2017-01 computational thinking requirement final clean · 2017-04-13 · 1 a computational thinking...

24
1 A computational thinking requirement for MIT undergraduates Report of the working group on computational thinking January 2017 Summary of findings: During the spring of 2016, Chair of the Faculty Krishna Rajagopal and Dean for Undergraduate Education Denny Freeman assembled a group of faculty, representing all five schools of the Institute, to conduct an in-depth study of the role of “algorithmic reasoning/computational thinking” in the context of the education of MIT undergraduates. The group was asked to consider a set of questions relating to this topic, including whether formal exposure to algorithmic/computational thinking should be required of all MIT undergraduate students. A summary of the key findings of the working group includes: Computational thinking should play an explicit role in the formal education of all undergraduate students at MIT. Computational thinking provides a distinct type of rigorous thought of important intellectual value; it requires and develops important modes of communication; it acknowledges the need to understand the transformational impact of computation in other disciplines; and it creates opportunities and access for our students and graduates. In response to varied community interpretations of the topic, the working group developed a notion of computational thinking and algorithmic reasoning, defining them both in and of themselves and in relation to other modes of thought. This notion includes the assertion that computational thinking is broader than a proficiency in computer programming, although programming languages provide a particularly useful framework for understanding the fundamentals and applications of computational thinking. While a significant portion of the student body currently takes a relevant course in computation, coverage is not universal. The working group believes that just as every student learns critical thinking and inductive and deductive reasoning as pathways to analysis, understanding and discovery through their humanities, arts and social science subjects and through the current science General Institute Requirements, so too should every student learn computational thinking. Thus, the working group recommends that all undergraduates be required to take at least one subject offering in computation. Computational thinking involves more than the skill of computer programming or the ability to use computer tools; it includes fundamental modes of reasoning about the rendering of physical or social systems in a

Upload: others

Post on 24-Jun-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2017-01 computational thinking requirement FINAL CLEAN · 2017-04-13 · 1 A computational thinking requirement for MIT undergraduates Report of the working group on computational

1

AcomputationalthinkingrequirementforMITundergraduates

Reportoftheworkinggrouponcomputationalthinking

January2017Summaryoffindings:Duringthespringof2016,ChairoftheFacultyKrishnaRajagopalandDeanforUndergraduateEducationDennyFreemanassembledagroupoffaculty,representingallfiveschoolsoftheInstitute,toconductanin-depthstudyoftheroleof“algorithmicreasoning/computationalthinking”inthecontextoftheeducationofMITundergraduates.Thegroupwasaskedtoconsiderasetofquestionsrelatingtothistopic,includingwhetherformalexposuretoalgorithmic/computationalthinkingshouldberequiredofallMITundergraduatestudents.Asummaryofthekeyfindingsoftheworkinggroupincludes:

• ComputationalthinkingshouldplayanexplicitroleintheformaleducationofallundergraduatestudentsatMIT.Computationalthinkingprovidesadistincttypeofrigorousthoughtofimportantintellectualvalue;itrequiresanddevelopsimportantmodesofcommunication;itacknowledgestheneedtounderstandthetransformationalimpactofcomputationinotherdisciplines;anditcreatesopportunitiesandaccessforourstudentsandgraduates.

• Inresponsetovariedcommunityinterpretationsofthetopic,theworkinggroupdevelopedanotionofcomputationalthinkingandalgorithmicreasoning,definingthembothinandofthemselvesandinrelationtoothermodesofthought.Thisnotionincludestheassertionthatcomputationalthinkingisbroaderthanaproficiencyincomputerprogramming,althoughprogramminglanguagesprovideaparticularlyusefulframeworkforunderstandingthefundamentalsandapplicationsofcomputationalthinking.

• Whileasignificantportionofthestudentbodycurrentlytakesarelevantcourseincomputation,coverageisnotuniversal.Theworkinggroupbelievesthatjustaseverystudentlearnscriticalthinkingandinductiveanddeductivereasoningaspathwaystoanalysis,understandinganddiscoverythroughtheirhumanities,artsandsocialsciencesubjectsandthroughthecurrentscienceGeneralInstituteRequirements,sotooshouldeverystudentlearncomputationalthinking.Thus,theworkinggrouprecommendsthatallundergraduatesberequiredtotakeatleastonesubjectofferingincomputation.

• Computationalthinkinginvolvesmorethantheskillofcomputerprogrammingortheabilitytousecomputertools;itincludesfundamentalmodesofreasoningabouttherenderingofphysicalorsocialsystemsina

Page 2: 2017-01 computational thinking requirement FINAL CLEAN · 2017-04-13 · 1 A computational thinking requirement for MIT undergraduates Report of the working group on computational

2

mannerthatenablescomputationalexperimentstocomplementphysicalorsocialones.Formalexposuretotheseconceptsisimportantforallstudents.

• TheworkinggrouprecommendsthattheInstituteproceedwithaconsiderationofmechanismsbywhichacomputationrequirementcouldbeinstitutedforallundergraduatestudents,whileaddressingtheimpactaddinganadditionaldegreerequirementorsubstitutingacurrentrequirementwouldhaveonstudentloadandwhileaddressingtheneedtoconnectcomputationalthinkingtodomain-specificcontextsacrossdifferentintellectualdisciplines.TheworkinggroupalsorecommendsthatthisconsiderationexaminetheimpactofpotentialchangesinrequirementsonABETaccreditationofengineeringdegrees.

• Theworkinggroupreportoutlinesseveralwaysinwhicharequirementincomputationalthinkingmightbeimplemented,andexplorestheadvantagesandchallengesofeachapproach.OptionsforincorporatingacomputationalrequirementmustcarefullyconsiderthetightconstraintsimposedonstudentsbythecurrentInstitute-widerequirementsandbyadditionaldepartmentaldegreerequirements,andshouldavoidaddingasignificantburdenonourstudents.

Page 3: 2017-01 computational thinking requirement FINAL CLEAN · 2017-04-13 · 1 A computational thinking requirement for MIT undergraduates Report of the working group on computational

3

Background:Duringthespringof2016,ChairoftheFacultyKrishnaRajagopalandDeanforUndergraduateEducationDennyFreemanassembledagroupoffaculty,representingallfiveschoolsoftheInstitute,toconductanin-depthstudyofthemeaningofthephrases“algorithmicreasoning”and“computationalthinking”inthecontextoftheeducationofMIT’sundergraduatesacrossallfiveschools.Theirchargetothisgroupincludedthefollowingquestions: 1)Howdofaculty,studentsandalumniindifferentfieldsofendeavor,acrossthefullbreadthrepresentedbyMIT’sfiveschools,usecomputationalthinking?2)What,ifany,isthecommonintellectualframeworkthatpeopleacrossMITemploywhentheyspeakofcomputationalthinkingandalgorithmicreasoning?3)Towhatextentarealgorithmicreasoningandcomputationalthinkingalreadybeingtaught?4)Shouldweacknowledgealgorithmicandcomputationalthinkingasanexplicitexpectationofallourgraduates?5)Ifyes,whatarethekeyelementsofalgorithmicandcomputationalthinkingandwhataretheassociatedlearningobjectivesandmeasurableoutcomesforknowledge,skillsandattitudes?6)Ifyes,doesitmatterwhenduringtheircareersatMITourstudentsareexposedtocomputationalthinkingandalgorithmicreasoning?7)Whatareourpeerinstitutionsdoing?Forallofthesequestions,theworkinggroupwaschargedtoconsiderthediversityofmeanings,ofmodesofknowledge,andoflearningobjectivesacrossMIT’sschoolsandtherangeofendeavorsofourstudentsandalumni.Thisreportsummarizesthefindingsofthegroupinresponsetothesequestions.Basedonthegroup’sfindings,thereportarticulatessomepotentialactionsandchangesinrequirements,anyofwhichwouldadvancethegoalofimprovingthecomputationalthinkingskillsofMITundergraduates.Thereportdoesnotspecifyanyparticularchangeinpolicynorthespecificdetailsnecessarytoimplementanyoftheseimprovements,sincetheserecommendationswerenotpartofthecharge.Process:TheworkinggroupengagedinaseriesofactivitiestosolicitinputfromacrosstheInstitute,includingthefollowing:

Page 4: 2017-01 computational thinking requirement FINAL CLEAN · 2017-04-13 · 1 A computational thinking requirement for MIT undergraduates Report of the working group on computational

4

• TheChairoftheFacultyandtheDeanforUndergraduateEducationsentanemailtoeveryfacultymembersolicitinginput.Theworkinggroupdiscussedthe17responsesreceivedbyemail,aswellasadditionalcommentsandsuggestionsprovidedinpersonbyothers.

• TheChairandDeansentasimilarmessagetothestudentbodyofMIT.Thoughweexpectthatstudentinterestinthetopicishigh,only2responseswerereceivedanddiscussed,perhapsbecauseofthetimingoftheworkinggroup’sactivities.

• Membersoftheworkinggroupcontactedeveryacademicdepartmenthead,andeitherengageddirectlywiththedepartmentheadorwithadesignatedrepresentative,solicitinginputonthequestionsposedinthechargetothegroup.

• TheworkinggroupsoliciteddatafromtheRegistraronrecentenrolmentsofundergraduatestudentsinclassesthatteachandcultivatecomputationalthinking.

• Theworkinggroupexaminedthecurriculaandrequirementsofpeerinstitutions.

• Meetingextensivelyoverthelatespringandsummerterms,theworkinggroupdebatedanddiscussedissuesandoptionsrelatedtothecharge.

• Theworkinggroupissuedadraftreportearlyinthefalltermof2016,andsolicitedcommentsonthisreportfromtheentireMITcommunity.Commentswerereceivedfromindividualfaculty,studentsandalumni.CommentswerealsoreceivedfromtheCommitteeontheUndergraduateProgram,andfromtheAcademicAdvisoryCounciloftheUndergraduateAssociation.Allcommentswerethendiscussedbytheworkinggroupandappropriaterevisionstothereportbasedonthatdiscussionwereincorporatedintothefinalreport.

Whatis“computational/algorithmicthinking”andisitrelevanttotheeducationofeveryMITundergraduatestudent?Theworkinggroupspentconsiderabletimediscussingtheconceptsofcomputationalthinkingandalgorithmicreasoning.Theterm“computationalthinking”datesatleastbacktoSeymourPapertin1980,althoughacommonlyacceptedformaldefinitionofthetermisstillunderdebate.Onecommondefinitionofcomputationalthinking,attributedtoJeannetteWing,is:

thethoughtprocessesinvolvedinformulatingaproblemandexpressingitssolution(s)insuchawaythataninformationprocessor–humanormachine–caneffectivelycarryoutthatsolution.

Suchadefinitionclearlyoverlapswithseveralotherformalizedmodesofthinking(suchasmathematicalorlogical);however,thefocusonadetailed,orderedsequenceofoperationsthatcanbeexecutedinadisciplinedmanner(i.e.,algorithmicdesign)byaninformationprocessordistinguishesthisapproachfrom

Page 5: 2017-01 computational thinking requirement FINAL CLEAN · 2017-04-13 · 1 A computational thinking requirement for MIT undergraduates Report of the working group on computational

5

others.Thisdefinitionalsodistinguishescomputationalthinkingfromcomputerliteracy(theabilitytousecomputationaltoolsasblackboxabstractions)ortheknowledgeofaspecificprogramminglanguage.Whiletheterms“computationalthinking”or“algorithmicreasoning”mayhavedifferentconnotationsindifferentdisciplines,thereisaclearsenseacrosstheInstitutethatthereisacommonexperienceofusingcomputationasamodeofthought,andthatthisismorethanacquisitionofprogrammingskills.Thisperspectivehasbeenarticulatedinthepast,forexample,inthe2010NationalResearchCouncil’sreportonComputationalThinking:

Astheuseofcomputationaldeviceshasbecomewidespread,thereisaneedtounderstandthescopeandimpactofwhatissometimescalledtheInformationRevolutionortheAgeofDigitalInformation…[H]owever,mosteffortshavenotfocusedonfundamentalconcepts.

Thereportcontinuesbylistingthreecommonapproaches(computerliteracy,particularprogramminglanguages,andprogrammingapplications)beforedistinguishingcomputationalthinkingasindependentfromanyofthem:

Butintheviewofmanycomputerscientists,thesethreemajorapproaches—althoughusefulandarguablyimportant—shouldnotbeconfusedwithlearningtothinkcomputationally.Inthisview,computationalthinkingisafundamentalanalyticalskillthateveryone,notjustcomputerscientists,canusetohelpsolveproblems,designsystems,andunderstandhumanbehavior.Assuch,theybelievethatcomputationalthinkingiscomparabletothemathematical,linguistic,andlogicalreasoningthatistaughttoallchildren.Thisviewmirrorsthegrowingrecognitionthatcomputationalthinking(andnotjustcomputation)hasbeguntoinfluenceandshapethinkinginmanydisciplines—Earthsciences,biology,andstatistics,forexample.Moreover,computationalthinkingislikelytobenefitnotonlyotherscientistsbutalsoeveryoneelse—bankers,stockbrokers,lawyers,carmechanics,salespeople,healthcareprofessionals,artists,andsoon.

Theviewsexpressedinthatsummaryloudlyechowhattheworkinggroupfoundinitsowninvestigationsanddiscussions–thatcomputationalthinkinginvolvesmorethantheskillofcomputerprogrammingortheabilitytousecomputertoolssuchasspreadsheetsorvisualizationprograms,andthattheimportanceofagroundingincomputationalthinking,especiallyforMITundergraduates,isbroaderthanspecificdisciplinaryneedsforcomputerprogrammingskills.Whiletheremaynotbeauniversallyaccepteddefinitionofcomputationalthinking,whiletheparticularinstantiationofthatideamayvarywiththespecificsofadiscipline,andwhiletherearecleartiesbetweencomputationalthinkingandotherformsofreasoning(mathematical,logical,linguistic),thereisalsoawidelysharedsenseamongthefacultyacrosstheInstitutethatanunderstandingofthe

Page 6: 2017-01 computational thinking requirement FINAL CLEAN · 2017-04-13 · 1 A computational thinking requirement for MIT undergraduates Report of the working group on computational

6

foundationsandtoolsofcomputation–e.g.,abstraction,modularity,recursionanditeration,divide-and-conquer,approximationandconvergence–isacriticaltoolforanystudent.Theworkinggroupthusbelievesthatcomputationalthinkingismorethanjusttheskillofcomputerprogramming.Itinvolvesunderstandinghowtomodellargescalesystemsusingappropriatelevelsofabstractionandmodularity,itutilizesmechanicaldescriptionsofinferencetoanalyzecomplexdatacollections,anditprovidesacomputationalcomplementtophysicalexperimentsonreal-worldproblems.Itis,however,hardtograsporarticulateconceptsofcomputationalthinkingabsentfacilityinadistinctandunambiguouslanguageinwhichtodescribethem.Andthisrequirestheuseofacomputerprogramminglanguageasaframeworkwithinwhichtoexplorecomputationalconcepts.Afewstudentssuggested,inreactiontothedraftreport,thatonecouldacquirefacilityincomputationalthinkingwithoutlearningaspecificprogramminglanguage;insteadfocusingontheoreticaldescriptionsandformalproofs.Theworkinggroupdoesnotsupportthisposition.Asarticulatedabove,knowinghowtoprogramacomputer(asopposedtomerelyunderstandingthesyntaxofacomputerlanguage)isarequisiteskillforcomputationalthinking.Inaddition,theabilitytoprogramacomputerisanimportantlifeskill,forseveralreasons:

• Knowledgeofcomputerprogramming(i.e.,theabilitytowritecode)enablesapersontosiftthroughvastamountsofinformation.Italsopermitsapersontocombineinformationfrommultiplesourcesinusefulways.

• Whilecomputationalreasoningintheabsenceofprogrammingwouldindeeddemonstratethatananswerprovidedbytheprogramwouldbecorrect,programmingknowledgeallowsthecorrectanswertobedetermined,accordingwithMIT’smissionofprovidingsolutionstotackletheworld’sgreatchallenges.

• Computerprogrammingskillsarecloselyrelatedtotheskillsneededtocreatelarge,complexmodelsofsocial,physical,orbiologicalsystems.

Theconceptsofcomputationalthinking,especiallyasaframeworkforrigorousreasoningaboutphysicalandsocialsystems,canprovideabasisforaugmentingotherintellectualframeworks.Manyfacultymembersconsidercomputationalmodelstobeimportantcomplementstotheoreticalandexperimentalmodels.Justashistoricallyscientistsandengineersusedtheoreticalmodelstoguidethedesignofexperimentalvalidations,andexperimentalobservationstoinformthecreationoftheoreticalmodels,todayengineers,naturalscientistsandsocialscientistsalsousecomputationalmodelsofphysicalorsocialsystemstoenhanceunderstandingofobservedorpredictedphenomena.Forthesecolleagues,theincreasingrelianceonusingcomputationalmodelstofurthertheirresearch(inbasicscience,indevelopmentoftechnology,orinmodelingofsocialsystems)requiresa

Page 7: 2017-01 computational thinking requirement FINAL CLEAN · 2017-04-13 · 1 A computational thinking requirement for MIT undergraduates Report of the working group on computational

7

fundamentalunderstandingofcomputation–notjustasaprogrammingtool,butalsoasafoundationalsubstrateonwhichtobuildandtestmodels.Thus,theysuggestthatstudentsshouldexperienceasubjectthatusescomputationtounderstandphysicalandsocialsystems,andthatsuchasubjectshouldincludesignificantprogrammingexperience.Inthisview,computationcanbecomeaframeworkinwhichtounderstandphysicalandsocialsystems,tocomplementtheoreticalandexperimentalmodelswithcomputationalones,andtouseprogrammingasatooltogroundthatunderstandingofasystemandtodevisecomputationalexperimentstocomplementphysicalones.Whatelementsareessentialtocomputationalthinking?Givenaperspectiveoncomputationalthinkingas“thethoughtprocessesinvolvedinformulatingaproblemandexpressingitssolution(s)insuchawaythataninformationprocessor–humanormachine–caneffectivelycarryoutthatsolution”,onecanthenaskwhetherthereareessentialconceptsthatwouldformthebasisforproficiencyincomputationalthinking.Whilesuchadiscussionmayvaryacrossdisciplines,theworkinggroupfoundthatthefollowingbasicconceptsarewidelyacceptedaskeyelementsincomputationalthinking:

• Abstractionofprocesses:capturingcommonpatternsofoperationinanalgorithmicdescriptionthatcanbegeneralizedandappliedtomultipleinstancesofaproblem.Thisabstractionincludesthesuppressionofdetailsoftheprocedurefromusers(whetherhumansorothercomputationalprocesses),sothatsubsequentcomputationalprocessescanutilizethebehaviorofanabstractionwithoutregardforthespecificsofhowitproducesresults.

• Abstractionofdata:capturingpatternsofassociationwithincomplexcollectionsofdatatostructureitsothatitcanbeappropriately/efficiently/accuratelyprocessed.Thisincludesidentificationofassociatedelementsofdata,andabstractingoutspecificdetailsofrepresentationofdataelementsfromtheuseofsuchdata.

• Decomposition:reducingacomputationaltaskintoasequenceofsimplertasks,togetherwithmechanismsforintegratingtheresultsofthatdecompositionintothesolutiontotheoriginalproblem.

• Modularity:understandinghowtocharacterizethesolutionofacomputationalproblemasasequenceofoperations,eachofwhichcanberepresentedasaseparate,abstract,computationalproblem;togetherwithdefinedoperationsforintegratingtheresultsofeachsub-operationintoasolutionfortheoriginalproblem.

• Iterationandrecursion:understandingfundamentalapproachesforsuccessivelyreducingthesolutiontoacomplexproblemintosimplerversionsofthesameproblem.

Page 8: 2017-01 computational thinking requirement FINAL CLEAN · 2017-04-13 · 1 A computational thinking requirement for MIT undergraduates Report of the working group on computational

8

Theseconceptscanbeunderstoodabstractly;however,theworkinggroupbelievesthatsuchconceptsarebestunderstoodwithinthespecificsofalanguageofdescription–aprogramminglanguagethatprovidestheprimitivesandmeansofcombinationinwhichtodescribeanddeploytheseconceptsonrealproblems.Asaconsequence,theworkinggrouphasusedthefollowingdescriptionasaframeworkinitsdeliberations:

Oncomputationalthinking:Whenourworkinggroupusestheterm“computationalthinking”,wemeansomethingmorethanlearningthesyntaxofacomputerlanguage.Wewantstudentstodevelopskillsandmodesofthinkingsothattheycanconstructorrecognizeuseful,wellwrittenalgorithms,canimplementthem,andcanusethemtomodelphysical,biological,orsocialsystems.Eveninthislimitedsense,anyproposedrequirementincomputationalthinkingshouldnotrequirethatMITstudentsdevelopallofthemanyskillsthatareusefulinthisarea.Rather,anyproposedrequirementshouldaskthemtolearnsomeofthefundamentalskills,andtopracticetheseskillsbydevelopingalgorithmsandwritingcomputerprograms.Suchanexperienceshouldprovideasolidfoundationonwhichsubsequentexplorationofcomputation,inawidevarietyofdisciplines,canbeundertaken.

Withthatperspective,andbasedontheinformationgatheredfromacrosstheInstitute,theworkinggroupbelievesthatcomputationalthinkingshouldplayaroleforstudentsinallpartsoftheInstitute.Thisroleisbasedonthenewintellectualmodeofthoughtthatcomputationalthinkingprovides,ratherthanpurelyonthepragmaticadvantagesthesetoolsmightgiveatMITorinprofessionallife,althoughweacknowledgethatoftenonemustuseaprogramminglanguageasaframeworkwithinwhichtodescribeaspectsofcomputationalthinking.WefurtherbelievethatthereareseveralimportantreasonswhyeveryMITundergraduatestudentshouldbearticulateintheroleofcomputationasamodeofthoughtandameansofcommunication:

1. Computationalthinkingisadistincttypeofrigorousthinkingthatisofintellectualvalue.Computationalthinking,similartomathematicalorlogicalthinking,combinesstructuredreasoningwithcreativeexplorationofpathstoreacharesult.Computationalthinkingdiffersfrommathematicalthinking,however,intheemphasisitplacesonmanagingcomplexity,limitingresources,andeffectivenessinmodelingphysicalandsocialsystems.Italsodiffersinthatitstressesimperative(or“howto”knowledge)ratherthandeclarative(or“whatistrue”knowledge).Forexample,axiomaticstatementsaboutpropertiesofsquarerootsaredifferentfromalgorithmicmethodstocomputespecificsquareroots.Additionally,computational

Page 9: 2017-01 computational thinking requirement FINAL CLEAN · 2017-04-13 · 1 A computational thinking requirement for MIT undergraduates Report of the working group on computational

9

thinkingofteninvolvesmakinginformeddecisionsabouttradeoffs,suchasbetweenmodeldetailandcomputationalspeed,andunderstandinghowthesetradeoffsmayhaveconsequencesfortheaccuracy,oreventhesocialandethicalimplications,ofresults.Inthisway,computationalthinkingadoptsauniformsetofprinciplesandclearlyestablishedtestsofconsistencythatprovideadistinctintellectualframeworkforthinkingaboutphysicalandsocialmodels.

2. Computationalthinkingrequiresanddevelopsimportantmodesofcommunication.Mostpeoplehavehadtheexperiencewheretheirbeliefthattheyunderstandhowsomethingworksisshatteredthemomenttheytrytodescribethatsysteminwritingorteachitclearlytoothers.Writtenandoralexpressioncrystallizesvaguethoughtsintoconcreteideas.Computationallyrigorousthought,expressedincode,leadstoaclarityofdesignthatcommunicatesthebeliefsofthecode’sauthortoothers.Computationalthinkinginvolvesmakingexplicithierarchicalandmodularrelationships;algorithmsandcodecommunicatetheserelationshipstoothers.Articulationofideasinamannerthatiscomprehensibletoothersrequiresprecision,clarity,andlogicalrigor,andthuscomputationalexpressioncancomplementnaturallanguageasameansofcommunicatingsomeideaseffectively.

3. Computersaretransformationalagentsinthe21stcentury.Theyarechangingthewaythatworkiscarriedout.Theyarechangingalmosteveryfieldofendeavor.Theyhaveenormousimpactsonourpersonallives–throughnovelsocialinteractionsaswellasindisruptingindustriesandprofessions.Itisimportantforeverystudenttodevelopanunderstandingofcomputersandwhattheycando.Eveninfieldswherenotallstudentsuseprogrammingintheircoursework,studentsshouldbecognizantoftheimpactofcomputationontheirfield.Inthisway,aknowledgeofparadigmsofcomputingisasimportantastheknowledgeoftheparadigmsof,forinstance,biology:justasastudentmaynotusebiologicalconceptsintheirareaofinterest,theyshouldbecognizantofquestions,challenges,andopportunitiesthatariseinbiology(orinphysics,chemistry,mathematics,orthehumanities,arts,andsocialsciences).

4. Computationaltrainingcreatesopportunitiesandaccessforourstudentsandgraduates.Therearemanyopportunitiesavailableonlytothosewhounderstandcomputationalthinkingandcomputerprogramming.TheseopportunitiesareavailablebothtoourstudentswhiletheyareatMIT(e.g.UROPsinvirtuallyanydisciplineatMIT)andintheirfuturecareers.ByincreasingexposuretocomputationalthinkingtoincludeallmembersoftheMITundergraduatestudentbody,accesstosuchopportunitiescanbeexpandedtostudentsfromabroaderrangeofbackgrounds,experiences,andpointsofview.Thisbothopensnewcareerpossibilitiesforstudentsandhelpstoincreasediversityincomputation-relatedfieldsinindustry.Further,ascomputationcontinuestopermeateotherdisciplines,knowledgeofand

Page 10: 2017-01 computational thinking requirement FINAL CLEAN · 2017-04-13 · 1 A computational thinking requirement for MIT undergraduates Report of the working group on computational

10

abilitytousecomputationaltoolswillbecomeevenmoreessentialtosuccessinawiderangeoffields.Toensurethatourgraduatesarewellpositionedtoassumeleadershiprolesinavarietyofdisciplinesandindustries,itiscriticalthattheyhaveadepthofunderstandingofcomputationalissuesandmethods.

Elementsofcomputationalthinking:Whiletheworkinggroupbelievesthateveryundergraduateshouldgainexposuretocomputationalthinking,itishesitanttocreatealistoftopicsinaformlikeasyllabus.Developmentofappropriatesubjectsincomputationmayrequirespecificsensitivitytodisciplinaryneeds,aninvestigationthatisbeyondthescopeoftheworkinggroup’scharge.However,thereiswideagreementontheusefulnessforallstudentstodevelopastrongunderstandingofthefollowingtopics:

1. Thefundamentalconstructsofcomputerprogrammingandtheirrolesinabstraction.Thesewouldincludetheuseofloopsforiteration,aswellastheuseofrecursionforalgorithmdesignandimplementation.Itwouldalsoincludetheuseofbasicdatastructuressuchaslistsandarrays,andtheuseofobjectclassesasanabstractionmechanismforencapsulatingdataandassociatedmethodsofmanipulationandinference.Itwouldincludetheuseofproceduredefinitionandspecificationasanabstractionmethod.Anditwouldincludetheimportanceoftestinganddebugginginthecreationofrobustalgorithmsandimplementations.

2. Elementsofdesignforcomputerprogramming.Theseincludetheimportanceofmodulardesignandtheroleofabstractionmechanismsasameansofsuppressingdetailandsupportingsystemdesign.Itwouldalsoincludemethodsforcreatingprogramsthatmakethemeasiertoshare,understand,test,anddebug.

3. Developingskillsinatleastonemodernprogramminglanguage.Thiswouldincludefundamentalskillsinwritingandreadingcode,debugging,andrelatedtopics.Whileitistheoreticallypossibletoapplyalgorithmicthinkingwithoutusingprogramming,theabilitytoexpresssuchthinkingthroughprogrammingandtounderstandhowcomputationactuallyworksinsocietyandindustryisvaluableinitself.

4. Understandingandextendingbasicclassesofalgorithms.Thisincludesgeneral-purposeapproachesforsolvingdifficultproblems.Someexamplesinclude:(i)greedyalgorithms,(ii)divideandconqueralgorithms,(iii)theuseofrandomizationandstochasticsamplingincomputeralgorithms,(iv)hillclimbing(orneighborhoodsearch)algorithms,(v)intervalbisectionmethod,andothers.

5. Modelingourphysicalandsocialworlds.Thiswouldincludetheabilitytocreatemathematicalandcomputationalmodelsthataidinunderstandingourphysicalandsocialworlds.Itwouldalsoincludelearningthemeritsas

Page 11: 2017-01 computational thinking requirement FINAL CLEAN · 2017-04-13 · 1 A computational thinking requirement for MIT undergraduates Report of the working group on computational

11

wellasthelimitsofthistypeofmodeling.Thiswouldalsoincludegroundinginmethodsforpresentingandunderstandingresultsofcomputationalexperiments,suchasvisualization,andstatisticalanalysisofuncertainty.

Inadditiontotheseelementsatthecoreofanyfundamentalcomputationalthinkingrequirement,theworkinggroupfeelsstronglythatstudentsshouldreceiveinstructioninextensionsofbasiccomputationelements,anddisciplinaryapplicationstoplacethecoreconceptswithindiversecontexts.Somepossibleexamplesofsuchextendedtopicsmightinclude:

1. Applicationofcomputationalmodelingwithindomain-specificcontexts.Forexample,theuseofsearchalgorithmsinanalyzinggenomicdata;modelingthemechanicalpropertiesofobjectsandtheirphysicalinteractions;predictingpatternsofbehaviorinlargescalesystems(transportation,communication,energy,social);andothers.

2. Understandingthelimitsofcomputers.Partofunderstandingwhatcomputerscandoisalsounderstandingwhattheycan’tdo(orcan’tdoyet).Itisalsousefultouseone’sownknowledgeandcommonsensetoaidinknowingwhencomputeroutputisnotmakingsenseorisnotrealistic.(Thisisanextensionofrecognizingwhenacalculatorresultdoesnotmakesense.)

3. Visualizationandnon-textualinteraction.Whilemanyresultsofcomputationalexperimentsarecapturedbynumericalvalues,oftentheinterpretationofthoseresultsisbestdonethroughothermeans.Visualizationofastatisticaldistributionoftrialsofacomputationalexperimentisanimportantaspectofunderstandingcomputationalresults.

4. Computationalcreativity.Theuseofcomputationtoengageandaugmenthumancreativityinnewways,enhancingexpressioninartanddesignthroughthecreativeapplicationofalgorithmsandcode.

Thus,theworkinggroupunanimouslybelievesthatallMITundergraduatestudentsshouldhavesomemasteryofcomputationalthinking,astheydowithphysical,mathematical,biologicalandchemicalthinking,andastheydowiththecriticalthinkingembeddedinthehumanities,artsandsocialsciences.PerceptionacrosstheInstitute:Althoughnotunanimous,theworkinggroupfoundverybroadsupportacrosstheInstituteforamechanismbywhichallMITundergraduateswouldgaincompetenceincomputationalthinking,andinusingcomputation(especiallythroughprogramdesignandimplementation)asacomplementtootherformsofintellectualinquiry.Thissupportcamefromfacultyandstudentsinallfiveschools,althoughthereweresomedissentingviews(concernsarediscussedbelow).Notsurprisingly,therewas

Page 12: 2017-01 computational thinking requirement FINAL CLEAN · 2017-04-13 · 1 A computational thinking requirement for MIT undergraduates Report of the working group on computational

12

strongsupportthroughouttheSchoolofEngineering;however,therewasalsosupport(thoughnotuniform)withintheotherfourschools.ColleaguesfromdisciplinesasvariedasEconomics,BrainandCognitiveSciences,Physics,Biology,Music,andArchitectureallexpressedsupportfortheroleofcomputationalthinking,althoughwenotethattherewerealsosomegroupsthatdidnotseetheneedforinclusionofcomputationalthinkingforstudentsintheirsub-discipline.Currentcoverage:Althoughthereisnorequirementforcomputationthatcurrentlyappliestoallundergraduatestudents,thereisalreadywidecoverageofcomputationalconceptsformanyofourstudents:

• All8departmentsintheSchoolofEngineeringhaveanexplicitdegreerequirementofaclass(oraportionofaclassinonecase)oncomputation.Whilethespecificsofthesubjects(suchastheirunderlyingprogramminglanguageandtheirparticularfocusonalgorithmdevelopment)differacrossdepartments,andnotallmaycoverallelementsofcomputationalthinking,allsubjectsrequirestudentstotreatcomputationnotjustasatoolbutasanabilitytotranslatealogicaldescriptionofamethodintoanalgorithmicprocess.

• Currently,onedepartmentintheSchoolofScience(BrainandCognitiveSciences),oneadditionaldegreeprogramintheSchoolofScience(MathematicswithComputerScience),andonenewlycreateddegreeprogramwithintheSloanSchoolofManagement(BusinessAnalytics)alsohaveanexplicitdegreerequirementofasubjectoncomputation.(PreviouslytheManagementSciencedegreealsohadarequiredsubjectoncomputation.)

• Inadditiontocoveragethroughdegreerequirements,manystudentstakeelectiveclasseswithcomputationalconcepts.Toprovideasenseofthenumberofstudentsalreadygainingexperienceincomputationalthinking,weconsideredseniorswhograduatedintheyears2012to2016.Ofthatgroup,4017outof5429receivedaprimarydegree(notcountingdoublemajors)inadepartmentthatcurrentlyhasacomputationalrequirement.Thisrepresents74%ofthetotalcohort.Oftheremaining1412students,646(or46%)tookatleastoneof6.0001/6.0002or6.01or1.000or1.00or2.086,eventhoughnotrequiredfortheirdegreeprogram(thesefourcoursesarenottheonlyoptionsforgainingexperienceincomputation,butrepresentthefourlargestsuchoptions).Thus,outof5429students,only766werenotrequiredtotakeacomputationcourseanddidnottakeoneofthefourlargeones(theremaybeothercoursestheydidtakethatcouldbeconsideredtosatisfythisconstraint),meaningthatatmost14%ofthegraduatingseniorsinthiscohortdidnotseecomputationalthinkingaspartoftheirMITeducation.

Onecouldargue(andsomefacultymembersdo)thatsincethemajorityofMITundergraduatesalreadytakeatleastoneclassincomputation,thereisnoneedto

Page 13: 2017-01 computational thinking requirement FINAL CLEAN · 2017-04-13 · 1 A computational thinking requirement for MIT undergraduates Report of the working group on computational

13

requireitofallstudents.However,MITeducationalrequirementsarealsoastatementtoourcommunityandtotheworldofwhatMITbelievestobeoftheutmostimportanceinitsundergraduateeducation.Theworkinggroupbelievesthatcomputationalthinkingisofsuchimportanceastomeritbeingrequired.Moreover,thereisvalueinMITstatingthatallofitsstudentslearncomputationalthinking.Insupportofthis,considerthestatementinMIT’sBulletinabouttheScience/MathGIRs:

“MITexpectsitsgraduatestohaveanunderstandingandappreciationofthebasicconceptsandmethodsofthephysicalandbiologicalsciences.…TheyareanessentialpartofthebackgroundthatMITgraduatesbringtotheirrolesandprofessionalsandasbroadlyeducatedcitizensinaworldstronglyinfluencedbyscienceandtechnology.”

Intheviewoftheworkinggroup,thisstatementappliesequallystronglytoanunderstandingandappreciationofthebasicconceptsandmethodsofcomputation.Additionalconsiderations:Thechargetotheworkinggroupraisedsomeadditionalquestions,whicharebrieflyaddressedbelow.

i) Whenintheircareerdoweexpectstudentstolearncomputationalthinking?Thereisarangeofviewsonthisquestion.However,theworkinggroupagreedthatideallystudentswouldgainexposuretocomputationalthinkingearlyintheirstudentexperience.Thisviewissharedbymanydepartments.Theworkinggroupiscognizantoftheconcernofoverloadingthefirstyearwithexpectationsofsubjectstobetaken,especiallysincesomanyfirstyearstudentsundertakemostoftheScienceGIRrequirementsinthatyear.Thegroupalsofelt,however,thatmanydepartmentswillexpecttheirstudentstohavemultipleexperienceswithcomputation–bothintroductoryanddisciplinespecific–andthusanearlyexposuretofoundationalconceptswouldenableamoredetailed,discipline-centric,explorationasanupperclassman.Theworkinggroupnotesthatoneoftheoptions(discussedbelow)mightenablethisopportunity,byencouraginga6-unitintroductorysubjectearlyinastudent’scareer,followedbyadiscipline-centricfollow-onsubjectlater.

ii) Arecomparablerequirementsinplaceatourpeerinstitutions?Theworkinggroupwasnotabletoconductanextensiveexaminationofpeerinstitutions.Wenotethefollowingobservations:a. Theonlypeerinstitutionthatweareawarehasaninstitute-wide

requirementofasubjectincomputationisHarveyMuddCollege,whichdescribesitselfasascience,engineeringandmathematicsliberalartscollege(allnineofitsmajorsareinscience,engineeringormathematics).Wearenotawareofanyotherpeerinstitutionthathas

Page 14: 2017-01 computational thinking requirement FINAL CLEAN · 2017-04-13 · 1 A computational thinking requirement for MIT undergraduates Report of the working group on computational

14

aninstitute-widerequirementofasubjectincomputationalthinking.Manyinstitutionshaveintroducedintroductorycomputationcoursesintendedfor“non-majors”andencouragetheirstudentstotakesuchcourses,butnoneofwhichweareawarerequiresuchparticipation.

b. SomeSchoolsofEngineeringatpeerinstitutionsdohaveacomputationrequirement,asdosomepeerinstitutionswithseparateSchoolsofComputation,orSchoolsofInformationScience(e.g.,Cornell,GeorgiaTech,CarnegieMellon).Interestingly,itappearsthatnotallengineeringdepartmentsatStanfordhaveaspecificcomputationcourserequirement,whereasallengineeringdepartmentsatUCBerkeleyandallengineeringdepartmentsatCornelldohavesuchanexplicitcourserequirement.

Ingeneral,wenotethatwhilewearenotawareofpeerinstitutionswithspecificinstitute-widecomputationrequirements,wedoobservethatmanysuchinstitutionsaremovingtowardsencouragingstudents,especiallyinscienceandengineering,toacquirecomputationalskills(forexample,currentlythemostpopularcourseatHarvardisCS50–introductiontocomputation).Giventhesetrends,thereisanopportunityforMITtoleadthewayinformalizingtheexpansionofeducationincomputationalthinkingtoincludetheentireundergraduatestudentbody.

ConcernsraisedbymembersofthecommunityMembersofthecommunityraisedmanythoughtfulcommentsandquestions.Wediscussthesebelow:

1. Totheextentthattherewasresistancetoarequiredcomputationalthinkingexperience,thiswasgenerallycenteredontheimpactofaddingarequirementontopofotherexistingrequirements,especiallythecurrentScienceGIRsubjects.TheworkinggroupagreesthatMITstudentscannotsimplyaddanothergraduationrequirementwithoutnegativelyimpactingtheirworkandlives.WebelievethatanyimplementationofachangeinrequirementsmustconsidertheimpactofpotentialchangesonotherpartsoftheMITeducationandtheintellectualbenefitsofaneducationalexperience.Thisisdiscussedinmoredetailbelow.

2. Whilemanycolleaguesfeelthatcomputationalthinkingshouldbeanintegralpartofeverystudent’sundergraduateexperienceatMIT,manyalsofeelthatadiscussionofchangesinrequirementsshouldconsiderthebroaderquestionofotherpotentialadditionsorchanges.Morespecifically,theworkinggroupheardsuggestionsthatjustascomputationhasbecomeanessentialelementinvirtuallyeveryintellectualdisciplineatMIT,sotoohasstatistics,probabilityandreasoningunderuncertainty.Whileadiscussionoftheroleofstatisticalreasoninginourcurriculumisbeyondthescopeofthisworkinggroup’scharge,thegroupacknowledgesthatthereismeritinconsideringtheroleofsuchamodeofthoughtintheMITundergraduate

Page 15: 2017-01 computational thinking requirement FINAL CLEAN · 2017-04-13 · 1 A computational thinking requirement for MIT undergraduates Report of the working group on computational

15

educationalexperience.Buttheworkinggroupalsobelieves,especiallysincesuchalargepercentageofourundergraduatesalreadytakeatleastonecomputationclass,theInstituteshouldmoveforwardinconsideringpossibleimplementationmechanismsforaddingaformalrequirementtothecurriculum.

3. Asnotedabove,alargeportionofrecentgraduatingclasseshavetakenacomputationclass,eitherbecauseitisadepartmentaldegreerequirement,orbecauseofapersonalinterestinthearea.Inlightofthis,somefacultyandstudentshavequestionedtheneedtoincorporateaspecificrequirementforallstudents.Whyshouldwerequirethateverystudenttakeasubjectincomputationalthinking?Whynotletindividualdepartmentsdeterminewhatisbestfortheirstudents?Inprinciple,thesameargumentcouldbeappliedtocurrentscienceGeneralInstituteRequirements.Sincemoststudentswouldpresumablytakebasiccoursesincalculus,physics,andperhapsbiologyandchemistry,whyrequirethatallstudentsdoso?ThattopichasbeendebatedattheInstituteinthepast,includingaspartoftheSilbeyreportontheGeneralInstituteRequirements.Thegenerallyacceptedrationaleforrequiringallstudentstohavecompetencyinmathematicsandsciencesisthatthemodesofthoughtassociatedwiththosedisciplinesareimportanttounderstandingtheworldandthechallengesconfrontingit.Manyofourundergraduateswillnotusethespecificelementsofanintroductorysubjectinbiologyorchemistryinanyoftheirdepartment-specificrequirements,buttheInstitutefeelsthatknowledgeofbiologicalreasoningisimportanttothebroadereducationofallofourstudents.ThequestioniswhethertheInstitutealsobelievesthatcomputationalreasoningrisestothesamelevelofimportance–thateverystudentshouldbeabletounderstandcomputationalapproachestophysical,biological,orsocialchallenges,thateverystudentshouldunderstandtheimpactofcomputationalapproachesinaddressingsuchchallenges,andthateverystudentshouldunderstandhowcomputationalagentsarechangingvirtuallyeveryaspectofmodernlife.Theworkinggroupunanimouslybelievesthistobecase–thatcomputationalthinkingisasessentialatoolforeverystudentasisscientificthinking.Whilenoteverystudentorfacultymemberagrees,theresponsetothedraftreportandthefeedbackacquiredbytheworkinggroupstronglysuggeststhatthatasubstantialmajorityofthecommunityalsosupportsthisperspective.

4. Aquestionwasraisedabouthowouralumniandalumnaeperceivetheneedfororvalueofexposuretocomputationalthinkingintheircareerpaths.Althoughunfortunatelywedonothaveexplicitdatafromrecentalumni/alumnaesurveysontheroleofcomputationintheircareers,wehaveanecdotalfeedbackthatsuggestsastrongsenseoftheneedforcomputation,acrossawiderangeofprofessions.Individualresponsestothedraftreport,aswelldiscussionswithalumni/alumnaeinothersettingsstronglysupporttheroleofunderstandingcomputationasanimportantelementintheircareers.

Page 16: 2017-01 computational thinking requirement FINAL CLEAN · 2017-04-13 · 1 A computational thinking requirement for MIT undergraduates Report of the working group on computational

16

5. AsimilarquestionwasraisedabouttheperspectiveofemployersontheneedforallMITundergraduatestudentstohavesignificantexposuretocomputationalmethods.Whilenoexplicitsurveyofemployershasbeenconducted,avarietyofindirectmeasuressuggestthatthereisastronginterestinsuchexposure.Theseincludethedistributionofcompaniesthatregularlyparticipateintheannualcareerfair–adistributionthatincludesnotonlyaverylargepresenceofinformationtechnologycompanies,butalsoalargearrayofothercompaniesexplicitlyseekinggraduateswithbackgroundsinotherdisciplineswhohaveexposuretocomputationalmethods.Additionally,demandfrompharmaceuticalcompanies,banks,investmentfirms,biotechnologycompanies,medicaldevicecompanies,consultingcompanies,andothers,forstudentswithbothadisciplinaryknowledgeofthesectorandabackgroundincomputationisverystrong,asevidencedbythehiringpatternsofthesecompaniesandtheirexpressedinterestinMITgraduates.

6. Althoughtheroleofcomputationalthinkinginthesciences,inmanagement,andintheengineeringdisciplinesiswellaccepted,somestudentshavequestionedtheimportanceofcomputationalthinkinginthehumanities,artsandsocialsciences.Whiletheworkinggroupbelievesthattheargumentsputforwardforwhyeverystudentshouldunderstandcomputationapplytothehumanitiesaswellastothenaturalsciences,thegroupalsonotesthattherearemanyareasofthehumanities,artsandsocialscienceswithnaturalinteractionswithcomputationalthinking:economics,finance,linguistics,andothers.Butmoregenerally,theworkinggroupstressesthatcomputationalthinkingisnotjustaboutcomputationaltoolsandtheirimpactonworkinadiscipline,itisalsoabouttheimpactthatcomputationhasintheframingofquestionswithinadiscipline.Thegroupnotesthatmanyareasofhumanities,artsandsocialsciencesarealreadybeingchangedbytheemergenceofcomputation–asameansofsocialinteraction,asafacilitatorofnewmodesofcommunication,asacurationmechanismfordigitalandothermaterial,andasaninfluenceonthecentralelementsofdisciplines.Thusknowledgeofcomputationislikelytobeofimportinallofouracademicdisciplines.

PotentialoptionsforsatisfyingacomputationrequirementAlthoughtheworkinggroupwasnotexplicitlychargedwithdevisinganimplementationplan,wewereaskedtoarticulatepossibleoptionsformeetingtheneedforacommoncomputationalexperience,includingdiscussionofthestrengthsandweaknessesofsuchoptions.Wedosobelow.However,theworkinggroupalsonotesthatanydiscussionofaddingageneralrequirementforourundergraduatestudentsmaybebestimplementedifithappenedinthecontextofalargerdiscussionoftheGeneralInstituteRequirements.Whilemanyfacultymembersviewcomputationasacriticalmodeofthought,thereareothertopicsthatmaymeritsimilarconsideration.Inparticular,membersofthe

Page 17: 2017-01 computational thinking requirement FINAL CLEAN · 2017-04-13 · 1 A computational thinking requirement for MIT undergraduates Report of the working group on computational

17

workinggroupandmanyfacultymembershaveproposedexaminingthestateofinstructionandimportanceofstatisticalthinkingandreasoningunderuncertainty.Thus,theworkinggroupencouragestheInstitutetoconsideranydiscussionofpossibleinclusionofacomputationrequirementwithinthebroadercontextofallInstituterequirements.Giventhatsuchabroaddiscussionmaynotoccurimmediatelyoreveninthemediumterm,theworkinggroupwilldiscussoptionsforbalancinganewcomputationalrequirementwithareductioninotherrequirements(specificallytheRESTrequirement)below.Theworkinggrouplists,butdoesnotnecessarilyendorse,eachofthefollowingpossibleoptionsforsatisfyingacomputationalthinkingrequirement,whilenotingthattheremaybeotherpossibilities(forexample,thegroupdiscussedtheoptionofintegratingcomputationasamoduleintoexistingGIRsubjects,eitherdirectlyorasanonlinemodule,butconcludedthattheseoptionswerenotcompatiblewiththeamountofmaterialtobecoveredandtheadvantagesofhavingthatmaterialtaughtbyafacultymemberwithacomputationalbackground).Thethreeoptionsthatthecommitteediscussedatlengthwere:

1. Asingle,Institute-wide,subject:a. Description:

i. TheInstitutewouldcreateasinglesubject(orreviseanexistingsubject)thatincorporatescommonlyacceptedelementsofcomputationalthinkingincludingprogrammingskills.

b. Advantages:i. Thedevelopmentofasubjectfocusedonacomputationalexperienceforallstudentswouldensurethatkeyconceptsarepresentedtoallstudentsinasimilarmanner.

ii. AswithseveraloftheotherInstitutewiderequirements,therewouldbeasharedexperienceforallstudents.

iii. Thiswouldallowafocusoncomputationasamodeofthought,separatefromembeddingofcomputationindomain-specificcontexts.

c. Challenges:i. Studentshavevastdifferencesofpriorexperienceincomputationalwork,especiallyprogramming,potentiallyleavingsomestudentsdiscouragedandoverwhelmedandsomeotherstudentsboredanddisengaged.

ii. Givingstudentstheoptionofpassingoutofthesubjectwouldaddressthelatterissue,butwouldalsoexacerbatedifferencesinthe“real”numberofrequirementstograduatethatalreadyexistinotherGIRs(forinstance,becauseofpriorCalculusexperienceorcreditsfromAPclasses).Therequirementwoulddisproportionatelyfallonstudentsfromhighschoolswith

Page 18: 2017-01 computational thinking requirement FINAL CLEAN · 2017-04-13 · 1 A computational thinking requirement for MIT undergraduates Report of the working group on computational

18

loweracademicstandardswhoalreadyfaceadditionaldifficulties.

iii. Asinglesubjectcouldnotcoverallthebasicandextendedtopicsdiscussedabove,andthusstudentsmightnotbeguaranteedexposuretomodesofcomputationalthinkingmostrelevanttotheirowndisciplinesandinterests.

d. Recommendationi. Giventhechallengesabove,theworkinggroupdeclinestoendorsethisoption.

2. Asubjectthatisdesignedforamajor,orsubjectsthataredesignatedassuitableforamajor:

a. Description:i. Adepartmentwouldeitherdevelopacomputationcoursespecifictotheinterestsoftheirstudentsoruseasubjectofferedbyanotherdepartment.

ii. ThisapproachwouldbesimilartothecurrentCI-Mcommunicationrequirement,whereinspecificskillsaretaughtinthecontextofamajor.

b. Advantages:i. Studentswouldhavetheopportunitytoseecomputationinacontextthatisparticularlyappealingtothem,therebyincreasingtheutilityoflearnedconceptsinfutureeducationalexperiences.

ii. Embeddingtheintroductionofcomputationwithinaspecificfieldhasthepotentialtoincreasestudentengagement,sinceitwouldappearincontextsofinteresttothestudent.

c. Challenges:i. Somecoordinationofofferingswouldberequired,toensurethatsubjectofferingsbyindividualdepartmentsweremeetingthegoalsoftherequirement.Thiswouldincludeensuringthatcorefundamentalconceptsarecoveredbyallsuchofferingsatanappropriatedepthandlevel.AstructuresuchasSOCR(SubcommitteeontheCommunicationRequirement)mightberequiredtoprovideanongoingMIT-wideperspectiveasthisisaccomplished.

ii. Departmentswishingtoofferinstructioninfocusedand/oradvancedcomputationalthinkingwouldneedtoeitherteachbasicprogrammingskills(requiringadditionalteachingresources)orrequireaprerequisitebasicprogrammingclasstherebyextendingtherealreachoftherequirement.

iii. Somedepartmentsmaynotfeelcapableof,orhavetheresourcesto,developspecificcomputationcourses.Thiscouldbeaddressedbyprovidingadditionalresources,orbyencouragingcollaborationwithdepartmentswithexperienceinteachingcomputation.

d. Recommendation

Page 19: 2017-01 computational thinking requirement FINAL CLEAN · 2017-04-13 · 1 A computational thinking requirement for MIT undergraduates Report of the working group on computational

19

i. Theworkinggroupbelievesthatthisoptionisworthconsideringinmoredetail.

3. Aninterdepartmentalcomputationalthinkingrequirementfollowedbyadisciplinarycomputationalthinkingclass.

a. Descriptioni. Thefirstpartoftherequirementwouldbesatisfiedbyasmallgroupof6-unit,probablyhalf-termsubjectsthatgiveanintroductiontocomputationalthinking(offeredatdifferentlevels--fromnopriorknowledgetoadvancedprogramming).Studentswouldnotbeabletowaivethisrequirement,soevenstudentswithextensivepriorprogrammingexperiencewouldtakeaclassaimedattheirlevelofbackground.

ii. Thesecondpartoftherequirementwouldbesatisfiedbyanupperlevelclass,whichcouldbepartofadepartment’srequirements,thatusescomputationalthinkingasapartofthemodesofthinkingandlearninginaspecializedfield.

iii. Thesecondrequirementcouldbeastand-alone6-unitclassoraspartofalargerunitsubjectthatofferssubstantialcomputationalthinkinginstruction.

iv. ThedivisionbetweengeneralandspecificinstructionwouldbecomparabletothedivisionbetweenCI-HandCI-Mclassesinthecommunicationrequirement,whiletheabilitytoembedsix-unitsofcomputationalthinkingwithinalargerclassfindsananalogyincertainlabcoursesthatprovidesixunitsoflabcreditwithina12unitclass.

b. Advantagesi. Byofferinganinterdisciplinarysubjectfollowedbyadisciplinespecifiedsubject,studentswouldacquireknowledgeandmodesofthinkingthatwouldbebothflexibleandnarrowlytailoredtoaspecificdomain.

ii. Skillsincomputationalthinkingintheinterdisciplinarysubjectcouldbepairedwithclasseswithdifferinglevelsofprogrammingexperiencecreatingachallengingbutrewardingrequirementforstudentsofallbackgrounds.

iii. Byrequiringoneorbothpartsoftherequirementasaprerequisite,departmentalsubjectscouldbeofferedthatcanassumeknowledgeofcomputationalalgorithmsandprogrammingskills,allowingadvancedtopicstobeofferedmoreeasilythantheycanbenow.

c. Challengesi. Althoughnodepartmentorunitwouldberequiredtocreateitsowndisciplinarysubject,somedepartmentsmaywishtodosobutmaybelimitedintheirresourcesortheirabilitytodevelopsuchaclass.Collaborationwithotherdepartmentstodevelopappropriatesubjectsorusinganexistingsubjectofferedbyanotherdepartmentarepossiblesolutionstothisissue.

Page 20: 2017-01 computational thinking requirement FINAL CLEAN · 2017-04-13 · 1 A computational thinking requirement for MIT undergraduates Report of the working group on computational

20

ii. Thetwo-partrequirementissufficientlycomplexthatadditionaladvisingandeducationabouttherequirementwouldbenecessary.

iii. Atleastinitially,anoversightcommitteesimilartoSOCRwouldneedtobecreatedtodeterminewhethersubjectsfulfillthegoalsandexpectationsofcomputationallyrigorousthinking.

d. Recommendationi. Theworkinggroupbelievesthatthisapproachoffersmyriadadvantagesandthechallengesareofamanageablesize.Itrecommendsthatimplementationdetailsbecarefullyexplored,includingimpactonoverallstudentload,resourcerequirements,andotherimplicationsofcreatingandofferingsuchsubjects.

MitigationofTotalRequirementsAlloftheoptionsthattheworkinggrouplistedabove,whichweretheonlychoiceswefeltgaveaworthwhileintroductiontocomputationalthinking,add12unitsofrequirementstotheexistingMITGIRs.Givenhowtightlythecurriculumalreadyconstrainsstudentchoice,thiswouldbechallenging.AnoptionstudiedinthepastwouldbetoaddanadditionalGIR,butallowstudentstoselect6of7GIR’s(whileallowingdepartmentstospecifyasubsetoftheGIR’sasrequiredforstudentschoosingtomajorinthatdepartment).ThisoptionwaspreviouslyexploredbytheSilbeycommittee,andmaymeritrevisiting.However,theworkinggroupnotesthatthiswouldruncountertothedesiretohaveallstudentsacquireacommandofcomputationalmodesofthinking.Asecondoption,thatwasmuchmoreappealingtotheworkinggroup,istouseoneofthetwocurrentRESTrequirementsasacomputationrequirement.ManyexistingCoursesalreadydesignatearequiredRESTsubjectthatteachessomeorallofthemodesofcomputationalthinkingdescribedabove.However,wenotethatmanydepartmentdegreerequirementsalready“capture”oneortwoRESTsubjectsfordifferentreasons.Thus,acarefulstudyontheimpactofallocatingaRESTsubjecttocomputationondepartmentaldegreerequirementswouldbeneededbyafutureimplementationgroup.Anassociatedissuethatwillneedcarefulconsideration,ifthedecisiontoimplementacomputationalrequirementforallstudentsismade,istheimpactofaddingadegreerequirementtoABETaccreditationofengineeringdepartments.ManyengineeringdepartmentsuseRESTsubjectsorcurrentdepartmentalsubjecttomeettheconstraintsofprofessionalaccreditationofdegreeprograms;thusanyproposedchangestoinstituterequirementswillneedtocarefullyconsidertheimpactofdifferentoptionsontheabilityofdepartmentstopreservetheiraccreditationstatus.

Page 21: 2017-01 computational thinking requirement FINAL CLEAN · 2017-04-13 · 1 A computational thinking requirement for MIT undergraduates Report of the working group on computational

21

SummaryTheworkinggroupunanimouslybelievesthatcomputationalthinkingisanessentialpartoftheeducationalexperienceforeveryundergraduatestudentattheInstitute.Thisisbasedontheviewthatcomputationalthinkingprovidesanewintellectualmodeofthoughtofrelevancetovirtuallyeveryintellectualdisciplineandthatcomputationalthinkingrequiresanddevelopsimportantmodesofcommunication.ThesefactorsareinadditiontothepragmaticadvantagesthatcomputationaltoolsmightgiveatMITorinprofessionallife.TheworkinggrouprecommendsthattheInstituteproceedwithaconsiderationofmechanismsbywhichacomputationrequirementcouldbeinstitutedforallundergraduatestudents,whileaddressingtheimpactaddinganadditionaldegreerequirementwouldhaveonstudentloadandtheneedtoconnectcomputationalthinkingtodomain-specificcontextsacrossdifferentintellectualdisciplines.Submittedby:

• EricGrimson,EECS,Chair• DeeptoChakrabarty,Physics• MichaelScottCuthbert,MusicandTheaterArts• PekoHosoi,MechanicalEngineering• CaitlinMueller,Architecture• JamesOrlin,Sloan• TroyVanVoorhis,Chemistry

Page 22: 2017-01 computational thinking requirement FINAL CLEAN · 2017-04-13 · 1 A computational thinking requirement for MIT undergraduates Report of the working group on computational

22

Appendix:Thefullchargetothecommitteefollows:

StudyGrouponAlgorithmicandComputationalThinkingforMITUndergraduates

Charge

Formanyyears,atleastsincethe2004-2006TaskforceontheUndergraduateEducationalCommonschairedbyProf.RobertSilbey,variousMITfacultymembershaveaskedwhether,andifsohow,MITshouldensurethatallitsundergraduateslearnalgorithmicreasoningandcomputationalthinking.Toanswerthisquestion,wearechargingasmallgroupoffacultytoconductanin-depthstudyofwhatthephrases“algorithmicreasoning”and“computationalthinking”meaninthecontextoftheeducationofMIT’sundergraduatesacrossallfiveschools.Inconversation,manycolleagueswhohavethoughtaboutthisissueareclearinsayingthatthesephrasesshouldmeanmorethananintroductiontoprogramminglanguages.Asaplacetobeginthisstudy,webelievethatcomputationalthinkingshouldencompassanintellectualframework,notjustaskill.PhrasesthatwereusedintheSilbeyreportinclude“computationalmodesofanalysis”,“algorithmicreasoning”,“dataabstraction”,“designingcomputationalsolutionstotheoreticalandpracticalproblems”,and“providingacomputationalparadigmforreasoningandproblemsolving.”Weareaskingyoutodoacareful,deliberativeassessmentofwhattheseandotherphrases(“abstractionandcomplexity”,“modularityandinterfaces”,“complexityofalgorithmicsolutions”,“algorithmicparadigms”)meanacrossMIT.Questionsthatwewouldaskyoutoexamineinclude:1)Howdofaculty,studentsandalumniindifferentfieldsofendeavor,acrossthefullbreadthrepresentedbyMIT’sfiveschools,usecomputationalthinking?Isitanimportantmodeofthinkingin(forexample)economics,policyformation,management,architecture,biologyandbiologicalengineering,chemistryandchemicalengineering,andotherdisciplines?2)What,ifany,isthecommonintellectualframeworkthatpeopleacrossMITemploywhentheyspeakofcomputationalthinkingandalgorithmicreasoning?Inwhatwaysisdiversityamongthemeaningsofsuchphrasesindifferentdisciplinarycontextsimportant?3)Towhatextentarealgorithmicreasoningandcomputationalthinkingalreadybeingtaught?Whatfractionofourgraduates,acrossallfiveschools,learntheminthecourseofmeetingtheexplicitrequirementsoftheirmajors?Whatfractiontakeacoursethatcoverscomputationalthinkingevenifnotanexplicitrequirementoftheirmajors?Towhatextentandinwhatwaysdowealreadyimplicitlyexpectthat

Page 23: 2017-01 computational thinking requirement FINAL CLEAN · 2017-04-13 · 1 A computational thinking requirement for MIT undergraduates Report of the working group on computational

23

abroadspectrumofMITundergraduatesacrossmanymajorsunderstandalgorithmicandcomputationalthinkingbythetimetheygraduatefromMIT?WhenintheircareeratMITdoweexpectstudentstolearncomputationalthinking?4)Shouldweacknowledgealgorithmicandcomputationalthinkingasanexplicitexpectationofallourgraduates?Ifyes,whatistherationale/caseforthis?5)Ifyes,whatarethekeyelementsofalgorithmicandcomputationalthinkingandwhataretheassociatedlearningobjectivesandmeasurableoutcomesforknowledge,skillsandattitudes?HowaretheycommonacrossthebroadspectrumofMITundergraduates,andhowdotheydiffer?AcrossMIT,howaretheyrelevanttosolvingproblemsandmasteringendeavors?6)Ifyes,doesitmatterwhenduringtheircareersatMITourstudentsareexposedtocomputationalthinkingandalgorithmicreasoning?Whatbenefitswouldaccruefromauniformapproachtoteachingthemandwhatmightthedownsidesbe?Whatbenefitswouldaccruefromdiscipline-specificapproachesandwhatmightthedownsidesbe?7)Whatareourpeerinstitutionsdoing?AretherepossiblemodelsoutsideMITthatmeritourconsideration?Asyoustarttoformulateyouranswerstothequestionsabove,wewouldaskthatyoudevelopalistofpossibleoptionsforaccomplishingthegoalsforthecomputationaleducationofMITundergraduatesthatyouarticulate,ifthesegoalsarenotalreadybeingmet.Pleasedescribeeachsuchoptionasconcretelyasyoucan,includingprosandcons,includingwhichgoalsamongthoseyouarticulateeachoptionaddresses,andincludingactionablenextsteps.Examplesofoptionsthatyoumightconsiderinclude:

i) Modules,withorwithoutonlinecomponents,thatcouldbeincorporatedwithinMIT’sexistingGIRsubjects.

ii) Newsubjectsormoduleswithnoprerequisites,rangingindurationfromonemonthtoonesemester,whosedevelopmentandteachingmayinvolvecollaborationamongdepartmentsandotheracademicunits.

iii) AmodelforteachingcomputationalthinkingalongthelinesofhowCI-Msubjectsteachcommunication,whereeachmajorcanmakediscipline-specificchoicesforhowtoachieveoverarchingMIT-widegoalsthatyouhavearticulated,viamoreadvancedsubjectsormodulesdesignedforstudentsinthespecificmajor.

Thefirsttwoareexamplesofoptionswherenextstepswouldincludecurriculumdevelopment.Forsuchoptions,wehopethatyouwillprovidepreliminaryexamplesofpartialsyllabi,withexplanationsofyourrationalesfortheelementsinthesesyllabi,andasenseofthe(groupsof)colleagueswhomightbeaskedtodevelopthecurricula.Thatis,theseareexamplesofoptionsthatwewouldhopeyoudevelopto

Page 24: 2017-01 computational thinking requirement FINAL CLEAN · 2017-04-13 · 1 A computational thinking requirement for MIT undergraduates Report of the working group on computational

24

thepointthatthenextstepcouldbeDeanFreemanpullingtogetherpeopleandresourcesforimplementation.Thethirdisanexampleofanoptionwhereyourstudymightpromptsomedepartmentstoinitiatenextsteps,perhapswithsupportfromDeanFreeman.Allareexamplesofoptionswherethenextstepswouldincludeconsiderationbyabroadergroupoffaculty,includingrelevantfacultycommittees.WeareconvincedthatadeepstudyasdescribedaboveisakeysteptowardevaluatingwhetherornotchangestoMIT’sundergraduatecurriculumandpedagogyaremerited.Dependingonyourfindings,yourstudymayprovidethefoundationforsubsequentadvancesinhowweeducateourstudents.Weareaskingyoutofocusonquestionsasaboveandonoptionswithnear-termactionablenextsteps.Wehopethattheanswersthatyourstudyprovides,togetherwithanysubsequentcurriculumdevelopmentthatitprompts,willserveasvaluableinputtoanyfuturediscussionofourGIRs.WewouldaskthatyousetasyourgoalthatbyJune30,2016youhavecompletedthemajorityofyourworkandreportedyourprogressandyouremergingconclusionstous,sothatbythatdatewehaveafullunderstandingofwhatremainsforyoutodo,andafirmlate-summerorearlySeptemberdeadlineforyourreport.Sincerely,Prof.DennisFreemanDeanforUndergraduateEducationProf.KrishnaRajagopalChairoftheMITFaculty———————————Membership:EricGrimson,Chair,EECSDeeptoChakrabarty,PhysicsMichaelCuthbert,MusicandTheaterArtsPekoHosoi,MechanicalEngineeringCaitlinMueller,ArchitectureJimOrlin,SloanTroyvanVoorhis,Chemistry