2017year%10% general%mathematics% …

23
2017 Year 10 General Mathematics Topic 4: Number Patterns and Recursion This topic includes: the concept of a sequence as a function use of a firstorder linear recurrence relation to generate the terms of a number sequence tabular and graphical display of sequences. Key knowledge the concept of sequence as a function and its recursive specification the use of a firstorder linear recurrence relation to generate the terms of a number sequence including the special cases of arithmetic and geometric sequences; and the rule for the nth term, tn, of an arithmetic sequence and a geometric sequence and their evaluation the use of a firstorder linear recurrence relation to model linear growth and decay, including the rule for evaluating the term after n periods of linear growth or decay the use of a firstorder linear recurrence relation to model geometric growth and decay, including the use of the rule for evaluating the term after n periods of geometric growth or decay Key skills use a given recurrence relation to generate an arithmetic or a geometric sequence, deduce the rule for the nth term from the recursion relation and evaluate use a recurrence relation to model and analyse practical situations involving discrete linear and geometric growth or decay formulate the recurrence relation to generate the Fibonacci sequence and use this sequence to model and analyse practical situations. For this topic ALL QUESTIONS are included in these notes at the end of each section. More resources available at http://drweiser.weebly.com

Upload: others

Post on 18-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

2017  Year  10  General  Mathematics  

Topic  4:  Number  Patterns  and  Recursion  This  topic  includes:  

•   the  concept  of  a  sequence  as  a  function  

•   use  of  a  first-­‐order  linear  recurrence  relation  to  generate  the  terms  of  a  number  sequence  

•   tabular  and  graphical  display  of  sequences.  

Key  knowledge  

•   the  concept  of  sequence  as  a  function  and  its  recursive  specification  

•   the  use  of  a  first-­‐order  linear  recurrence  relation  to  generate  the  terms  of  a  number  sequence  including  the  special  cases  of  arithmetic  and  geometric  sequences;  and  the  rule  for  the  nth  term,  tn,  of  an  arithmetic  sequence  and  a  geometric  sequence  and  their  evaluation  

•   the  use  of  a  first-­‐order  linear  recurrence  relation  to  model  linear  growth  and  decay,  including  the  rule  for  evaluating  the  term  after  n  periods  of  linear  growth  or  decay  

•   the   use   of   a   first-­‐order   linear   recurrence   relation   to   model   geometric   growth   and   decay,  including  the  use  of  the  rule  for  evaluating  the  term  after  n  periods  of  geometric  growth  or  decay  

Key  skills  

•   use  a  given  recurrence  relation  to  generate  an  arithmetic  or  a  geometric  sequence,  deduce  the  rule  for  the  nth  term  from  the  recursion  relation  and  evaluate  

•   use  a  recurrence  relation  to  model  and  analyse  practical  situations  involving  discrete  linear  and  geometric  growth  or  decay  

•   formulate  the  recurrence  relation  to  generate  the  Fibonacci  sequence  and  use  this  sequence  to  model  and  analyse  practical  situations.  

For this topic ALL QUESTIONS are included in these notes at the end of each section.

More resources available at

http://drweiser.weebly.com    

GENERAL MATHEMATICS 2017

Page 2

1.  Sequences    A  sequence  is  a  list  of  numbers  in  a  particular  order.  The  numbers  or  items  in  a  sequence  are    

called  the  terms  of  the  sequence.  They  may  be  generated  randomly  or  by  a  rule.    

Randomly  generated  sequences    

Recording  the  numbers  obtained  while  tossing  a  die  would  give  a  randomly  generated  sequence,  such  as:    

3,  1,  2,  2,  6,  4,  3,  ...  

Because  there  is  no  pattern  in  the  sequence  there  is  no  way  of  predicting  the  next  term.    

Consequently,  random  sequences  are  of  no  relevance  to  this  topic  and  will  NOT  be  considered.  

Rule  based  Sequences  

Writing  down  odd  numbers  starting  at  1  would  result  in  a  sequence  generated  by  a  rule:    

1,  3,  5,  7,  9,  11,  13,  ...  

There  is  a  rule  that  allows  us  to  state  the  next  term  in  the  sequence.    

‘add  2  to  the  current  odd  number’  

For  example:  

to  find  the  term  after  13,  just  add  2  to  13,  to  get  13  +  2  =  15.

The  group  of  three  dots  (…  )  at  the  end  of  the  sequence  is  called  an  ellipsis.  An  ellipsis  is  used  to  show  that  the  sequence  continues.  In  this  topic,  we  will  look  at  sequences  that  can  be  generated  by  a  rule.  

 

Naming  the  terms  in  a  sequence    

The   symbols  𝑉0, 𝑉1, 𝑉2,  are   used   as   labels   or   names   for   the   first,   second   and   third   terms   in   the  sequence.  In  the  labels  𝑉0, 𝑉1, 𝑉2  the  numbers  0, 1, 2  are  called  subscripts.  The  subscripts  tell  us  the  position  of  each  term  in  the  sequence.  So,  𝑉10  is  just  a  name  for  the  term  in  the  sequence  NOT  the  value  of  the  term.  

Term   1   2   3   4   5   6  

n   n=0   n=1   n=2   n=3   n=4   n=5  

Vn   V0   V1   V2   V3   V4   V5   e.g. 1, 3, 5, 7, 9, 11

Term   1   2   3   4   5   6  

n   n=0   n=1   n=2   n=3   n=4   n=5  

Vn   V0=1   V1=3   V2=5   V3=7   V4=9   V5=11  

NUMBER PATTERNS AND RECURSION

Page 3

Arithmetic  sequences    

Sequences  that  are  generated  by  adding  or  subtracting  a  fixed  amount  to  the  previous  term  are  called  arithmetic  sequences.    

The  fixed  amount  we  add  or  subtract  to  form  an  arithmetic  sequence  recursively  is  called  the  common  difference.  The  symbol  d  is  often  used  to  represent  the  common  difference.    

•   If   a   sequence   is   known   to   be   arithmetic,   the   common   difference   can   be   calculated   by   simply  subtracting  any  pair  of  successive  terms.    

•   If  a  sequence  is  not  known  to  be  arithmetic  BUT  is  found  to  have  a  common  difference  then  the  sequence  is  arithmetic.  

 

Common  Difference,  d  

In  an  arithmetic  sequence,  the  fixed  number  added  to  (or  subtracted  from)  each  term  to  make  the  next  term  is  called  the  common  difference,  where:  

𝑑 = 𝑎𝑛𝑦  𝑡𝑒𝑟𝑚 −  𝑡ℎ𝑒  𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠  𝑡𝑒𝑟𝑚  𝑑 = 𝑉8 −  𝑉9  𝑑 = 𝑉: −  𝑉8  𝑑 = 𝑉; −  𝑉:  𝑎𝑛𝑑  𝑠𝑜  𝑜𝑛,  

For  example,  the  common  difference  for  the  arithmetic  sequence  20,  25,  30,  …is:  

𝑑 = 𝑉8 −  𝑉9 = 25 − 20 = 5  or                      𝑑 = 𝑉: −  𝑉8 = 30 − 25 = 5        etc…  

 

Example 1 Finding   the   common   difference   in   an   arithmetic   sequenceFind   the   common   difference   for   the  following  arithmetic  sequences  and  use  it  to  find  the  3rd  term  in  the  sequence:    a)  2,5,8,...              

b)  25,23,21,...  

GENERAL MATHEMATICS 2017

Page 4

Using  repeated  addition  on  a  CAS  calculator  to  generate  a  sequence    

As  we  have  seen,  a  recursive  rule  based  on  repeated  addition,  such  as  ‘to  find  the  next  term,  add  6’,  is  a  quick  and  easy  way  of  generating  the  next  few  terms  of  a  sequence.  However,  it  becomes  tedious  to  do  by  hand  if  we  want  to  find,  say,  the  next  20  terms.    Fortunately,  your  CAS  calculator  can  semi-­‐automate  the  process.  

 

Graphs  of  arithmetic  sequences    

If  we  plot  the  values  of  the  terms  of  an  arithmetic  sequence  (Vn)  against  their  number  (n)  or  position  in  the  sequence,  we  will  find  that  the  points  lie  on  a  straight  line.  An  upward  slope  indicates  regular  growth  and  a  downward  slope  reveals  decay  at  a  constant  rate.    A  line  with  positive  slope  rises  from  left  to  right.  A  negative  slope  falls  from  left  to  right.    

NUMBER PATTERNS AND RECURSION

Page 5

Exercise  1.  

1.   Find  the  required  terms  from  the  sequence:  6,  11,  16,  21,  26,  31.  .  .    

a)  V1       b)  V3       c)  V4       d)  V5       e)  V2       f)  V0    

 

2.   For  each  sequence  state  the  value  of  the  named  terms:       i)  V1   ii)    V3   iii)    V0  

a)  6,  10,  14,  18,  ...        

b)  2,  8,  32,  128,  ...          

c)  29,  22,  15,  8,  ...        

d)  96,  48,  24,  12,  ...        

 3.   Find  out  which  of  the  sequences  below  is  arithmetic.  Give  the  common  difference  for  each  sequence  that  is  arithmetic.  

a)  8,  11,  14,  17,  ...         b)  7,  15,  22,  30,  ...         c)  11,  7,  3,  −1,  ...      

 

 

d)  12,  9,  6,  3,  ...         e)  16,8,4,2,  ...           f)  1,  1,  1,  1,  ...      

 

 

4.     For  each  of  these  arithmetic  sequences,  find  the  common  difference  and  the  5th  term.    

a)  5,  11,  17,  23,  ...         b)  17,  13,  9,  5,  ...         c)  11,  15,  19,  23,  ...

d)  8,  4,  0,  −4,  ...         e)  35,  30,  25,  20,  ...         f)  1.5,  2,  2.5,  3,  ...    

 

5.     Give  the  next  two  terms  in  each  of  these  arithmetic  sequences.

a)  17,  23,  29,  35,  ...       b)  14,  11,  8,  5,  ...         c)  2,  1.5,  1.0,  0.5,  ...      

 

 

d)  27,  35,  43,  51,  ...       e)  33,  21,  9,  −3,  ...         f)  0.8,  1.1,  1.4,  1.7,  ...    

   

GENERAL MATHEMATICS 2017

Page 6

6.     Using  your  CAS  calculator:  a)   Generate  the  first  six  terms  of  the  arithmetic  sequence:  1,  6,  11...and  write  down  V5.  

 

b)   Generate  the  first  12  terms  of  the  arithmetic  sequence:  45,  43,  41...  and  write  down  V12.    

 

c)   Generate  the  first  10  terms  of  the  arithmetic  sequence:  15,  14,  13,  ...  and  write  down  V10.  

 

d)   Generate  the  first  15  terms  of  the  arithmetic  sequence:  0,  3,  6,  ...  and  write  down  V15.      

 

7.   The   number   of   sticks   used   to   make   the   hexagonal  patterns  opposite  form  the  arithmetic  sequence:  6,  11,  16,  .  .  .    

a)    Write  the  common  difference  for  this  sequence.

 

b)    Using  your  CAS  calculator,  determine  the  number  of  matches  needed  to  form:    

i)  pattern  6           ii)  pattern10    

 

8.  After  one  week  of  business  Fumbles  Restaurant  had  320  wine  glasses.After  two  weeks,  they  only  had   305  wine   glasses.   On   average   15   glasses   are   broken   each  week.Use   your   CAS   calculator,   to  determine  how  many  weeks  it  takes  at  that  breakage  rate  for  there  to  be  only  200  glasses  left?  

 

 

 

9.  Elizabeth  stored  350  songs  on  her  phone  in  the  first  month.  In  each  month  that  followed  she  stored  35  more  songs.Using  your  CAS  calculator:  

a)     determine  the  number  of  songs  she  had  stored  after  each  of  the  first  4  months  

 

b)     determine  the  number  of  songs  she  had  stored  by  the  end  of  the  first  year.    

 

   

NUMBER PATTERNS AND RECURSION

Page 7

10.    a)  Graphing  the  terms  of  the  arithmetic  sequence  4,  7,  10,  .  .  .    i.   Construct  a  table  showing  the  term  number  (n)  and  its  value  (tn)  for  the  first  five  terms  in  the  

sequence.          ii.  Use  the  table  to  plot  the  graph.      

 

 

 

 

 

 

 

iii.  Describe  the  graph.      

 

b)  Graphing  the  terms  of  the  arithmetic  sequence  9,  7,  5,  .  .  .    i.   Construct  a  table  showing  the  term  number  (n)  and  its  value  (tn)  for  the  first  five  terms  in  the  

sequence.          ii.Use  the  table  to  plot  the  graph.      

 

 

 

 

 

 

 

iii.Describe  the  graph.      

GENERAL MATHEMATICS 2017

Page 8

2.  Using  a  Recurrence  Relation  to  generate  and  analyse  an  arithmetic  sequence    Generating  the  terms  of  a  first-­‐order  recurrence  relations  

A  first-­‐order  recurrence  relation  relates  a  term  in  a  sequence  to  the  previous  term  in  the  same  sequence.  To  generate  the  terms  in  the  sequence,  only  the  initial  term  is  required.  A  recurrence  relation  is  a  mathematical  rule  that  we  can  use  to  generate  a  sequence.  It  has  two  parts:  

1.   a  starting  point:  the  value  of  one  of  the  terms  in  the  sequence    2.   a  rule  that  can  be  used  to  generate  successive  terms  in  the  sequence.  

For  example,  in  words,  a  recursion  rule  that  can  be  used  to  generate  the  sequence:  10,  15,  20,  ...can  be  written  as  follows:    

1.   Start  with  10.  2.   To  obtain  the  next  term,  add  5  to  the  current  term  and  repeat  the  process.    

A  more  compact  way  of  communicating  this  information  is  to  translate  this  rule  into  symbolic  form.  We  do  this  by  defining  a  subscripted  variable.  Here  we  will  use  the  variable  Vn,  but  the  V  can  be  replaced  by  any  letter  of  the  alphabet.    

Let  Vn  be  the  term  in  the  sequence  after  n  iterations*.  Using  this  definition,  we  now  proceed  to  translate  our  rule  written  in  words  into  a  mathematical  rule.    

Starting  value  (n=0)   Rule  for  generating  the  next  term   Recurrence  relation  

(two  parts:  starting  value  plus  rule)  

V0=10    

Vn+1=Vn+5  Next  term  =current  term  +5  

V0=10                              Vn+1=Vn+5                Starting  value                            rule  

Note:  Because  of  the  way  we  defined  Vn,  the  starting  value  of  n  is  0.  At  the  start  there  have  been  no  applications  of  the  rule.  This  is  the  most  appropriate  starting  point  for  financial  modelling.    

Example 2 For  the  sequence  2,  7,  12,  17,  …  

a)   Determine  if  it  is  an  arithmetic  sequence  𝑑 = 𝑎𝑛𝑦  𝑡𝑒𝑟𝑚 −  𝑡ℎ𝑒  𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠  𝑡𝑒𝑟𝑚     Yes  it  is  arithmetic  𝑑 = 𝑉8 −  𝑉9 = 7 − 2 = 5  𝑑 = 𝑉: −  𝑉8 = 12 − 7 = 5  

b)   Hence, if it is an arithmetic sequence, state the common difference

hence  𝑑 = 5

c)   State the Recurrence Relation for the sequence Recurrence relation 𝑉9 = 2,                  𝑉?@8 = 𝑉? + 𝑑, here 𝑑 = 5 so: 𝑇ℎ𝑒  𝑅𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒  𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛  𝑖𝑠:  𝑉9 = 2,          𝑉?@8 = 𝑉? + 5

d)   Using your CAS list the first 10 terms of the sequence (hint 𝑛 = 0 → 𝑛 = 9)

 

*Each  time  we  apply  the  rule  it  is  called  an  iteration.

NUMBER PATTERNS AND RECURSION

Page 9

The  importance  of  the  Starting  Term  

In  the  example  2  above,  If  the  same  rule  is  used  with  a  different  starting  point,  it  will  generate  different  sets  of  numbers.  Example  2   𝑉I = 2, 𝑉?@8 = 𝑉? + 5     The  first  five  terms  were:   2,  7,  12,  17,  22  

If  V0  =1         then,  they  would  be:       1,  6,  11,  16,  21  If  V0  =3         then,  they  would  be:       3,  8,  13,  18,  23  

Here  you  can  clearly  see  that  the  effect  the  value  of  the  starting  point  has.  Hence,  a  recurrence  relation  MUST  have  it’s  starting  value  stated  at  ALL  TIMES  

Finding  other  Terms  in  a  recurrence  relation  (A  General  Rule)  We can also use recurrence relations to find previous terms, but we need two pieces of information

1.   The rule, in terms of Vn+1 and Vn 2.   The term number and its value. i.e. n=2 and V2=10 (note if n=0, 1, 2, … then n=2 is the 3rd term)

Finding  the  𝑛th  term  in  an  arithmetic  sequence    

In  Example  2(a),  above,  the  sequence  is  4, 7, 10, 13, …  where  𝑉9 = 4  and  𝑑 = 3.  Writing  this  out  gives:  

𝑉9 = 4            = 𝑉9 + 𝟎×3 = 4  𝑉𝟏 = 𝑉9 + 3 = 𝑉9 + 3                                                = 𝑉9 + 𝟏×3 = 7  𝑉𝟐 = 𝑉8 + 3 = 𝑉9 + 3 + 3                                = 𝑉9 + 𝟐×3 = 10  𝑉𝟑 = 𝑉: + 3 = 𝑉9 + 3 + 3 + 3                 = 𝑉9 + 𝟑×3 = 13  𝑉𝟒 = 𝑉; + 3 = 𝑉9 + 3 + 3 + 3 + 3 = 𝑉9 + 𝟒×3 = 16  

We  can  see  that  a  pattern  has  emerged,  that  is:    

𝑉? = 𝑉9 + 𝑛×𝑑, where  𝑉?   the  𝑛th  term,    

  𝑉9  is  the  starting  term,    𝑑  =  common  difference    𝑛  =  position  number  of  the  term.  

Example 3- Finding the nth term of an arithmetic sequence

a)   Find t5, the 5th term in the arithmetic sequence: 21, 18, 15, 12, . . .

b)   Find t10, the 10th term in the arithmetic sequence: 9, 7, 5, …

GENERAL MATHEMATICS 2017

Page 10

Exercise  2.  

1.   a)  Generate  and  graph  the  first  five  terms  of  the  sequence  defined  by  the  recurrence  relation:  𝑉0

 

= 15,  𝑉?@8

 

= 𝑉?

 

+ 5  where  𝑛 ≥ 1.            b)  Calculate  the  value  of  the  45th  term  in  the  sequence.            

2.     a)  Generate  and  graph  the  first  five  terms  of  the  sequence  defined  by  the  recurrence  relation:    𝑉0

 

= 60,  𝑉?@8

 

= 𝑉?

 

− 5  where  𝑛 ≥ 1.          b)  Calculate  the  value  of  the  10th  term  in  the  sequence.  

 3.     a)  Generate  and  graph  the  first  five  terms  of  the  sequence  defined  by  the  recurrence  relation:       𝑉9=15,  𝑉?@8 = 𝑉𝑛

 

+ 35  where  𝑛 ≥ 1.  

        b)  Calculate  the  value  of  the  15th  term  in  the  sequence.  

       

NUMBER PATTERNS AND RECURSION

Page 11

4.   The  Llama  shapes  have  been  made  using  blocks.    

             Llama    0   Llama    1   Llama  2        

Let  𝐵𝑛  be  the  number  of  blocks  used  to  make  the  𝑛th  Llama  shape.The  number  of  blocks  used  to  make  each  Llama  shape  is  generated  by  the  recurrence  relation:    

𝐵9

 

=  7,    𝐵?@8

 

=  𝐵?

 

+  4    a)   Count  and  record  the  number  of  blocks  used  to  make  the  first,  second  and  third  Llama  shapes.    

   

b)   Use   the   recurrence   relation   for   Bn   to   generate   the   first   five   terms   of   the   sequence   of  perimeters  for  these  shapes.    

   

c)   Use  a  rule  to  calculate  the  number  of  blocks  needed  to  make  the  Llama  8  shape.        5.   The  BBQ  shapes  have  been  made  using  blocks,  each  with  a  side  length  of  1  unit.    

 BBQ  0     BBQ  1     BBQ  2  

The  perimeter  of  each  BBQ  shape  can  be  found  by  counting  the  sides  of  the  blocks  around  the  outside  of  the  shape.Let  Pn  be  the  perimeter  of  the  nth  BBQ  shape.The  perimeters  for  this  sequence  of  BBQ  shapes  is  generated  by  the  recurrence  relation:    

𝑃9

 

=  16,  𝑃?@8

 

=  𝑃𝑛

 

+  6  a)   Count  and  record  the  perimeters  of  the  first,  second  and  third  BBQ  shapes.    

   

b)   Use  the  recurrence  relation  for  Pn  to  generate  the  first  four  terms  of  this  sequence  of  perimeters.    

   

c)   Draw  the  fourth  BBQ  shape,  find  its  perimeter  and  check  if  the  recurrence  relation  correctly  predicted  the  perimeter.  

   

d)   Use  the  rule  for  the  nth  term  for  this  sequence  to  predict  the  perimeter  of  the  10th  BBQ  shape  (𝑃89).    

GENERAL MATHEMATICS 2017

Page 12

3.  Geometric  sequences    The  common  ratio,  r    

In  a  geometric  sequence,  each  new  term  is  made  by  multiplying  the  previous  term  by  a  fixed  number  called  the  common  ratio,  r.  This  repeating  or  recurring  process  is  another  example  of  a  sequence  generated  by  recursion.    In  the  sequence:    

 each  new  term  is  made  by  multiplying  the  previous  term  by  3.  The  common  ratio  is  3.    In  the  sequence:    

    64   32                      16           8                      4    

 each  new  term  is  made  by  halving  the  previous  term.  In  this  sequence,  we  are  multiplying  each  term  by  ×8

:,  which  is  equivalent  to  dividing  by  2.  The  common  ratio  is  8

:.  New  terms  in  a  geometric  sequence  

𝑉9, 𝑉8, 𝑉;, 𝑉W,  …  are  made  by  multiplying  the  previous  term  by  the  common  ratio,  𝑟.      

Common  Ratio,  𝒓  In  a  geometric  sequence,  the  common  ratio,  𝑟,  is  found  by  dividing  the  next  term  by  the  current  term.  

𝐶𝑜𝑚𝑚𝑜𝑛  𝑅𝑎𝑡𝑖𝑜, 𝑟 =𝑐𝑢𝑟𝑟𝑒𝑛𝑡  𝑡𝑒𝑟𝑚𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠  𝑡𝑒𝑟𝑚 =

𝑉8𝑉9=𝑉:𝑉8=𝑉;𝑉:= ⋯  

Note:  we  will  only  consider  values  of  𝑟 > 0  (consider  what  happens  if  𝑟 < 0)  

 Example 4 Find  the  common  ratio  in  each  of  the  following  geometric  sequences.    

a)   3,  12,  48,  192,  ...    

 

 

 

 

 

 

b)   81,  27,  9,  3,  …  

   

NUMBER PATTERNS AND RECURSION

Page 13

Identifying  geometric  sequences    

To  identify  a  sequence  as  a  geometric  sequence,  it  is  necessary  to  find  the  ratio  between  multiple  pairs  of  successive  terms.  If  they  are  common  (the  same),  then  it  is  a  geometric  sequence.  

Example 5 Which  of  the  following  sequences  are  geometric  sequences?    

a)   2,  10,  50,  250,  ...    

 

 

 

 

 

 

b)   3,  6,  18,  36,  …  

 

Using  repeated  multiplication  on  a  CAS  calculator  to  generate  a  geometric  sequence    

As  we  have  seen,  using  a  recursive  rule  based  on  repeated  multiplication,  such  as  ‘to  find  the  next  term,  multiply   by   2’,   is   a   quick   and   easy   way   of   generating   the   next   few   terms   of   an   geometric  sequence.  It  would  be  tedious  to  find  the  next  50  terms.    Fortunately,   your   CAS   calculator   can   semi-­‐automate   the   process   of   performing  multiple   repeated  multiplications  and  do  this  very  quickly.    

   

GENERAL MATHEMATICS 2017

Page 14

Graphs  of  geometric  sequences    

In  contrast  with  the  straight-­‐line  graph  of  an  arithmetic  sequence,  the  values  of  a  geometric  sequence  lie  along  a  curve.  Graphing  the  values  of  a  sequence  is  a  valuable  tool  for  understanding  applications  involving  growth  and  decay.    

 In  the  graph  above  the  sequence  2,  4,  8,  16,  32,  64,  128,  256,  …  is  an  example  of  geometric  growth  where  𝒓 = 𝟐.  In  the  graph  above  the  sequence  256,  128,  64,  32,  16,  8,  4,  2,  …  is  an  example  of  geometric  decay  where  𝒓 = 𝟏

𝟐    

 

Graphs  of  Geometric  Sequences  

Graphs  of  Geometric  Sequences  (for  𝑟 > 0, i. e. 𝑟  𝑖𝑠  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)  

§   increasing  when  𝑟  is  greater  than  1,  𝑟 > 0  

§   decreasing  towards  zero  when  𝑟  is  between  0  and  1,  0 < 𝑟 < 1.  

 

Exercise  3  

1.   Find  out  which  of   the   following   sequences  are  geometric.  Give   the   common   ratio   for  each  sequence  that  is  geometric.    a)   4,  8,  16,  32,  ... b)   1,  3,  9,  27,  …   c)   5,  10,  15,  20,  …   d)   5,  15,  45,  135,  …  

     e)   24,  12,  6,  3,  ... f)   3,  6,  12,  18,  …   g)   4,  8,  12,  16,  …   h)   2,  4,  8,  16…  

       

NUMBER PATTERNS AND RECURSION

Page 15

2.   Find  the  missing  terms  in  each  of  these  geometric  sequences.  a)   7,  14,  28,  __,  __,  ... b)   3,  15,  75,  __,  __,  …   c)   4,  12,  __,  __,  324,  …  

 

 

 

d)   __,  __,  20,  40,  80,  …   e)   2,  __,  32,  128,  __,  ... f)   3,  __,  27,  __,  243,  729,  …  

     3.   Use  your  graphics  calculator  to  generate  each  sequence  and  find  𝑉c,  the  sixth  term.    

a)   7,  35,  175,  ... b)   3,  18,  108,  …     c)   96,  48,  24,  …  

   

 

d)   4,  28,  196,  …     e)   160,  80,  40,  ... f)   11,  99,  891,  …  

     4.     Consider  each  of  the  geometric  sequences  below.    

i.  Find  the  next  two  terms. ii.  Show  the  terms  in  a  graph.     iii.  Describe  the  graph.    

a)   3,  6,  12,  ...              

 

 

b)    8,  4,  2,  ...              

 

     

GENERAL MATHEMATICS 2017

Page 16

4.  Using  a  recurrence  relation  to  generate  and  analyse  a  geometric  sequence    Consider  the  geometric  sequence  below:  2,  6,  18,  ...    We  can  continue  to  generate  the  terms  of  this  sequence  by  recognising  that  it  uses  the  rule:  ‘to  find  the  next  term  multiply  the  current  term  by  3  and  keep  repeating  the  process’. A  recurrence  relation  is  a  way  of  expressing  this  rule  in  a  precise  mathematical  language.    The  recurrence  relation  that  generates  that  sequence  2,  6,  18,  .  .  .  is:  

𝑉0

 

=  2,          𝑉?@8 =  3×𝑉𝑛  The   rule   tells  us   that:‘the   first   term   is  2,  and  each   subsequent   term   is  equal   to   the  current   term  multiplied  by  3’.    Understanding  this,  we  proceed  to  generate  the  sequence  term-­‐by-­‐term  as  follows:    

𝑉9 = 𝟐  𝑉8 = 𝑉9×3 = 𝟐×3 = 𝟔  𝑉: = 𝑉8×3 = 𝟔×3 = 𝟏𝟖  𝑉; = 𝑉:×3 = 𝟏𝟖×3 = 𝟓𝟒  𝑉W = 𝑉;×3 = 𝟓𝟒×3 = 𝟏𝟔𝟐  and  so  on  

 

The  recurrence  relation  for  generating  a  geometric  sequence  is:         𝑡ℎ𝑒  𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔  𝑡𝑒𝑟𝑚    𝑉9,                            𝑉?@8 = 𝑉?×𝑟,

where  𝑉?   the  𝑛th  term,       𝑉9  is  the  starting  term,    

𝑟  =  common  ratio    𝑛  =  position  number  of  the  term.  

Example 6 Generate  the  recurrence  relation  for  the  following  geometric  sequences    

a)   4,  8,  16,  32,  ...  

 

 

 

 

 

 

 

 

 

 

b)   1,  3,  9,  27,  …   c)   5,  10,  15,  20,  …  

   

NUMBER PATTERNS AND RECURSION

Page 17

General  form  of  the  recurrence  relation  for  a  Geometric  Sequence  

Considering  the  sequence  above:  2,  6,  18,  ...  𝑉9 = 𝟐  𝑉8 = 𝑉9×3 = 𝑉9×3 = 𝑉9×3𝟏 = 𝟔  𝑉𝟐 = 𝑉8×3 = 𝑉9×3×3 = 𝑉9×3𝟐 = 𝟏𝟖  𝑉𝟑 = 𝑉:×3 = 𝑉9×3×3×3 = 𝑉9×3𝟑 = 𝟓𝟒  𝑉𝟒 = 𝑉;×3 = 𝑉9×3×3×3×3 = 𝑉9×3𝟒 = 𝟏𝟔𝟐  and  so  on  

 

The  nth  term  of  geometric  sequence  can  be  found  by  the  recurrence  relation:         𝑡ℎ𝑒  𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔  𝑡𝑒𝑟𝑚    𝑉9,                            𝑉? = 𝑉9×𝑟?,

where  𝑉?   the  𝑛th  term,       𝑉9  is  the  starting  term,    

𝑟  =  common  ratio    𝑛  =  position  number  of  the  term.  

 Example 7 a)   Generate  the  first  5  terms  of  the  sequence  defined  by  the  recurrence  relation: 𝑉9 = 5, 𝑉?@8 = 2×𝑉𝑛    

               b)   Graph  the  first  5  terms                        c)   Write  down  a  general  recurrence  rule  to  calculate  the  value  of  the  nth  term  in  the  sequence  and  

use  it  to  find  𝑉89.    

     

GENERAL MATHEMATICS 2017

Page 18

Exercise  4.  

1.  a)   Generate  first  five  terms  of  the  geometric  sequence  defined  by  the  recurrence  relation:    𝑡0

 

=  1000,          𝑡𝑛

+

1

 

=  1.1𝑡𝑛.            

b)   Write  down  a  general  recurrence  rule  to  calculate  the  value  of  the  nth  term  in  the  sequence  and  use  it  to  find  13th  term  in  the  sequence  correct  to  two  decimal  places.          2.  a)     Generate  the  first  five  terms  of  the  geometric  sequence  defined  by  the  recurrence  relation:    

𝑡0

 

=  256, 𝑡?@8

 

=  0.5𝑡𝑛.  

b)     Write  down  a  general  recurrence  rule  to  calculate  the  value  of  the  nth  term  in  the  sequence  and  use  it  to  find  10th  term  in  the  sequence.          3.  a)   Generate  the  first  five  terms  of  the  geometric  sequence  defined  by  the  recurrence  relation:  

𝑡1

 

=  10  000, 𝑡?@8

 

=  1.25𝑡?.     Give  values  to  the  nearest  whole  number.          

b)      Write  down  a  general  recurrence  rule  to  calculate  the  value  of  the  nth  term  in  the  sequence  and  use  it  to  find  25th  term  in  the  sequence.                  

NUMBER PATTERNS AND RECURSION

Page 19

4.     A  sheet  of  paper  is  in  the  shape  of  a  rectangle.  When  the  sheet  is  folded  once  and  opened,  2  rectangles  are  formed  either  side  of  the  crease.  When  a  sheet  is  folded  twice  and  opened,  4  rectangles  are  created,  and  so  on.

 Note:  in  the  above  diagram,  𝑛 = 0  and  hence  𝐹9  are  not  shown  because  that  is  just  the  unfolded  paper  

Let  𝐹𝑛  be  the  number  of  rectangles  created  by  n  folds.The  sequence  for  the  number  of  rectangles  created  is  generated  by  the  recurrence  relation:    

𝐹0

 

= 1,        𝐹?@8 = 2𝐹𝑛  a)  Use  the  recurrence  relation  for  𝐹𝑛  to  generate  the  first  five  terms  of  the  sequence.    

 

b)  Write  down  a  general  recurrence  relation  for  the  𝑛th  term  in  the  sequence  and  use  it  to  calculate  the  number  of  rectangles  after  5  𝑎𝑛𝑑  10  folds.  

       

c)   Using  your  calculator,  generate  the  terms  of  the  sequence  to  check  your  answer  to  b).            

6.     As  a  park  ranger,  Megan  has  been  working  on  a  project  to  increase  the  number  of  rare  native  orchids  in  Wilsons  Promontory  National  Park.    At   the  start  of   the  project,  a  survey  found  200  of   the  orchids   in  the  park.   It   is  assumed  from  similar  projects  that  the  number  of  orchids  will  increase  by  about  18%  each  year.    a)  State  the  first  term  𝑉9,  and  the  common  ratio  𝑟,  for  the  geometric  sequence  

for  the  number  of  orchids  each  year.      

b)  Find  a  rule  for  the  number  of  orchids  at  the  start  of  the  𝑛th  year.          

c)  How  many  orchids  are  predicted  in  10  years’  time?        

GENERAL MATHEMATICS 2017

Page 20

Chapter  Summary  Sequence     A  sequence  is  a  list  of  numbers  in  a  particular  order.    

Arithmetic  sequence    

 

In  an  arithmetic  sequence,  each  new  term  is  made  by  adding  afixed  number,  called  the  common  difference,  d,  to  the  previous  term.    

Example:  3,  5,  7,  9,  .  .  .  is  made  by  adding  2  to  each  term.    

The  common  difference,  d,  is  found  by  taking  any  term  and  subtracting  its  previous  term,  e.g.  V1  –  V0.In  our  example  above,  d  =  5  −  3  =  2.    

Recurrence  relation  for  an  arithmetic  sequence    

 

A  recurrence  relation  for  an  arithmetic  sequence  has  the  form    

𝑉0 = 𝑎, 𝑉?@8 = 𝑉𝑛 + 𝑑  

where  d  =  common  difference  and  a  =  first  term.  In  our  example:    

𝑉0

 

= 3, 𝑉?@8 = 𝑉?

 

+ 2

General  Rule  for  finding  Vn,  the  nth  term  in  an  arithmetic  sequence:    

𝑉𝑛

 

= 𝑉9 + 𝑛×𝑑  

To  find  𝑉?  in  our  example:  put  𝑛 = 10, 𝑎 = 3, 𝑑 = 2    

𝑉? =  3 + 10×2   =  23    

The  graph  of  an  arithmetic  sequence:  "  values  lie  along  a  straight  line    

•   Increasing  values  when  d>0  (positive  slope)  •   Decreasing  values  when  d<0  (negative  slope)    

Linear  growth  &  decay    

An  arithmetic  sequence  can  be  used  to  model  linear  growth  (d  >  0)  or  linear  decay  (d  <  0).    

 

Geometric  sequence    

 

In  a  geometric   sequence,  each   term   is  made  by  multiplying   the  previous   term  by  a   fixed  number,  called  the  common  ratio,  𝑟.    Example:  5, 20, 80, 320, . ..  is  made  by  multiplying  each  term  by  4.    

The  common  ratio,  r,  is  found  by  dividing  any  term  by  its  previous  term,    

e.g.  𝑟 = nonp=  nq

no= nr

nq…    

In  our  example:  𝑟 = nonp= :9

c= 4  

Recurrence  relation  for  a  geometric  sequence    

 

Recurrence  relation  for  a  geometric  sequence:    

𝑉9

 

= 𝑎, 𝑉?@8 = 𝑟×𝑉?  where  r  =  common  ratio  and  a  =  first  term.  In  our  example:    

𝑉9

 

= 5,        𝑉?@8 = 4×𝑉? General  Rule  for  finding  𝑡𝑛,  the  𝑛th  term,  in  a  geometric  sequence:    

𝑉? = 𝑉9×𝑟?where  𝑉9 =first  term  and  𝑟  =  common  ratio.  

To  find  𝑉s  in  our  example:  put  𝑛 = 6,  𝑎 = 5,  𝑟 = 4  into:  𝑉? = 5×4s = 20,480  The  graph  of  a  geometric  sequence:    

Values  increase  when  𝑟 > 1  Values  decrease  towards  zero  when  0 < 𝑟 < 1  

NUMBER PATTERNS AND RECURSION

Page 21

Table  of  Contents  Topic  4:  Number  Patterns  and  Recursion  ...............................................................................................  1  

This  topic  includes:  .................................................................................................................................  1  Key  knowledge  .......................................................................................................................................  1  Key  skills  .................................................................................................................................................  1  

1.  Sequences  ..........................................................................................................................................  2  

Randomly  generated  sequences  ............................................................................................................  2  Rule  based  Sequences  ............................................................................................................................  2  Naming  the  terms  in  a  sequence  ............................................................................................................  2  Arithmetic  sequences  .............................................................................................................................  3  Example  1  ...............................................................................................................................................  3  Using  repeated  addition  on  a  CAS  calculator  to  generate  a  sequence  ..................................................  4  Graphs  of  arithmetic  sequences  ............................................................................................................  4  Exercise  1.  ..............................................................................................................................................  5  

2.  Using  a  Recurrence  Relation  to  generate  and  analyse  an  arithmetic  sequence  ................................  8  

Generating  the  terms  of  a  first-­‐order  recurrence  relations  ...................................................................  8  Example  2  ...............................................................................................................................................  8  The  importance  of  the  Starting  Term  .....................................................................................................  9  Finding  other  Terms  in  a  recurrence  relation  (A  General  Rule)  .............................................................  9  Finding  the  nth  term  in  an  arithmetic  sequence  ....................................................................................  9  Example  3-­‐  Finding  the  nth  term  of  an  arithmetic  sequence  .................................................................  9  Exercise  2.  ............................................................................................................................................  10  

3.  Geometric  sequences  .......................................................................................................................  12  

The  common  ratio,  r  .............................................................................................................................  12  Example  4  .............................................................................................................................................  12  Identifying  geometric  sequences  .........................................................................................................  13  Example  5  .............................................................................................................................................  13  Using  repeated  multiplication  on  a  CAS  calculator  to  generate  a  geometric  sequence  ......................  13  Graphs  of  geometric  sequences  ...........................................................................................................  14  Exercise  3  .............................................................................................................................................  14  

4.  Using  a  recurrence  relation  to  generate  and  analyse  a  geometric  sequence  ..................................  16  

Example  6  .............................................................................................................................................  16  General  form  of  the  recurrence  relation  for  a  Geometric  Sequence  ...................................................  17  Example  7  .............................................................................................................................................  17  Exercise  4.  ............................................................................................................................................  18  

Table  of  Contents  .................................................................................................................................  21  

GENERAL MATHEMATICS 2017

Page 22

Modelling  practical  situations  (linear  growth  and  decay)    Linear   growth   and   decay   is   commonly   found   around   the   world.   They   occur   when   a   quantity   increases   or  decreases  by  the  same  amount  at  regular  intervals.  Everyday  examples  include  the  paying  of  simple  interest  or  the  depreciation  of  the  value  of  a  new  car  by  a  constant  amount  each  year.    

An  example  of  linear  growth  is  the  investment  of  money,  such  as  putting  it  in  a  savings  account  where  the  sum  increases  over  time.  

An  example  of  linear  decay  is  the  money  owned  to  repay  a  loan,  the  sum  of  money  owned  will  decrease  over  time.    

Example 4: Jelena puts $5000 into an investment that earns simple interest at a rate of $50 per month. (a)  Set up a recurrence relation that represents Jelena’s situation as an arithmetic sequence, where Vn+1

is the amount in Jelena’s account after n months. (b)  Use your equation from part (a) to determine the amount in Jelena’s account at the end of each of

the first 6 months.

n Vn d Vn+1=Vn+d

n = 0 V1 =

n = 1 V2 =

n = 2 V3 =

n = 3 V4 =

n = 4 V5 =

n = 5 V6 =

(c)  Calculate the amount in Jelena’s account at the end of 18 months

n = 18, V18 =

NUMBER PATTERNS AND RECURSION

Page 23

Depreciating assets Many items, such as electronic equipment, depreciate over time because of wear and tear. Unit cost depreciation is a way of calculating the value of depreciation according to its use. For example, the value of a cars depreciation is based on how many kilometres it has driven. The value of an item at any given time can be calculated and is referred to as its future value. The write-off value or scrap value of an asset is the point at which the asset is effectively worthless, that is when the value is equal to $0 due to depreciation.

  Example 5: Loni purchases a new car for $25000 and decides to depreciate it at a rate of $0.20 per km. (a)  Set up an equation to determine the value of the car after n km of use. (b)  Use your equation from part (a) to determine the future value of the car after it has 7500km on its

clock.