicloran,

metazachlor, simazine

SPE Multi-walled

carbon nano

tubes

HPLC-UV,

ACN /Water

230 nm

92.7-95.3 (tap

water) (2.5-

4.6)

5-15 ng L-1

114

26. Drinking

Water

Phenylurea herbicides (11

pesticides)

SPE C18 HPLC-UV,

ACN/Phosph-ate

buffer (35/65)

32.6-150

(1.1-6.7%)

3.8-43.6

µg L-1

115

27. Fruits and

vegetables

27 pesticides SFE Extrelut NT +

Bond Elut C18,

Elution with

CAN

HPLC-PDA,

230 nm

49.3-103.6

(30.5-0.4%)

for cucumber

0.005-0.1

ppm

116

28. Ginkgo

biloba

leaves

Cypermethrin LLE Hexane/Ocatne(

99:1)

HPLC-UV,

Hexane/THF

(99/1)

254 nm

81 (3.2%) 0.1 mg Kg-1

117

29. Black oil

sunflower

seeds

Chlorpyrifos LLE Acetonitrile/

Phosphate buffer

(90:10)

HPLC-UV,

ACN /Phosphate

buffer (75/25)

230 nm

>95(0.81-

4.1%)

0.221 µg g-1

118

30. Water

samples,

fruit juice

and fruits

Organophosphorous

pesticides (fenitrothion,

diazinon, ethion)

DLLME Chloroform,

methanol

HPLC-UV,

Methanol, 210 nm

54.9-69.4

(2.2-4.1)

2-3 ng mL-1

119

31. Surface

water

sample

Carbamate pesticides

(metolcarb, carbofuran,

carbaryl, isoprocard,

diethofencard)

DLLME Water/ACN/Tric

hloromethane

HPLC-DAD,

MeOH/Water

(60/40)

86-97.2

(3.5-8.7%)

0.1-0.5

ng mL-1

120

32. Soil PCNB and HCB LLE Ethyl acetate and

hexane

HPLC-UV,

MeOH/Water

(96/4),

300 nm

97.8-99.2

(1.4-2.9%)

0.0001-

0.0003

µg mL-1

121

64

33. River Water Tebuthiuron, hexazinone,

diuron,2,4-D, ametrine

LLE

SPE

SFE

External

standard method

HPLC-UV,

ACN/Water

(28/72)

238 and 254nm

94%(LLE)

98%(SPE)

28-58%(SFE)

10-30 µg L-1

122

34. Water Phoxim LPME HPLC-DAD (8.4%) 10 ng mL-1

123

35. Water Parathion, phoxim, phorate,

chlorpyrifos

DLLME Ionic liquid

extraction

HPLC 101.8-113.7 at

200 µg L-

1(>4.7 %)

0.1-5 µg L-1

125

36. Eggplant Diazinon, malathion,

sumithion,

LLE Ethylacetate,

hexane

HPLC-UV

ACN/Water

(70/30)

254 nm

88.53-119.59

(11.2-12.8%)

0.02 mg kg-1

126

37. Tap water 18 herbicides SPE Photochemical

reaction

HPLC-UV

detection after

photochemical

reaction,

phosphate buffer/

CAN

77-103

(0.8-2.6%)

0.1-2.3x10-10

M

127

38. Honey Aldicarb, propoxur,

carbofuran, carbaryl,

methiocarb

Florisil

column

Elution with

hexane/dichloro

methane

HPLC-PCD, FD,

water/ACN

(90/10)

77.3-85.1

(1.7-2.3%)

4, 5 ng g-1

128

39. Strawberries Carbendazim, diethofencarb,

azoxystrobine, napropamide,

bupirimate

Focussed

microwave

assisted

extraction

SPME HPLC-DAD

(3-7.3%) 0.05-1

mg Kg-1

130

40. Coconut

water

Captan, chlorothalonil,

carbendazim, lufenuron,

diafenthiuron

SPE C18, methanol

elution

HPLC-UV, 254

nm

75-104

(1.4-11.5%)

≥2 mg Kg-1

131

65

41. Vegetables Triazophos, profenofos and

chlorpyrifos

LLE Ethylacetate HPLC-UV (>20%) N. R. 133

42. Egg samples 10 pesticides Soxhlet

extraction,

membrane

separation

---

HPLC-UV 60-98% 0.002-0.018

mg/kg

134

43. Citrus

samples

diflubenzuron, flufenoxuron

hexaflumuron and

hexythiazox,

MSPD C-8, silica

sorbent,

Dichloromethane

eluent

HPLC-UV,

200 nm

74-84% 0.15-0.25

µg/g (LOQ)

135

44. Water 8 Organophosphorous

pesticides

CPE Polyoxyethylene

10 lauryl ether

and GenapolX-

080

HPLC-UV 27-105% >30 µg L-1

136

66

References

1. P. Cabras and A. Angioni, J. Agric. Food Chem. 48 (2000) 967.

2. S. K. Mehta, A. K. Malik, B. Singh and A. L. J. Rao, Talanta 67 (2005) 725.

3. R. Kesari and V. Gupta, Talanta 45 (1998) 1097.

4. J. Kapoor and A.L.J. Rao, Pestic. Sci. 42 (1994) 109.

5. D. G. Clark, H. Baum, E.L. Stanley and W. F. Hester, Anal. Chem.23 (1951)

1842.

6. S. Petrascu, Rev. Chem. (Bucharest) 17 (1986) 687,

7. A. L. J. Rao and N. Verma, Talanta 36 (1989) 1041.

8. J. Rosenthal, R. L. Carlson and F. L. Stanley, J. Assoc. Off. Anal. Chem. 36

(1953) 1170.

9. B. C. Verma, R. V. Sood and M. S. Sindhu, Talanta 30 (1983) 787.

10. A. K. Malik and A.L. J. Rao, Talanta 37 (1990) 1205.

11. J. R. Rangaswamy, P. Poornima and S. K. Majumdar, J. Asoc. Off. Anal. Chem.

54 (1971) 1120.

12. A. K. Malik and A. L. J. Rao, Talanta 8 (1991) 941.

13. A. L. J. Rao and A. K. Malik, Talanta 40 (1993) 201.

14. A. K. Malik, J. Kapoor and A. L. J. Rao, J. Environ. Monit. 2 (2000) 367.

15. M. W. Aktar, M. Paramasivam and D. Sengupta, Kasetsart J. (Nat. sci.) 43 (2009)

50.

16. J. W. Hylin, Y. Kawano and W. Chang, Bull. Environm. Contam. Toxicol. 20

(1978) 840.

17. E. K. Janghel and Y. Pervez, Am. J. Anal. Chem. 2 (2011) 726.

67

18. L. Alvarez-Rodríguez, L. Monferrer-Pons, J. S. Esteve-Romero, M. C. García-

Alvarez-Coque and G. Ramis-Ramos, Analyst 122 (1997) 459.

19. A. Demirbaş, Sci. Total Environ. 220 (1998) 235.

20. P. Naidu K, T. Niranjan and N. V. Naidu, Int. J. Chem. Tech. Res. CODEN

(USA), 3 (2011) 1728.

21. R. Zanella, R. M. Dallago and C. V. Preste, Pest. Manag. Sci. 56 (2000) 804.

22. M. R. Jan, J. Shah and H. Khan, Chemosphere 52 (2003) 1623.

23. A. Sao, A. K. Pillai and V.K. Gupta, J. Scien. Indus. Res. 67 (2008) 1088.

24. Y. Rao, K. L. Swaroop, P. Chiranjeevi and B. Rangamannar, in M. J. Bunch, V.

M. Suresh and T. V. Kumaran, eds., Proceedings of the Third International

Conference on Environment and Health, Chennai, India, 15-17 December, 2003.

25. P. K. Murthy, T Niranjan and N. V. Naidu, J. Chem. Pharm. Res. 3 (2011) 28.

26. A. A. Gouda, A. S. Amin, R. El Sheikh and M. A. Akl, Chem. Ind. Chem. Eng. Q.

16 (2010) 11.

27. E. K. Janghel, J. K. Rai, M. K. Rai and V. K. Gupta, J. Braz. Chem.

Soc. 18 (2007) 590.

28. J. Shah, M. R. Jan, I. Farah, N-ul-Amin, J. Chem. Soc. Pak. 19 (1997) 309.

29. E. K. Janghel, M. K. Rai, V. K. Gupta and J. K. Rai, J. Chin.Chem. Soc. 54

(2007) 345.

30. A. R. Türker and B. Sezer, Turk. J. Pharm. Sci. 2 (2005) 35.

31. N. V. S. Venugopal and B. Sumalatha, 2011 2nd International Conference on

Environmental Science and Technology IPCBEE, vol.6 (2011) IACSIT Press,

Singapore.

32. J. Raju and V. K. Gupta, Fresenius J. Anal. Chem. 339 (1991) 431.

68

33. A. Tunçeli, H. Bag H and A. R. Türker, Fresenius J. Anal. Chem. 371 (2001)

1134.

34. M. Skowron and W. Ciesielski, Chem. Anal. (Warsaw) 53 (2008) 133.

35. M.R. Jan, R. Masoud and J. Shah, J. Chem. Soc. Pak. 12 (1990) 337.

36. N. Tiwari and A. Asthana, J. Braz. Chem. Soc. 23 (2012) 322.

37. L. Alvarez-Rodriguez, J. Esteve-Romero, I. Escrig-Tena and M. C. Garcia-

Alvarez-Coque, J. AOAC Int. 82 (1999) 937.

38. I. Baranowiska and C. Pieszko, Anal. Lett. 35 (2002) 413.

39. V. K. Sharma, J. S. Aulakh and A. K. Malik, Talanta 65 (2005) 375.

40. K. Wróbel-Zasada, K. Wróbel-Kaczmarczyk, P. Luis López-de-Alba, L. López-

Martínez and M. Antonio García-López, Talanta 43 (1996) 1055.

41. V. J. Guzsvány, Z. J. Papp, S. D. Lazić, F. F. Gaál, L. J. Bjelica and B. F.

Abramović, J. Serb. Chem. Soc. 74 (2009) 1455.

42. Z. M. Grahovac, S. S. Miti, E. T. Pecev and A. N. Pavlovi, J. Chin. Chem. Soc. 57

(2010) 1027.

43. H. Banerjee, P. Ganguly, S. Roy, D. Banerjee, M. Paramasivam, T. Banerjee and

K. K. Sharma, Environ. Monit. Assess. 170 (2010) 311.

44. W. Schwack, B. Brüger and S. Nyanzi, Fresenius J. Anal.Chem. 351 (1997) 297.

45. E. B. Rupp, P. Zuman, I. Sestakova and V. Horak, J. Agric. Food Chem.

40 (1992) 2016.

46. M. Fayyad, M. Alawi and I. Issa, Anal. Lett. 22 (1989) 1989.

47. N.Y. Sreedhar, P. Rajendra Kumar Reddy, G.V. S. Reddy and S. J. Reddy.,

Talanta 44 (1997) 1859.

69

48. E. M. Garrido, C. Delerue-Matos, J. L. F. C. Lima and A. M. O. Brett, Anal. Lett.

37 (2004) 1755.

49. A. K. Malik and A.L. J. Rao, J. Indian Chem. Soc. 75 (1998) 491.

50. M. S. Lin, B. I. Jan, H. J. Leu and J. S. Lin, Anal. Chim. Acta 111 (1999) 388.

51. E. B. Muzhanovskii, A. F. Fartushnyi and A. I. Sedov, Sub-Med. Ekspert 25

(1982) 42.

52. M. Hamada and R. Wintersteiger, J. Planar Chromatography- Modern TLC 15

(2002) 11.

53. A. R. Cassella, R. J. Cassella , S. Garrigues, R. E. Santelli, R. C. de Campos and

M. de la Guardia, Analyst 125 (2000) 829.

54. H. Irth, G. J. Jong De, U. A. T. Brinkman and R. W. Frei, J. Chromatogr. 70

(1986) 439.

55. V. Bardarov, C. Zaikov and M. Mitewa, J. Chromatogr. 479 (1989) 97.

56. K. W. Weissmahr, C. L. Houghton and D. L. Sedlak, Anal. Chem. 70 (1998)

4800.

57. H. Nakazawa, Y. Tsuda, K. Ito, Y. Yoshimura, H. Kuba and H. Homma, J. Liq.

Chromatogr. Rel. Technol. 27 (2005) 705.

58. G. M. F. Pinto and I. C. S. F. Jardim, J. Liq. Chromatogr. Rel. Technol. 25 (2002)

1093.

59. H. Cederlund, E. Börjesson, K. Önneby and J. Stenström, Soil Biol. Biochem. 39

(2007) 473.

60. E. Van-der-Heeft, E. Dijkman, R. A. Baumann and E.A. Hogendorn, J.

Chromatogr. A 879 (2000) 39.

70

61. L.E. Sojo, D.S. Gamble and D.W. Gutzman, J. Agric. Food Chem. 45 (1997)

3634.

62. J. F. Lawerence, C. Menard, M.C. Hennion, V. Pichon, F. LeGoffic and N.

Durand, J. Chromatogr. A 732 (1996) 147.

63. Organonitrogen pesticides Method: 5601, NIOSH Manual of Analytical Methods,

(1998) 1-21.

64. Y. Wang, C. Cai, L. Xiao, Q. Wu and G. Cheng, Chromatographia 73 (2011) 403.

65. H. Berrada, G. Font and J. C. Molto, J. Chromatogr. A 1042 (2004) 9.

66. R. Jeannot, H. Sabik, E. and E. Genin, J. Chromatogr. A 879 (2000) 55.

67. S. Herrera, A. Martin Esteban, P. Fernandez, D. Stevenson and C. Camara,

Fresenius J. Anal. Chem. 362 (1998) 547.

68. A. Martin-Esteban, P. Fernandez, D. Stevenson, and C. Camara, Analyst 122

(1997) 1113.

69. A. Bautista, J. J. Aaron, M.C. Mahedero and A. M. de La Pena, Analusis 27

(1999) 857.

70. M. D. Gil-García, M. Martinez-Galera, P. Parrilla-Vázquez, A. R. Mughari and I.

M. Ortiz-Rodríguez, J. Fluorescence 18 (2008) 365.

71. J. Patsias and E. Papadopoulou-Mourkidou, J. AOAC Int. 82 (1999) 968.

72. B. Ruch, Practice oriented results on use and production of plant extracts and

pheromones in integrated and biological pest control, 1 Workshop, Uberaba,

Brazil, March 29-30, (2001) p 28.

73. T. R. Govindachari, G. Sandhya and S. P. Ganeshraj, Chromatographia 31 (1991)

303.

74. N. Kaushik, Anal. Bioanal. Chem. 374 (2002) 1199.

71

75. R. Thejavathi, R. Shirish, B. Yakkundi and Ravindranath, J. Chomatogr. A 705

(1995) 374.

76. D. G. Thompson, D. T. Chartrand, D. P. and Kreutzweiser, Ecotoxicol. Environ.

Saf. 59 (2004) 186.

77. A. M. de la Peña, M.C. Mahedero and A. Bautista-Sánchez, Talanta 60 (2003)

279.

78. B. A. Ingelse, R. C. van Dam, R. J. Vreeken, H. G. Mol and O. M. Steijger, J.

Chromatogr. A 918 (2001) 67.

79. S. Lacorte and D. Barceló, Anal. Chem. 68 (1996) 2464.

80. M. Okihashi, Y. Kitagawa, K. Akutsu, H. Obana and S. Hori, J. Food Hyg. Soc.

Japan, 43 (2002) 389.

81. I. Ferrer, V. Pichon, M. C. Hennion and D. Barceló, J. Chromatogr. A 777 (1997)

91.

82. M. J. I. Mattina, J. Chromatogr. A 549 (1991) 237.

83. O. Schaaf, A. P. Jarvis, S. A. van der Esch, G. Giagnacovo and N. J. Oldham, J.

Chromatogr. A 21 (2000) 89.

84. S. Barrek, O. Paisse and M. F. Grenier-Loustalot, Anal. Bioanal. Chem. 378

(2004) 753.

85. G. Sarais, P. Caboni, E. Sarritzu, M. Russo and P. Cabras, J. Agric. Food Chem.

56 (2008) 2939.

86. A. Sannino, Rapid Commun. Mass Spectrom. 21 (2007) 2079.

87. P. Ambrosino, R. Fresa, V. Fogliano, S. M. Monti and A. J. Ritieni, J. Agric.

Food Chem. 47 (1997) 5252.

72

88. M. R. Forim, V. E. Cornélio, M. F. da Silva, E. Rodrigues-Filho, J. B. Fernandes,

P. C.Vieira, S. S. Matinez, M. P.Napolitano and R. A. Yost, Phytochem. Anal. 21

(2010) 363.

89. O.J. Pozo, J.M. Marin, J.V. Sancho, F. Hernández, J. Chromatogr. A 992 (2003)

133.

90. C. Basheer, A. A. Alnedhary, B. S. M. Rao and H. K. Lee, J. Chromatogr. A 1216

(2009) 211.

91. Y. He, H. K. Lee, J. Chromatogr. A 1122 (2006) 7.

92. T. M. G. Valencia and M. P. G. de Llasera, J. Chromatogr. A. 1218 (2011) 6869.

93. D. V. Moreno, Z. S. Ferrera and J. J. S. Rodríguez, Microchem. J. 87 (2007) 139.

94. A. Melo, A. Aguiar, C. Mansilha, O. Pinho and I. M.P.L.V.O. Ferreira, Food

Chem. 130 (2012) 1090.

95. A. A. D’Archivio, M. Fanelli, P. Mazzeo and F. Ruggieri, Talanta 71 (2007) 25.

96. L.F.C. Melo, C. H. Collins and I.C.S.F. Jardim, J. Chromatogr. A 1073 (2005) 75.

97. C. Sánchez-Brunete, A. Rodriguez and J.L. Tadeo, J. Chromatogr. A 1007 (2003)

85.

98. L. Chen, L. D. H. Jin, D. Song, H. Zhang, J. Li, K. Zhang, Y. Wang and H.

Zhang, Anal. Chim. Acta 589 (2007) 239.

99. E. A. Hogendoorn, R. Huls, E. Dijkman and R. Hoogerbrugge, J. Chromatogr. A

938 (2001) 23.

100. W. Liu and H. K. Lee, Talanta 45 (1998) 631.

101. J. M. Pozzebon, S.C.N Queiroz, L.F.C Melo, M. A. Kapor and I.C.S.F Jardim, J.

Chromatogr. A 987 (2003) 381.

102. K. Hylton and S. Mitra, J. Chromatogr. A 1154 (2007) 60.

73

103. L. Sun and H. K.Lee, J. Chromatogr. A 1014 (2003) 165.

104. D. V. Moreno Z. S. Ferrera and J. J. S. Rodríguez, Anal. Chim. Acta 571 (2006)

51.

105. S. H. Salleh, Y. Saito, Y. Kiso and K. Jinno, Anal. Chim. Acta 433l (2001) 207.

106. C. Padrón-Sanz, R. Halko, Z. Sosa-Ferrera and J.J. Santana-Rodríguez, J.

Chromatogr. A 1078 (2005) 13.

107. M. P. G. de Llasera and M. L. Reyes-Reyes, Food Chem. 114 (2009) 1510.

108. C. Lourencetti, M. R. R. de Marchi and M. L. Ribeiro, Talanta 77 (2008) 701.

109. S. H. Salleh, Y. Saito and K. Jinno, Anal. Chim. Acta 418 (2000) 69.

110. T. Pérez-Ruiz, C. Martínez-Lozano and M. D. García, J. Chromatogr. A 1164

(2007) 174.

111. Y. Gou, R. Eisert and J. Pawliszyn, J. Chromatogr. A 873 (2000) 137.

112. D. V. Moreno, Z. S. Ferrera and J. J. S. Rodríguez, J. Chromatogr. A 1104 (2006)

11.

113. A. Nestorovska-Krsteska, M. Mbaye, M. D. G. Seye, J. J. Aaron and Z.

Zdravkovski, BALWOIS (2008) – Ohrid, Republic of Macedonia – 27- 31 May

2008.

114. Y. S. Al-Degs and M. A. Al-Ghouti, Int. J. Environ. Anal. Chem. 88 (2008) 487.

115. J. M. Sanchis-Mallols, S. Sagrado, M. J. Medina-Hernández, R. M. Villanueva

Camañas and E. Bonet-Domingo, J. Liq. Chromatogr. Rel. Technol. 21 (1998)

869.

116. A. Kaihara, K. Yoshii, Y. Tsumura, Y. Nakamura, S. Ishimitsu, and Y. Tonogai,

J. Health Sci. 46 (2000) 336.

74

117. J.J. Zhang, L.G. Zang, J.E. Zhang, G.W. Cui, B. Tang, X.Y. Li and L. Zhou.,

Bull. Chem. Soc. Ethiop. 23 (2009) 97

118. R. E. Mauldin, T. M. Primus, T. A. Buettgenbach, J. J. Johnston and G. M. Linz,

J. Liq. Chromatogr. Rel. Technol. 29 (2006) 339.

119. M. A. Farajzadeh, M. Bahram, M. R. Vardast and M. Bamorowat, Microchim.

Acta 172 (2011) 465.

120. Z. M. Liu, X. H. Zang, W. H. Liu, C. Wang and Z. Wang, Chin. Chem. Lett. 20

(2009) 213.

121. F. Khan, D. Prakash and R. K. Jain, BMC Chem. Biol.11 (2011) 1.

122. S. H. G Brondi and Fernando M. Lancas, J. Braz. Chem. Soc. 16 (2005) 650.

123. P. Liang, L. Guo, Y. Liu, S. Liu and T. Z. Zhang, Microchem. J. 80 (2005) 19.

124. M. M. Sanagi, N. A. Z. Abidin, S. H. Heng and W. A. W. Ibrahim, Malays. J.

Anal. Sci. 12 (2008) 570.

125. L. He, X. Luo, H. Xie, C. Wang, X. Jiang and K. Lu, Anal. Chim. Acta 655

(2009) 52.

126. S. Islam, M. S. Hossain, S. Mosihuzzaman and M. Mamun, J. Appl. Sci. 9 (2009)

973.

127. S. H. Lee, S. K. Lee, Y. H. Park, H. Kim and D. W. Lee, Bull. Korean Chem.

Soc. 20 (1999) 1165.

128. F. Koc, Y. Yigit, Y. K. Das, Y. Gurel and C. Yarali, J. Food Drug Anal. 16

(2008) 39.

129. S. B. Singh, G. D. Foster, and S. U. Khan, J. Agric. Food Chem. 52 (2004) 105.

130. C. Falqui-Cao, Z. Wang, L. Urruty, J. J. Pommier and M. Montury, J. Agric. Food

Chem. 49 (2001) 5092.

75

131. N. M. Brito, S. Navickiene, L. Polese, E. F. G. Jardim, R. B. Abakerli and M. L.

Ribeiro, J. Chromatogr. A 957 (2002) 201.

132. F. G. Tamayo, J. L. Casillas and A. Martin-Esteban, Anal. Bioanal. Chem. 381

(2005) 1234.

133. S. A. Baig, N. A. Akhtera, M. Ashfaq and M. R. Asi, American-Eurasian J. Agric.

Environ. Sci. 6 (2009) 513.

134. R. Carabias-Martinez, . Rodr guez-Gonzalo, P. H. Paniagua-Marcos, J.

Hernández-Ménde, J. Chromatogr. A 869 (2000) 427.

135. A. I. Valenzuela, R. Lorenzini, M. J. Redondo, G. Font, J. Chromatogr. A 839

(1999) 101.

136. C. P. Sanz, R. Halko, Z. S. Ferrera and J. J. S. Rodríguez, Anal. Chim. Acta 524

(2004) 265.

137. R. Carabias-Martinez, . Rodr guez-Gonzalo, F. G. García and J. Hernández-

Ménde, J. Chromatogr. A 644 (1993) 49.

138. L. He, X. Luo, X. Jiang and L. Qu, J. Chromatogr. A 1217 (2010) 5013.

139. Y. Picó, G. Font, J. C. Moltó and J. Mañes, J. Chromatogr. A 885 (2000) 251.

140. J. M. Pozzebon, S. C.N Queiroz, L. F.C Melo, M. A. Kapor and I. C. S. F. Jardim,

J. Chromatogr. A 987 (2003) 381.

141. J. M. Sanchis-Mallols, S. Sagrado, M. J. Medina-Hernández, R. M. Villanueva

Camañas and E. Bonet-Domingo, J. Liq. Chromatogr. Rel. Technol. 21 (1998)

1871.

142. S. Wang, B. Xiang and Q. Tang, J. Chromatogr. Sci. 5 (2012) 702.

143. P. Vitali, E. Venturini, C. Bonora, R. Calori and R. Raffaelli, J. Chromatogr. A, 4

February 1994, Pages 219–222, 17th

International Symposium on Column Liquid

76

Chromatography.

144. A. Ramesh and M. Balasubramanian, Analyst 124 (1998) 19.

145. A. P. Jarvis and E. D.Morgan, Phytochem. Analysis 11 (2000) 184.

146. B. Ruch, Proc. Of 2nd Workshop, “Neem and Pheromones” University of

Uberaba, Brazil, May 15-21 (2001) pp 50.

147. T. Hayama and M. Takada, Anal. Bioanal. Chem. 392 (2008) 969.

148. B. Kanrar, S. Mandal and A. Bhattacharyya, J. Chromatogr. A 1217 (2010) 1926.

149. T. Hayama, H. Yoshida, K. Todoroki, H. Nohta and M. Yamaguchi, Rapid

Commun. Mass Spectrom. 22 (2008) 2203.

150. K. Zhang, J.W. Wong, P. Yang, K. Tech, A. L. Dibenedetto, N. S. Lee, D. G.

Hayward, C. M. Makovi, A. J Krynitsky, K. Banerjee, L. Jao, S. Dasgupta, M. S.

Smoker, R. Simonds and A. Schreiber, J. Agric. Food Chem. 59 (2011) 7636.

151. A. C. Gerecke, C. Tixier, T. Bartels, R.P. Schwarzenbach and S. R. Müller, J.

Chromatogr. A 930 (2001) 9.

152. M. Uno, T. Okado, M. Nozawa and K. Tanigawa, Shokuhim Eiseigabu Zasshi,

23 (1982) 474.

153. P. Maini and R. Boni, Bull. Environ. Contam. Toxicol. 37 (1986) 931.

154. K. Friedrichs, H. D. Winkeler and P. Z. Gerhards, Lebensm. Unters. Forsch. 201

(1995) 69.

155. H. Chen, R. Chen, R. Feng and S. Li, Chromatographia 70 (2009) 165.

156. I. A. T. Khan, Z. Parveen, Riazuddin and M. Ahmed, Int. J. Agric.Biol. 9 (2007)

905.

157. B. Albero, C. Sánchez-Brunete and J. L. Tadeo, Talanta 66 (2005) 917.

158. S. C. Cunha, J. O. Fernandes and M. B. P. P. Oliveira, J. Chromatogr. A (2009)

77

OCT 22.

159. C. Cortada, L. Vidal, S. Tejada, A. Romo and A. Canals, Anal. Chim. Acta 638

(2009) 29.

160. D. García-Rodríguez, A. M. Carro, R. Cela and R. A. Lorenzo, Anal. Bioanal.

Chem. 398 (2010) 1005.

161. D. G. Hayward, T. S. Pisano, J. W. Wong and R. J. Scudder, J. Agric. Food

Chem. 58 (2010) 5248.

162. Y. J. Lian, G. F. Pang, H. R. Shu, C. L.Fan, Y. M. Liu, J. Feng, Y. P. Wu and Q.

Y. Chang, J. Agric. Food Chem. 58 (2010) 9428.

163. J. W. Wong, K. Zhang, D. G. Hayward and C. Kai-Meng, Methods Mol. Biol.

747 (2011) 131.

164. J. W. Wong, K. Zhang, K. Tech, D. G. Hayward, C. M. Makovi, A. J.

Krynitsky, F. J. Schenck, K. Banerjee, S. Dasgupta and D. Brown, J. Agric. Food

Chem. 58 (2010) 5868.

165. M. S. Barroso, L. N. Konda and G. Morovjan, J. High Resol. Chromatogr. 22

(1999) 171.

166. S. Batista, E. Silva, S. Galhardo, P. Viana and M. J. Cerejeira, Int. J. Environ.

Anal. Chem. 82 (2002) 601.

167. M. Chicharro, E. Bermejo, A. Sanchez, A. Zapardiel, A. Fernandez-Gutierrez and

D. Arraez, Anal. Bioanal. Chem. 382 (2005) 519.

168. R. Carabias-Martinez, . Rodr guez-Gonzalo, J. Dom nguez-Álvarez, C. G. Pinto

and J. Hernández-Méndez, J. Chromatogr. A 1005 (2003) 23.

169. R. Carabias-Martinez, . Rodr guez-Gonzalo, J. Dom nguez- lvarez, C. Garc a

Pinto and J. Hernández-Méndez, J. Chromatogr. A 869 (2000) 451.

78

170. D. Moreno-González, L. Gámiz-Gracia, J. M. Bosque-Sendra and A. M. García-

Campaña, J. Chromatogr. A 1247 (2012) 24.

171. M. E. Sánchez, B. Rabanal, M. Otero and J. M. Villacorta, J. Liq. Chromatogr.

Rel. Technol. 26 (2003) 545.

172. C. L. Curl, R. A. Fenske and K. Elgethun, Environ. Health Perspect. 111 (2003)

377.

173. C. L. Curl, R. A. Fenske, J. C. Kissel, J. H. Shirai, T. F. Moate, W. Griffith, G.

Coronado and B. Thompson, Environ. Health Perspect. 110 (2002) A787.

174. M. J. Coye, J. A. Lowe and K. J. Maddy, J. Occup. Med. 28 (1986) 628.

175. J. W. Wong, M. G. Webster, C. A. Halverson, M. J. Hengel, K. K. Ngim and S.

E. Ebeler, J. Agric. Food Chem. 26 (2003) 1148.

176. C. Lu, F. J. Schenck, M. A. Pearson and J.W. Wong, Environ. Health Perspect.

118 (2010) 1625.

177. J. W. Wong, K. Zhang, K. Tech, D. G. Hayward, A. J. Krynitsky, I. Cassias, F. J.

Schenck, K. Banerjee, S. Dasgupta and D. Brown, J. Agric. Food Chem. 58

(2010) 5884.

178. J. Ji, C. Deng, H. Zhang, Y. Wu and X. Zhang, Talanta 71 (2007) 1068.

179. M. Zhang, J. Huang, C. Wei, B. Yu, X. Yang and Xi Chen, Talanta 74 (2008)

599.

180. J. Zeng, J. Chen, Z. Lin, W. Chen, X. Chen and X. Wang, Anal. Chim. Acta 619

(2008) 59.

181. E. Silva, S. Batista, P. Viana, P. Antunes, L. Serôdio, A. T. Cardoso and M.

J. Cerejeira, Int. J. Environ. Anal. Chem. 86 (2006) 955.

182. F. A. Tarbah, H. Mahler, O. Temme and T. Daldrup, Forensic Sci. Int. 121 (2001)

79

126.

183. D. A. Lambropoulou, V. A. Sakkas, T. A. Albanis, Anal. Bioanal. Chem. 374

(2002) 932.

184. S. C. Cunha, J.O. Fernandes and M. B. P.P. Oliveira, Current Trends in Liquid-

Liquid Microextraction for Analysis of Pesticide Residues in Food and Water, in

Pesticides-Stratigies for pesticide analysis Ed. By M. Stoytcheva, intechweb.org,

2011.

185. A. Beyer and M. Biziuk, Food Chem. 108 (2008) 669.

186. V. Yusaa,, C. Coscollaa,W. Melloukib, A. Pastorc and M. de la Guard, J.

Chromatogr. A 1216 (2009) 2972.

187. F. E. Ahmed, Trends Anal. Chem. 20 (2001) 649.

188. A. Bidari, M. R. Ganjali, P. Norouzi, M. R. M. Hosseini and Y. Assadi, Food

Chem. 126 (2011) 1840.

189. A. Balinova, J. Chromatogr. A 754 (1996) 125.

190. L. Gámiz-Gracia, A. M. García-Campaña, J. J. Soto-Chinchilla, J. F. Huertas-

Pérez and A. Gonzaález-Casado, Trends Anal. Chem. 24 (2005) 927.

191. D. V. Moreno, Z. S. Ferrera and J. J. S. Rodríguez, Microchem. J. 87 (2007) 139.

192. A. Hercegová, M. Dӧmӧtӧrová and E. Matisová, J. Chromatogr. A 1153 (2007)

54.

193. D. A. Lambropoulou and T. A. Albanis, J. Biochem. Biophys. Methods 70 (2007)

195.

194. S. S. Albaseera, R. Nageswara Rao, Y.V.Swamy and K. Mukkanti, J.

Chromatogr. A 1217 (2010) 5537.

195. A. Wilkowska and M. Biziuk, Food Chem. 125 (2011) 803.

80

196. H. B.Wan and M. K. Wong, J. Chromatogr. A 754 (1996) 43.

197. M. I. Pinto, G. Sontag, R.J. Bernardino and J.P. Noronha, Microchem. J. 96

(2010) 225.

198. S. A. Barker, J. Biochem. Biophys. Methods 70 (2007) 151.

199. B. Jin, L. Xie, Y. Guo and G. Pang, Food. Res. Int. 46 (2012) 399.

200. M. Tankiewicz, J. Fenik and M. Biziuk, Talanta 86 (2011) 8.

201. H. Sabik, R. Jeannot and B. Rondeau, J. Chromatogr. A 885 (2000) 217.

202. J. Chen, C. Duan and Y. Guan, J. Chromatogr. B 878 (2010) 1216.

203. M. Tankiewicz, J. Fenik and M. Biziuk, Trends Anal. Chem. 29 (2010) 1050.

204. M. Tankiewicz, J. Fenik and M. Biziuk, Talanta 86 (2011) 8.

205. W. Wardencki, J. Curyło and J. Namieśnik, J. Biochem. Biophys. Methods 70

(2007) 275.

206. V. Mandal, Y. Mohan and S. Hemalatha, Pharmacogn. Rev. 1 (2007) 7.

207. R. Carabias-Martinez, E. Rodríguez-Gonzalo, P. Revilla-Ruiz and J. Hernández-

Méndez, J. Chromatogr. A 1089 (2005) 1.

208. J. C. Altamirano, A. R. Fontana and R. G. Wuilloud. www.bfr2010.com/abstract-

download/2010/90080.pdf

209. H. Bagheri, Z. Ayazi, A. s’haghi and A. Aghakhani, J. Chromatogr. A 1222

(2012) 13.

210. MEPS Application note-E01, SciSep Accurate Science.