2016 annual report - remnf..." 4"...

17
1 325 Learning and Environmental Sciences 1954 Buford Avenue, Saint Paul, MN 55108 Renewable Electricity for Minnesota’s Future Annual Report (January to December 2016) Project Funding provided by customers of Xcel Energy through a grant from the Renewable Development Fund (RDF) LEGAL NOTICE This report was prepared as a result of work sponsored by the Renewable Development Fund as managed by Xcel Energy. It does not necessarily represent the views of Xcel Energy, its employees, or the Renewable Development Fund Advisory Group. Xcel Energy, its employees, contractors, and subcontractors make no legal liability for the information in this report; nor does Xcel Energy, its employees or the Renewable Development Fund Advisory Group represent that the use of this information will not infringe upon privately owned rights. This report has not been approved or disapproved by Xcel Energy nor has Xcel Energy passed upon the accuracy or adequacy of the information in this report.

Upload: others

Post on 06-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2016 Annual Report - REMnF..." 4" which"in"turn"contributes"to"a"vibrant"economy."Pursuingbasic"research"into"advanced" renewableenergytechnologiesisthefirst"stageoftheinnovationpipeline

1  

     

325  Learning  and  Environmental  Sciences                                  1954  Buford  Avenue,  Saint  Paul,  MN  55108  

Renewable  Electricity  for  Minnesota’s  Future  Annual  Report  (January  to  December  2016)    Project  Funding  provided  by  customers  of  Xcel  Energy  through  a  grant  from  the                  Renewable  Development  Fund  (RDF)        

08  Fall  

LEGAL  NOTICE    This   report   was   prepared   as   a   result   of   work   sponsored   by   the   Renewable  Development  Fund  as  managed  by  Xcel  Energy.  It  does  not  necessarily  represent  the   views  of   Xcel   Energy,   its   employees,   or   the   Renewable  Development   Fund  Advisory   Group.   Xcel   Energy,   its   employees,   contractors,   and   subcontractors  make  no   legal   liability  for   the   information  in   this  report;  nor  does  Xcel  Energy,  its   employees   or   the  Renewable  Development   Fund  Advisory  Group   represent  that   the   use   of   this   information  will   not   infringe  upon  privately   owned   rights.  This  report  has  not  been  approved  or  disapproved  by  Xcel  Energy  nor  has  Xcel  Energy  passed  upon  the  accuracy  or  adequacy  of  the  information  in  this  report.  

Page 2: 2016 Annual Report - REMnF..." 4" which"in"turn"contributes"to"a"vibrant"economy."Pursuingbasic"research"into"advanced" renewableenergytechnologiesisthefirst"stageoftheinnovationpipeline

  2  

EXECUTIVE  SUMMARY    

This   annual   report   is   submitted   in   compliance   with   the   Article   7   of   the   Grant   Contract  Terms   and   Conditions   as   supplemented   by   Exhibit   C   (Reporting   Requirements   and  Protocol)   covering   the  project   “Renewable  Electricity   for  Minnesota’s   Future,”   supported  by  the  customers  of  Xcel  Energy  through  a  grant  from  the  Renewable  Development  Fund.      Covering  the  period  January  to  December  2016,  this  Annual  Report  summarizes  activities  initiated   and   undertaken   during   the   implementation   and   early   stages   of   the   above-­‐mentioned  university-­‐wide   research  block   grant.   It   enumerates   actions   taken   to   create   a  REMnF  board,  select  grant  recipients  from  a  base  of  applicants,  and  gives  a  detailed  update  on  initial  progress  of  each  funded  project.    The   REMnF   project   strives   to   advance   the   same   goals   put   forward   in   Xcel’s   RDF.   It   is  specifically  focused  on:    

• Stimulating  renewable  electric  energy  research  and  development;  • Promoting   the   start-­‐up,   expansion   and   attraction   of   renewable   electric   energy  

projects   and   companies   in   the   state   through   commercialization   of   our   developed  technologies;  

• Developing   demonstration   scale   renewable   electric   energy   projects   of   near-­‐commercial   renewable   electric   generation   or   near-­‐commercial   electric  infrastructure  delivery  technologies  that  enhance  the  delivery  of  renewable  electric  energy  within  the  state;  

• Increasing   the   market   penetration   of   renewable   electric   energy   resources   at  reasonable  costs  in  the  state;  and  thereby  

• Providing   benefits   to   Minnesota   citizens,   businesses   and   Xcel   Energy’s   electric  ratepayers.    

   

Page 3: 2016 Annual Report - REMnF..." 4" which"in"turn"contributes"to"a"vibrant"economy."Pursuingbasic"research"into"advanced" renewableenergytechnologiesisthefirst"stageoftheinnovationpipeline

  3  

2016  HIGHLIGHTS      2016  highlights:    

• 1  provisional  patent  accepted  • 13  University  of  Minnesota  Graduate  Student  Research  Assistants  hired  • 5  Post-­‐Doctoral  Fellows  hired  • $60,000  raised  in  additional  project  financing  ,  leveraging  RDF  funds  • 3  scientific  papers  published  or  accepted  • 11  academic  presentations  outside  the  University  of  Minnesota  • Partnerships  initiated  with  four  Minnesota  companies:  Cummins,  Ten  K  Solar,  

WindLogics,  Daikin  Applied    

Benefits  to  the  state,  the  private  sector,  and  NSP’s  ratepayers:    We  have  worked  with  all   four  project   teams   to   identify  commercialization  strategies  and  will  continue  to  refine  these  strategies  in  the  coming  year.  If  any  of  the  technologies  being  developed   are   commercialized   there   is   potentially   great   benefit   for   the   state,   private  industry,   and   NSP’s   ratepayers.   Electricity   rates   could   be   lowered   if   the   technologies  reduce  the  cost  of  producing  and/or  distributing  electricity,  and  manufacturing  and  other  white  collar  jobs  could  be  created  through  startup  businesses  or  patent  acquisitions.      

• The   provisional   patent   issued   to   the   James/Jalan   team   is   the   first   step   toward  technology   commercialization.  We   are   excited   about   the   potential   of   their   project  just  six  months  into  funding.  This  team  is  working  with  Daikin  Applied  in  Plymouth,  MN.  

• If  successuly  produced,  Leighton’s  pyrite  (iron-­‐disulfide)  solar  panels  could  provide  a  major  manufacturing  boost  to  Minnesota’s  Iron  Range.  They  have  made  one  of  two  breakthroughs  they  view  as  necessary  before  they  are  ready  for  commercialization.  This  team  is  working  with  Ten  K  Solar  manufacturing  in  Minneapolis,  MN.  

• Mohan’s  team  is  working  on  a  technology  to  reduce  wind  turbine  nacelle  weight  10x  while   improving  electric  output   consistency,   a  process   that   can  potentially   reduce  electricity   costs   and   spur  manufacturing   jobs   in  Minnesota.   This   team   is  working  with  Cummins  Electric,  who  has  multiple  locations  in  the  Twin  Cities  metro  area.  

• Shen’s   team   is   working   on   wind   farm   technology   that   improve   wind   farm  production,  which  could  ultimately  result  in  reduced  costs  for  consumers.  This  team  is  working  with  WindLogics,  a  St.  Paul  subsidiary  of  NextEra  Energy.  

 5   post-­‐doctoral   fellows   have   been   hired   and   moved   to   Minnesota   to   work   on   the   four  projects.  So  far  13  students  are  directly  employed  by  the  projects.  Dozens  of  other  students  in   the   classroom   and   via   departmental   learning   opportunities   benefit   from   the   research  being  conducted  by  the  four  research  teams.  This  is  an  essential  factor  for  the  University  of  Minnesota  maintaining   its  status  as  a  top-­‐notch  research   institution,  which   in  turn  draws  bright  students  from  throughout  Minnesota,  the  country,  and  world.  It   is  not  quantifiable,  but   conducting   cutting-­‐edge   research   works   to   increase   Minnesota’s   intellectual   capital,  

Page 4: 2016 Annual Report - REMnF..." 4" which"in"turn"contributes"to"a"vibrant"economy."Pursuingbasic"research"into"advanced" renewableenergytechnologiesisthefirst"stageoftheinnovationpipeline

  4  

which   in   turn   contributes   to   a   vibrant   economy.   Pursuing   basic   research   into   advanced  renewable  energy  technologies  is  the  first  stage  of  the  innovation  pipeline.  Conducting  this  research   is   good   for   Minnesotans   in   general   because   it   inspires   companies   like   3M,  Cummins,  Ten  K  Solar,  WindLogics,  Daikin  Applied,  and  many  more  to  invest  in  Minnesota.  It   further  works   to  ensure  Minnesota   is  a  hub   for  research   innovation   inside  and  outside  academia.    Lessons  learned:    We  have  learned  a  number  of  lessons  through  the  first  year  of  Cycle  IV.  First,  we  realize  the  importance   of   reviewing   proposals   as   early   as   possible   because   it   took   us   longer   than  anticipated  to  select  the  four  projects  we  funded  from  the  23  submitted  proposals.  In  order  to  ensure  an  efficient  external  review  process—which  we  think  is  essential  for  the  integrity  of  our  selection  process—we  need  to  get  those  external  reviewers  (non-­‐UofM  researchers  and   REMnF   board   members)   lined   up   and   prepared   for   reviews   earlier.   This   will   be  beneficial  because  the  external  reviewers’  thorough  and  insightful  reviews  were  an  integral  component  of  our  selection  process.    We  have  also  realized  that  our  Principal  Investigators  (PIs,   which   is   synonomous   with   lead   researchers   on   each   of   the   four   teams)—who   all  scored   well   on   the   commercialization   weighting   of   their   proposals—benefit   from   active  support  in  thinking  about  ongoing  commercialization  strategy.  We  are  engaged  with  all  of  them   now   but   would   start   the   commercialization   engagement   earlier   next   time.     We  realized  that   it   is  easy   for  the  PIs  to  view  the  strategy  outlined   in  their  proposal  as  static  until   their   product   is   fully   developed   when,   in   fact,   it   requires   active   engagement  throughout   the   technology   development   phase.  We   will   also   put   a   greater   emphasis   on  established  or  planned  connections  with   industry  partnerships.  Each  project   team  has  at  least  one  commercial  partner  but  as  with  any  set  of  relationships,  some  are  stronger  than  others.  We  will  put  more  emphasis  on   the  strength  and  demonstrated  relevance  of   these  relationships  in  subsequent  RDF  cycles.    Finally,  we  learned  how  appreciative  the  four  PI  teams  are  of  RDF  funding.  All  four  teams  have  conducted  numerous  internal  education  sessions  related  to  their  projects,  a  number  of  which  REMnF  staff  have  attended.  Each  time,  the  PIs  mention  the  RDF  as  an  important  sponsor  of  their  research.  All  four  teams  also  express  their  eagerness  to  work  with  REMnF  staff   to   complete   program   requirements   and   are   motivated   at   the   prospect   of  commercialization.  Along  with  the  PIs,  we  are  appreciative  of   the  Higher  Education  block  grant  tranche  and  the  RDF  program’s  current  management  structure.        

Page 5: 2016 Annual Report - REMnF..." 4" which"in"turn"contributes"to"a"vibrant"economy."Pursuingbasic"research"into"advanced" renewableenergytechnologiesisthefirst"stageoftheinnovationpipeline

  5  

2016  BUDGET    Budget  overview:  

 

Project   Total  Budgeted  

Total  Received  

Total  Expenses  

Pro-­‐Rated  Expense  Goal  

Total   $3,000,000   $2,000,000   $440,770   $500,000  Jalan/James   750,000   250,000   104,475   125,000  Leighton   750,000   250,000   101,020   125,000  Mohan   750,000   250,000   160,866   125,000  Shen   750,000   250,000   $74,405   125,000  

 The   “Pro-­‐Rated  Expense  Goal”   reflects   expected  expenses  over   the   six  months   from   July-­‐December  given  the  three  year  project  duration  (i.e.  1/6th  of  the  project’s  total  expenses).      Total   expenses   are   slightly   behind   because   it   took   the   Jalan/James   and   Leighton   teams    longer  than  anticipated  to  find  research  assistants.  One  of  Shen’s  co-­‐PIs  who  is  budgeted  to  have  a  research  assistant  was  unable  to  fill  the  position  during  the  fall  2016  hiring  process  due   to  an   insufficient  number  of   students   in   the  department   compared   to   the  number  of  available  positions.  Inability  to  hire  a  student  in  the  fall  has  prevented  the  team  from  hiring  someone  until  more  students  with  subject  matter  knowledge  matriculate  in  fall  2017.  Not  filling  that  position,  as  well  as  a  6-­‐month  delay  in  hiring  an  additional  post  doc  accounts  for  the  ~$50,000  shortfall  in  Shen’s  budget.    Mohan’s  additional  $60,000   in   leveraged   funds  (discussed  on  p.3  and  p.10  of   this  report)  are  not  reflected  in  his  team’s  budget  numbers  above.      

Page 6: 2016 Annual Report - REMnF..." 4" which"in"turn"contributes"to"a"vibrant"economy."Pursuingbasic"research"into"advanced" renewableenergytechnologiesisthefirst"stageoftheinnovationpipeline

  6  

 

BACKGROUND    In   2015,   the   University   of   Minnesota,   through   the   Institute   on   the   Environment   (IonE),  entered   into   an   agreement  with   the  Northern   States  Power  Company   (doing  business   as  Xcel   Energy   in   Minnesota),   with   respect   to   a   research   grant   with   a   total   amount   of   $3  Million   for  a  period  of   three  years.  The   funding  was  allocated   from  the  Higher  Education  block  grant  component  of   the  Renewable  Development  Fund,  supported  by  the  ratepayer  Xcel  Energy’s  ratepayer  and  managed  by  said  utility  company.  The  University  provides  this  annual   report   pursuant   to   the   conditions   of   the   grant   agreement   (Exhibit   C,   “Reporting  Requirements  and  Protocol),  to  convey  progress  made  to  date  in  implementing  the  stated  research  initiative.    The  Project   “Renewable  Electricity   for  Minnesota’s  Future”   (REMnF)  supports  Xcel’s  RDF  goals   by   sponsoring   University-­‐based   research   that   has   potential   to   produce   renewable  energy  innovations    with  strong  potential  for  commercial  viability.    

 In   March   2016,   REMnF   selected   four   proposals   of   the   23   that   were   submitted   from  University  researchers  on  the  Twin  Cities,  Duluth,  and  Crookston  campuses.  The  selected  proposals   cover   the   following   technology   fields   promoted   by   the   RDF:   1)   Photovoltaic  Generation;  2)  Thermal  Electric  Generation  and;  3)  Power  electronics,  power  systems,  and  transmission  of  electricity.  

 Each   project   was   awarded   1/4th   of   the   $3   million   grant   amount   ($750,000)   to   be  distributed  evenly  over  three  years.  The  funded  projects  are:      

Title   Lead  Principal  Investigator  (PI)   Department  

Pyreite  FeS2:  A  Low-­‐Cost  Earth-­‐Abundant  Photovoltaic  Solution  for  Renewable  Electricity  in  Minnesota  

Chris  Leighton   Chemical  Engineering  and  Material  Sciences  

The  Direct  Conversion  of  Heat  to  Electricity  Using  Fast  Switching  of  

Ferroelectric  Oxides  

Richard  D.  James  and  Bharat  Jalan  

Aerospace  Engineering  and  Mechanics  (James);  Chemical  Engineering  and  Material  

Sciences  (Jalan)  Simulation,  Measurement,  

Modeling,  and  Control  of  Wind  Plant  Power  

Lian  Shen  St.  Anthony  Falls  Laboratory  

and  Department  of  Mechanical  Engineering  

Research  on  Power  Electronics  and  Control:  Grid-­‐Interface  for  

Renewables,  Storage  and  Green  Micro-­‐Grids  

Ned  Mohan   Electrical  and  Computer  Engineering  

Page 7: 2016 Annual Report - REMnF..." 4" which"in"turn"contributes"to"a"vibrant"economy."Pursuingbasic"research"into"advanced" renewableenergytechnologiesisthefirst"stageoftheinnovationpipeline

  7  

 

REMnF  BOARD  COMPOSITION  AND  MEETINGS    The  REMnF  board  was   finalized   in  early  2016.   It   is   charged   to  stay  updated  with  project  progress,   help   identify   external   partners   and  opportunities   for   collaboration,   and   ensure  each  project  stays  on  track.   In  the  event  that  specific  projects  are  not  on  track,   the  board  will   make   recourse   recommendations.   The   board   convenes   bi-­‐annually   in   June   and  December.    

 Institue  on  the  Environment  hosted  the  board’s  first  meeting  on  February  25,  2016,  before  the   four   projects   were   selected.   At   this   meeting   the   board   was   introduced,   given   their  charge,  and  updated  on  the  ongoing  external  review  process  for  all  23  initial  proposals.  

 A  second  meeting  occurred  on  December  13,  2016  after  the  projects  were  selected  and  had  an   opportunity   to   make   initial   progress.   At   this   meeting   each   of   the   four   project   PIs  introduced  themselves  and  their  projects  to  the  board  with  10-­‐minute  presentations.    

REMnF  Board  Composition  (as  of  December  2016)    

Name   Title   Organizaiton  Nina  Axelson   Vice-­‐President,  Public  Relations   Ever-­‐green  Energy  

Bill  Blazar   Senior  Vice-­‐President  of  Public  Affairs  and  Business  Development   MN  Chamber  of  Commerce  

Amy  Fredregill   Resource  Planning  and  Strategy  Manager   Xcel  Energy  

J.  Drake  Hamilton   Science  Policy  Director   Fresh  Energy  

Dan  King   Program  Director   Midwest  Renewable  Energy  Tracking  System  

Laureen  Ross  McCalib  

Manager,  Resource  Planning  and  Regulatory  Affairs   Great  River  Energy  

Rolf  Nordstrom   President  and  CEO   Great  Plains  Institute  David  Russick   Founder,  Managing  Director   Gopher  Angels  

Kelly  Schwinghammer   Executive  Vice-­‐President   BlueGreen  Alliance  

Will  Seuffert   Executive  Director   Environmental  Quality  Board  

Doug  Shoemaker   Vice-­‐Chairperson   MN  Renewable  Energy  Society  

Kaya  Tarhan   Chief  Development  Officer   SolarStone          

Page 8: 2016 Annual Report - REMnF..." 4" which"in"turn"contributes"to"a"vibrant"economy."Pursuingbasic"research"into"advanced" renewableenergytechnologiesisthefirst"stageoftheinnovationpipeline

  8  

SUMMARY  OF  PROJECT  ACTIVITIES  (JUNE  TO  DECEMBER  2016)  1. Project  Progress  Overview  

 All   four   funded   projects   are   off   to   strong   starts.   Aside   from   successful   scientific  breakthroughs   to   develop   each   technology,   REMnF’s   long-­‐term   focus   is   on   technology  commercialization,   ratepayer   and   business   benefit,   and   job   creation.   To   this   end,   each  project  team  has  hired  graduate  research  assistants  and/or  post-­‐doctoral  fellows  to  assist  with  their  specific  research.  They  have  also  reached  out  to  relevant    Minnesota  businesses  as   partners   for   the   research   and   development   of   their   various   projects.   In   order   to   help  expedite  the  business  connection  and  commercialization  aspects  of  the  technologies  being  developed,  REMnF  staff  have  conducted  focused  meetings  with  each  Principal  Investigator  (PI)  to  identify  a  “commercialization  timeline,”  which  includes  potential  partners,  funding  sources,   patent   process   and   coordination   with   the   University’s   Office   of   Technology  Commercialization.  One  patent  request  has  already  been  submitted  to  the  University.  

 The     tables   below   show   a   comprehensive   summary   of   our   work   to-­‐date   that   directly  impacts  REMnF  goals.    Scientific  Articles    

PI   Author(s)   Article  Title   Journal   Date  

Shen  

Yang  Xiaolei,  Jiarong  Hong,  Matthew  Barone,  and  Fotis  Sotiropoulous  

Coherent  dynamics  in  the  rotor  tip  shear  layer  of  

utility-­‐scale  wind  turbines  

Journal  of  Fluid  

Mechanics  

Published  7/1/16  

James  and  Jalan  

Xiaoyue  Ni,  Julia  R.  Greer,  Kaushik  Bhattacharya,  

Richard  D.  James,  and  Xian  Chen  

Exceptional  resilience  of  small-­‐scale  Au30Cu25Zn45  under  cyclic  stress-­‐induced  phase  transformation  

Nano  Lectures  

Accepted  12/1/16  

Leighton    

Zhang,  Li,  Walter,  O'Brien,  Manno,  Voigt,  Mork,  

Baryshev,  Kaklios,  Aydil  and  Leighton  

Potential  resolution  ot  the  doping  puzzle  in  iron  pyrite:  carrier  type  detemination  by  Hall  efefct  and  thermopower  

Nature  Communications    

Accepted  12/15/16  

                 

Page 9: 2016 Annual Report - REMnF..." 4" which"in"turn"contributes"to"a"vibrant"economy."Pursuingbasic"research"into"advanced" renewableenergytechnologiesisthefirst"stageoftheinnovationpipeline

  9  

Presentations    

PI   Paper  Title   Conference   Location   Date  

Bharat  Jalan  

Radical-­‐based  Oxide  MBE  and  Electronic  Transport  of  La-­‐doped  

BaSnO3  Thin  Films  

European  Materials  

Research  Society  Warsaw,  Poland   9/19/16  

Richard  James   Materials  from  Mathematics  

Keble  Complexity  Cluster  Workshop  

Keble  College,  Oxford,  England   10/20/16  

Ned  Mohan  

Research  on  Power  

Electronics  and  Control:  Grid-­‐Interface  for  Renewables,  Storage  and  Green  Micro-­‐

Grids  

RDF  Board   Minneapolis  -­‐  online   11/8/16  

Richard  James  

Materials  and  methods  for  the  

direct  conversion  of  heat  to  electricity  

Workshop  on  Electron  

Microscopy  and  Energy  

Conversion  

University  of  Oxford,  England   11/11/16  

Richard  James  

Leverhulme  Lectures  on  Mathematical  Problems  in  Materials  Science  

Mathermatical  Institute  

University  of  Oxford,  England  

11/11/2016-­‐11/15/2016  

Michael  Heisel,  Mirko  Musa,  Jiarong  Hong,  Michele  Guala  (Shen  Group)  

Wind  turbine  wake  

meandering  at  the  laboratory  and  field  scales  

69th  Annual  Meeting  of  the  American  

Physical  Society    Division  of  Fluid  

Dynamics  

Portland,  OR   11/20/16  

Daniel  Foti,  Xiaolei  Yang,  Lian  Shen,  Fotis  

Sptiropoulos  

A  numerical  investigation  of  the  role  of  the  turbine  rotor  scale  and  the  nacelle  on  wake  

69th  Annual  Meeting  of  the  American  

Physical  Society    Division  of  Fluid  

Dynamics  

Portland,  OR   11/20/16  

Page 10: 2016 Annual Report - REMnF..." 4" which"in"turn"contributes"to"a"vibrant"economy."Pursuingbasic"research"into"advanced" renewableenergytechnologiesisthefirst"stageoftheinnovationpipeline

  10  

meadndering  

Lian  Shen  and  Jefferey  Marr  

Wind  and  Water  Power  Research  

Program  at  St.  Anthony  Falls  

Lab  

Invited  presentation  to  the  Wind  Energy  Department  at  Sandia  National  

Labs  

Sandia  National  Labs   12/7/16  

Ned  Mohan  

Power  Electronics  and  Control:  Grid-­‐Interface  for  Renewables,  Storage  and  Green  Micro-­‐

Grids  

REMnF  Board   IonE  Saint  Paul   12/13/16  

Richard  James  

Atomistically  inspired  origami,  

Dynamics  and  Discretization  Seminar  

Dynamics  and  Discretization  Seminar  

Technical  University  of  

Munich,  Germany  12/13/16  

Bharat  Jalan  Multiferroic  Energy  

conversion  ARPA-­‐E   San  Francisco,  CA   12/13/16  

   Other    

Project  

Student  Jobs  Created  (RAs)  

Post-­‐Doc  Jobs  Created  

Additional  Grants  Received  (i.e.  dollars  leveraged)  

Patents  Approved  by  Office  of  Technology  Commercialization  

James  and  Jalan   2   2     1  (#20170206)  

Leighton   4        Mohan   3   1   $60,000    Shen   4   2      

     

Page 11: 2016 Annual Report - REMnF..." 4" which"in"turn"contributes"to"a"vibrant"economy."Pursuingbasic"research"into"advanced" renewableenergytechnologiesisthefirst"stageoftheinnovationpipeline

  11  

 

2. Detailed  Project  Summaries    The  summaries  below  detail  scientific  progress  made  by  each  project  from  July-­‐December  2016.    The  Direct  Conversion  of  Heat  to  Electricity  Using  Fast  Switching  of  Ferroelectric  

Oxides    

PIs:  Richard  D.  James  (AES)  and  Bharat  Jalan  (CEMS)    Summary  of  work:    According  to  a  2008  DOE  report  on  waste  heat  recovery,  25  −  50%  of  the  power  consumed  by  the  US  industrial  sector  alone  is  rejected  as  waste  heat.  Our  proposed  work  will  tap  into  these  waste  energy  to  convert  them  into  useful  electrical  energy.  A  similar  potential  exists  in   areas   of   waste   heat   production   from   automobiles,   power   plants   and   computers.  Automobiles   produce   exhaust   gases   in   a   similar   temperature   range   as   that   seen   in  industrial  heat  emission,  while  cooling  water  in  the  condenser  of  power  plants  emerges  at  a  little   less   than  ∼100   °C.   The  waste   heat   of   computers   is   a   growing   problem,   also   at   the  rapidly   expanding   system  of   clusters   containing  many   thousands   of   cores.   Currently,   the  energy  consumption  at  major  data  centers  in  the  U.S.  is  about  2.5%  of  the  national  energy  budget,   corresponding   to   the   energy   used   by   two   medium-­‐sized   cities.      Our  work  will  facilitate  chip-­‐level  integration  of  our  technology  via  thin  film  to  convert  heat  into  electricity.  This  will  enable   the  conversion  of  waste  heat-­‐to-­‐electricity   that  could,   for  example,   help   recharge   the  battery   in  handheld   electronic   devices.   Very   importantly,  our  methods   of   generating   energy   does   not   adversely   affect   the   environment,   which   is  unfortunately  the  most  compelling  scientific  problem  of  our  time.  Naturally,  the  outcomes  of  this  research  will  have  significant  impact  on  society,  nation  and  the  world.        

 Project  Update:  

As   outlined   in   the   original   proposal,   the   overall   goal   of   this   project   is   to   develop   energy  conversion   devices   based   on   phase   transformation   in   ferroelectric   films   through   the  establishment   of   molecular   beam   epitaxy   (MBE)   growth   and   the   computational  approaches.  We   proposed   to   predict   phase   change   ferroelectric  materials   of   exceptional  reversibility   and   to   exploit   these   structures   by   conducting   detailed   structural   and  electronic  transport  studies  in  order  to  understand,  and  eventually  control  local  structure,  and   phase   transformation.   Structures   incorporating   different   compositions   were   also  emphasized  which  meet   our   theoretical   conditions   of   compatibility   for   highly   reversible  phase   transition.   Partnership   with   Daikin   Applied   was   also   emphasized   for   guiding  applications  of  our  work.    

Page 12: 2016 Annual Report - REMnF..." 4" which"in"turn"contributes"to"a"vibrant"economy."Pursuingbasic"research"into"advanced" renewableenergytechnologiesisthefirst"stageoftheinnovationpipeline

  12  

Progress  over  the  last  three  months  has  been  achieved  in  the  following  areas:    1) Recruitment  and  Training    We   have   kick-­‐started   this   project  with   the   recruitment   of   grad   students   (Hanlin  Gu   ,   3rd  year,  and  William  Nunn,  2nd  year)  and  a  postdoc  (Ryan  Haislmaier,  PhD  from  Penn  State).  A  second  postdoc  (Paul  Plucinsky,  PhD  from  Caltech)  has  been  recruited  to  work  ½  time  for  this   project   and   he   will   join   in   May,   2017.     Hanlin   works   on   the   implementation   of  theoretical/computational   approaches   whereas   William   has   been   working   on   the  experimental  effort  of  the  proposed  work.  Ryan  Haislmaier  begins  his  appointment  on  Dec.  1.   He  will  work   on   the   synthesis,   characterization   and   device   fabrication   of  materials   in  very  close  collaboration  with  Hanlin.    Initial  progress  is  achieved  through  training  of  students.  Both  grad  students  are  now  very  well  equipped  with  the  knowledge  required  to  perform  the  proposed  work.    We  have  been  surveying   lattice   parameters   of   a   large   number   of   ferroelectric   phase   transformations   in  the   literature,   and   we   have   located   some   promising   starting   points   for   our   devices.     In  particular,   substitutional   variants   of   BaTiO3   and   promising   from   both   a   theoretical   and  experimental  viewpoint.    Hanlin  Gu  has  gained  extensive  knowledge  of  lattice  parameter  tuning,  and  has  developed  new   methods   for   analyzing   and   representing   the   special   lattice   parameters   that   satisfy  conditions  for  single  interface  transformation.    She  is  also  becoming  expert  on  the  electro-­‐thermodynamic  analysis  of  our  proposed  device.    William   Nunn   is   now   trained   on   the   molecular   beam   epitaxy   method   for   materials  synthesis   including   various   characterization   tools   (X-­‐ray   diffraction,   atomic   force  microscopy,  X-­‐ray  spectroscopy).  In  fact,  both  Hanlin  and  William  have  already  made  good  progress  with  calculations  and  synthesize  of  BaTiO3  (discussed  below).      2) Preliminary  Results    We   have   recently   started   the   synthesis   of   stoichiometric   BaTiO3   films.   In   this   study,   we  showed  the  growth  of  phase-­‐pure,  epitaxial  BaTiO3  films  grown  on  SrTiO3  (001)  substrates  using  hybrid  MBE  approach.  Structure  was  characterized  using  a  range  of  characterization  techniques.   Figure   1   shows   atomic   force   microscopy   (AFM)   image   and   reflection   high-­‐energy  diffraction  (RHEED)  patterns  of  BaTiO3   film  after  growth.  AFM  showed  atomically  flat  surface  morphology  (Figure  1a).  RHEED  showed  streaky  patterns  along  both  [100]  and  [110]   azimuths   of   the   substrate,   establishing   a   cube-­‐on-­‐cube   epitaxial   relationship   and  smooth  surface  morphology  consistent  with  the  AFM  result  (Figure  1b  and  c).      

Page 13: 2016 Annual Report - REMnF..." 4" which"in"turn"contributes"to"a"vibrant"economy."Pursuingbasic"research"into"advanced" renewableenergytechnologiesisthefirst"stageoftheinnovationpipeline

  13  

 

Figure   1:   (a)   Contact   mode  atomic  force  microscopy  (AFM)  of   a  ~  40  nm   thick  BaTiO3   film  on   SrTiO3   (001)   substrate.  RHEED   patterns   after   growth  along   (b)   [100]   and   (c)   [110]  azimuths  of  the  substrate.  

 Figure  2   shows  a  wide-­‐angle  X-­‐ray  diffraction   (XRD)  2θ-­‐ω  scan   for   the   sample  grown  on  (001)   SrTiO3.   The   data   is   consistent   with   phase-­‐pure   BaTiO3   film   with   an   out-­‐of-­‐plane  lattice  parameter  of  film  close  to  4.00  Å   indicating   that   film   is  nearly   relaxed   film.  Future  investigation  will  be  directed  towards  stoichiometry  optimization  of  films  using  both  XRD  and   the   Rutherford   backscattering   spectroscopy.   A   series   of   films  with   different   growth  parameters  including  Ba/Ti  BEP  ratio,  oxygen  pressure,  and  substrate  temperature  will  be  grown  on  different  substrates  to  establish  conditions  for  stoichiometric  film.  We  will  then  explore  dielectric/electronic  properties  of  these  films.    

 

Figure   2:   On-­‐axis   high-­‐resolution  x-­‐ray  diffraction  2θ-­‐ω   scan   for   BaTiO3   film   grown  on   SrTiO3   001()   substrate.  Inset:   close-­‐ups   along   (002)  film/substrate   diffraction  peaks.  

 Further  detailed  information  on  our  simulations  for  material  design  are  available.      

Page 14: 2016 Annual Report - REMnF..." 4" which"in"turn"contributes"to"a"vibrant"economy."Pursuingbasic"research"into"advanced" renewableenergytechnologiesisthefirst"stageoftheinnovationpipeline

  14  

Pyrite  FeS2:  A  Low-­‐Cost  Earth-­‐Abundant  Photovoltaic  Solution  for  Renewable  Electricity  in  Minnesota  

PIs:  Chris  Leighton  (CEMS),  Eray  Aydil  (CEMS),  Laura  Gagliardi  (Chemistry)  

In  terms  of  research  accomplishments,  there  are  two  major  items  of  note.  The  first  is  that  our  publication  on  understanding  and  controlling  doping  in  pyrite  FeS2  is  now  substantially  complete  and  is  being  finalized.  This  work  is   in  preparation  for  submission  to  the  journal  Nature  Communications,  one  of  the  very  highest  impact  journals  in  science  and  engineering.  The  work  will  also  be  presented  at  the  Spring  Meeting  of  the  Materials  Research  Society  in  2017.   The   second   accomplishment   is   that   the   research   described   in   our   last   quarterly  report   has   progressed   remarkably  well.   In   our   quest   to   establish   sulfur   vacancies   as   the  primary  dopants  in  pyrite  crystals  we  have  now  essentially  eliminated  the  Ni  impurities  in  our  materials  and  have  obtained  compelling  data  as  a  consequence.  It  is  hoped  that  within  the  next  few  months  a  strong  case  can  be  built  that  we  now  have  the  best  evidence  to  date  of  sulfur-­‐vacancy-­‐controlled  doping.  This  is  a  truly  important  step  towards  understanding  doping  in  FeS2,  a  significant  advance  towards  pyrite  p-­‐n  junctions  and  thus  homojunction  solar   cells.   This   work   has   been   driven   by   graduate   student   Bryan   Voigt   (doing  experiments),   working   in   collaboration   with   graduate   student   Debmalya   Ray   (doing  theoretical  calculations),  both  of  which  are  supported  by  this  RDF  award.      

In  terms  of  personnel,  we  have  also  added  another  graduate  student  to  the  project.  Linmin  Wang,   pursuing   a   Ph.D.   in   Materials   Science   and   Engineering,   will   be   working   on   this  project   from  Spring  2017  onwards.  Linmin  will   focus  on   thin   film  pyrite   for  photovoltaic  applications.  Finally,  on  February  10th  2017  we  will  host  our  first  external  technical  review  of  this  project.  As  laid  out  in  our  proposal  we  plan  on  regular  review  of  our  work  by  Colin  Wolden  (Colorado  School  of  Mines)  and  Dmitri  Maroudas  (U.  Massachusetts  Amherst),  two  renowned  experts  on  photovoltaics.  The   schedule   for  our   review   includes   technical   talks  from  all  three  faculty,  and  three  graduate  students.  We  hope  to  obtain  detailed  feedback  on  progress,   and   advice   on   future   directions.   Christov   Churchward   will   also   attend   to  represent  the  Institute  on  the  Environment.                      

Page 15: 2016 Annual Report - REMnF..." 4" which"in"turn"contributes"to"a"vibrant"economy."Pursuingbasic"research"into"advanced" renewableenergytechnologiesisthefirst"stageoftheinnovationpipeline

  15  

Research  on  Power  Electronics  and  Control:  Grid-­‐Interface  for  Renewables,  Storage  and  Green  Micro-­‐Grid  

 PI:  Ned  Mohan  (ECE)  

 The   team  completed   its  hiring  and   training  of   four  graduate  assistants  and  one  post  doc.  They   investigated   various   wind   turbine   topologies   that   will   allow   grid   interconnection  using   a   high-­‐frequency   transformer,   thereby   avoiding   the   connection   of   semiconductor  devices   in   series,   which   is   not   efficient.   To   this   end,   they   researched   various   magnetic-­‐design   software   packages   to   design   the   high-­‐frequency   transformer.   They   are   also  extending  prior   research  on  avoiding  bearing  currents   in  generators,   supplied  by  power-­‐electronic  converters,  for  this  application  by  using  high-­‐frequency  transformers.      To   advance   this   research,   they   have   supplemented   their   RDF   support   by   securing   the  requisite   funding   from   supplemental   sources   to   acquire   a   real-­‐time   simulator   and   a  controller,   costing   approximately   $120,000,   which   will   significantly   expedite   their  research.    The   team   is   in   the  process  of  submitting  2-­‐3  abstracts   for  papers   in   the  2017   IEEE-­‐ECCE  conference.            

Page 16: 2016 Annual Report - REMnF..." 4" which"in"turn"contributes"to"a"vibrant"economy."Pursuingbasic"research"into"advanced" renewableenergytechnologiesisthefirst"stageoftheinnovationpipeline

  16  

Simulation,  Measurement,  Modeling,  and  Control  of  Wind  Plant  Power    

PIs:  Lian  Shen  (ME),  Michele  Guala  (CEGE),  Jiarong  Hong  (ME),  Jeffery  Marr  (SAFL),  Joseph  Nichols  (AEM),  and  Peter  Seiler  (AEM)  

 The  quarter  of  October  to  December  is  the  second  quarter  of  this  project.    We  made  very  good  progresses  in  this  period.    We  conducted  two  field  deployments  to  obtain  more  data  of  wind  flow  fields  in  the  near  wake  region  of  the  EOLOS  wind  turbine.    Our  analysis  on  the  past   deployment   data   was   able   to   determine   the   statistics   correlation   between   wake  disturbance   and   turbine   operational   conditions.     We   have   also   investigated   wake  meandering  in  the  wind  tunnel.    We  compared  wavelengths  and  amplitudes,  and  defined  a  dimensionless  phase  space   to  study  Reynolds  number  and  scale-­‐dependent  effects.    With  the   help   of   an   undergrad   student,   we   further   investigated   modifications   of   the   nacelle  geometry   to  control   the  onset  of   the   far  wake  oscillation.    This  work  will   continue   in   the  spring   semester  2017.    On   the   computation   side,  we  have  performed   simulations   for   the  Horns  Rev  offshore  wind  plant   and  an  array  of  80  wind   turbine,  with   two  approaches:   a  simulations   utilizing   the   actuator   surface   model   and   nacelle   model   to   parameterize   the  turbine  blades  and  nacelle,  and  a  simulation  utilizing  just  the  actuator  surface  model.    The  simulation  data  suggest  that  including  the  nacelles  can  improve  the  results.    Moreover,  we  investigated  a  simplified,  physics-­‐based  model  of  the  flow  through  a  wind  farm  developed  by   Shapiro   and   co-­‐workers.    We   are   currently   comparing   this  model  with   other  models  developed  from  simulation  data.    We  will  select  an  appropriate  low-­‐order  model  (physics-­‐based   or   data-­‐driven)   at   the   conclusion   of   this   investigation.     In   addition   to   the   above  research   activities,   Lian   Shen   and   Jeffery  Marr   visited   Sandia  National   Labs,  which   is   an  external  collaborator  of  this  project,  to  present  our  work  and  discuss  collaborations  in  the  next  period.                    

Page 17: 2016 Annual Report - REMnF..." 4" which"in"turn"contributes"to"a"vibrant"economy."Pursuingbasic"research"into"advanced" renewableenergytechnologiesisthefirst"stageoftheinnovationpipeline

17  

CONCLUSION:  2017  AND  BEYOND    REMnF  looks  to  build  upon  the  success  we  had  in  2016.  Our  main  focus  this  year  is  two-­‐fold  1)   continued   research   breakthroughs   and   2)   solidified   commercialization   strategies  uniquely  developed  for  each  of  the  four  technologies.