20140514 rep nl offshore wind supply chain assessment f · 2017. 11. 1. ·...

49
20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx 1/ 49 TKI Wind op Zee Offshore Wind Supply Chain Assessment Auteur: Oscar Fitch Roy, Paul Reynolds, Jules Clayton GL Garrad Hassan Nederland B.V. Versie: Final / Published Datum: 20140131

Upload: others

Post on 24-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     1/  49  

 

TKI  Wind  op  Zee  Offshore  Wind  Supply  Chain  Assessment                                    Auteur:     Oscar  Fitch  Roy,  Paul  Reynolds,  Jules  Clayton  GL  Garrad  Hassan  Nederland  B.V.  Versie:     Final  /  Published  Datum:     20140131          

Page 2: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     2/  49  

 IMPORTANT  NOTICE  AND  DISCLAIMER  1. This   document   is   intended   for   the   sole   use  of   the  Client   as   detailed  on   the   front   page  of   this  

document  to  whom  the  document  is  addressed  and  who  has  entered  into  a  written  agreement  with  the  GL  Garrad  Hassan  entity   issuing  this  document  (“GL  GH”).  To  the  extent  permitted  by  law,  neither  GL  GH  nor  any  group  company  (the  "Group")  assumes  any  responsibility  whether  in  contract,   tort   including  without   limitation  negligence,  or  otherwise  howsoever,   to  third  parties  (being  persons  other  than  the  Client),  and  no  company  in  the  Group  other  than  GL  GH  shall  be  liable   for   any   loss   or   damage   whatsoever   suffered   by   virtue   of   any   act,   omission   or   default  (whether  arising  by  negligence  or  otherwise)  by  GL  GH,  the  Group  or  any  of  its  or  their  servants,  subcontractors   or   agents.     This   document   must   be   read   in   its   entirety   and   is   subject   to   any  assumptions   and   qualifications   expressed   therein   as   well   as   in   any   other   relevant  communications  in  connection  with  it.    This  document  may  contain  detailed  technical  data  which  is  intended  for  use  only  by  persons  possessing  requisite  expertise  in  its  subject  matter.    

 2. This   document   is   protected   by   copyright   and   may   only   be   reproduced   and   circulated   in  

accordance  with  the  Document  Classification  and  associated  conditions  stipulated  or  referred  to  in  this  document  and/or  in  GL  GH’s  written  agreement  with  the  Client.  No  part  of  this  document  may   be   disclosed   in   any   public   offering   memorandum,   prospectus   or   stock   exchange   listing,  circular  or  announcement  without  the  express  and  prior  written  consent  of  GL  GH.    A  Document  Classification  permitting  the  Client  to  redistribute  this  document  shall  not  thereby  imply  that  GL  GH  has  any  liability  to  any  recipient  other  than  the  Client.  

 3. This  document  has  been  produced  from  information  relating  to  dates  and  periods  referred  to  in  

this   document.   This   document   does   not   imply   that   any   information   is   not   subject   to   change.  Except  and  to  the  extent  that  checking  or  verification  of  information  or  data  is  expressly  agreed  within  the  written  scope  of  its  services,  GL  GH  shall  not  be  responsible  in  any  way  in  connection  with   erroneous   information   or   data   provided   to   it   by   the   Client   or   any   third   party,   or   for   the  effects  of  any  such  erroneous  information  or  data  whether  or  not  contained  or  referred  to  in  this  document.    

 4. Any  wind  or  energy  forecasts  estimates  or  predictions  are  subject  to  factors  not  all  of  which  are  

within  the  scope  of  the  probability  and  uncertainties  contained  or  referred  to  in  this  document  and  nothing  in  this  document  guarantees  any  particular  wind  speed  or  energy  output.      

© 2014 GL Garrad Hassan Nederland B.V.

Page 3: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     3/  49  

Inhoud  EXECUTIVE  SUMMARY  ...............................................................................................................  5  

1   Introduction  .........................................................................................................................  6  

1.1   Methodology  and  approach  to  analysis  ..................................................................  6  

1.2   Data  sources  .........................................................................................................  7  1.2.1   The  Netherlands’  offshore  wind  programme  ........................................................................  7  

2   Task  1  –  Demand  Projection  .................................................................................................  9  

2.1   Offshore  wind  capacity  projections  ........................................................................  9  2.1.1   Demand  for  capital  items  -­‐  Europe  ......................................................................................  9  2.1.2   Demand  for  capital  items  –  outside  of  Europe  ...................................................................  10  2.1.3   Demand  for  operations  goods  and  services  .......................................................................  11  

2.2   Impacts  of  water  depth  and  distance  from  shore  ..................................................  12  2.2.1   Water  depth  ......................................................................................................................  12  2.2.2   Distance  from  shore  ..........................................................................................................  12  

3   Task  2:  Qualitiative  supply  Chain  Assessment  ....................................................................  14  

3.1   Pre-­‐construction  development  and  design  work  ...................................................  14  

3.2   Wind  turbines  .....................................................................................................  16  3.2.1   Turbine  assembly  ..............................................................................................................  16  3.2.2   Turbine  blades  ...................................................................................................................  17  3.2.3   Castings  and  forgings  .........................................................................................................  19  3.2.4   Gearbox  and  generators  ....................................................................................................  21  3.2.5   Towers  ..............................................................................................................................  23  

3.3   Electricals  ...........................................................................................................  24  3.3.1   Export  cables  .....................................................................................................................  24  3.3.2   Array  cables  .......................................................................................................................  26  3.3.3   AC  offshore  substation  ......................................................................................................  27  3.3.4   DC  offshore  substation  ......................................................................................................  28  

3.4   Foundations  ........................................................................................................  30  3.4.1   Monopiles  .........................................................................................................................  30  3.4.2   Jacket  foundations  ............................................................................................................  32  3.4.3   Gravity  base  concrete  foundations  ....................................................................................  33  

3.5   Construction  vessels  and  infrastructure  ................................................................  35  3.5.1   Turbine  installation  vessels  ................................................................................................  35  3.5.2   Foundation  installation  vessels  ..........................................................................................  37  3.5.3   Cable  installation  vessels  ...................................................................................................  38  3.5.4   Ports  .................................................................................................................................  39  

3.6   Operations  and  maintenance  ...............................................................................  41  3.6.1   Personnel  transfer  vessels  .................................................................................................  41  3.6.2   Operations  and  maintenance  technicians  ..........................................................................  43  

3.7   Summary  of  Global  supply  chain  assessment  ........................................................  44  

4   IMplications  for  the  Netherlands  offshore  wind  build-­‐out  ..................................................  45  

Page 4: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     4/  49  

4.1   Turbine  assembly  ................................................................................................  45  

4.2   Export  cables  ......................................................................................................  46  

4.3   DC  offshore  electrical  systems  .............................................................................  47  

4.4   Jacket  foundations  ..............................................................................................  47  

4.5   Foundation  installation  vessels  ............................................................................  48  

5   Conclusions  ........................................................................................................................  49                                        

Page 5: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     5/  49  

EXECUTIVE  SUMMARY  The   recent   signing  of   the   Energieakkoord  has   provided   a  major   boost   to   the  Dutch  offshore  wind  sector  with  a  coalition  of  Government,   industry  and  academia  coming  together  and  committing  to  deliver  4450GW  of  offshore  wind  by  2023,  including  an  additional  3450MW  of  new  capacity.      To   ensure   that   this   new   capacity   can   be   delivered   effectively,   this   report   provides   a   qualitative  review   of   supply   chain   capacity,   with   a   particular   focus   on   whether   the   supply   chain   will   be   a  bottleneck  for  Dutch  offshore  wind  projects.    As   Table   1   shows,   across   Europe   there   are   a   number   of   areas   of   concern,   most   notably   in   the  provision  of  HVDC  systems,  but  also  in  the  foundations  and  installation  vessels  required  to  develop  deeper  water  sites.      However,  with  the  vast  majority  of  Dutch  projects  expected  to  be  installed  in  less  than  35m  of  water,  and  close  enough  to  shore  to  be  serviced  by  HVAC  connectors,  many  of  these  European  constraints  do  not  apply  to  the  Netherlands.  There  is  a  need  for  investment  in  turbine  assembly  facilities,  HVAC  export  cables  and  training  of  technicians  but  overall  the  outlook  is  positive  for  Dutch  projects.      

Category   Item  Classification  –  EU  

level  NL  

 Pre-­‐construction  development  and  

design  work   J J

Wind  turbines  

Turbine  assembly   K K Turbine  blades   J J

Castings  and  forgings   J J Gearbox  and  generators   J J

Towers   J J

Balance  of  plant  

Export  cables   AC:K  DC:L  

K N/A  

Array  cables   J J AC  offshore  substation   J J DC  offshore  substation   L N/A  

Foundations  Monopiles   J J

Jacket  foundations   K N/A  Gravity  base  concrete  foundations   J N/A  

Construction  vessels  and  infrastructure  

Turbine  installation  vessels   J J

Foundation  installation  vessels  

Standard  size  monopile  installation  

J Extra  large  (>7.5m  Ø)  monopiles  installation  

K

Jacket  installation   L

 

J  

N/A    

N/A  Cable  installation  vessels   J J

Ports   J J Operations  and  maintenance  

 Personnel  transfer  vessels   J J Technicians   K K

Table  1:  Summary  results  of  Qualitative  Supply  Chain  Review  

Page 6: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     6/  49  

1 Introduction    The   recent   signing  of   the   Energieakkoord  has   provided   a  major   boost   to   the  Dutch  offshore  wind  sector  with  a  coalition  of  Government,   industry  and  academia  coming  together  and  committing   to  deliver  4450GW  of  offshore  wind  by  2023,  including  an  additional  3450MW  of  new  capacity.      To  ensure  that  this  new  capacity  can  be  delivered  effectively,  TKI-­‐WOZ  have  commissioned  DNV  GL  Energy  to  undertake  a  qualitative  review  of  supply  chain  capacity,  with  a  particular  focus  on  whether  the   supply   chain   will   be   a   bottleneck   for   Dutch   offshore   wind   projects.   This   report   is   the   final  deliverable  for  this  work1.      

1.1 Methodology  and  approach  to  analysis    This   study  brings   together  a  quantitative  analysis  of   the  build  out  of  offshore  wind   in  Europe  and,  where  relevant,  the  rest  of  the  world,  with  a  qualitative  assessment  of  the  supply  chain  to  meet  the  attendant   demand   for   goods   and   services.   Additionally,   where   supply   issues   are   identified,   the  specific  characteristics  of  the  Netherlands’  offshore  wind  sector  are  considered  to  ascertain  whether  wider  supply  constraints  apply.  The  figure  below  outlines  the  approach  to  the  analysis.    

   

Figure  1-­‐1:  Approach  to  analysis      

                                                                                                                         1  This  report  is  issued  to  TKI-­‐WOZ  (contracted  via  Agentschap  NL)  pursuant  to  a  written  agreement  arising  from  the  

proposal  130076-­‐UKBR-­‐P-­‐01  of  13/11/13.  

Offshore  wind  demand  analysis  

Qualitative  supply  chain  assessment  

Assessment  of  Netherlands-­‐specific  issues  

Conclusions  

DNV  GL  offshore  wind  database  

DNV  GL  technical  and  market  experts    

Information  sources  

Analysis   Report  section  

2  

3  

4  

5  

Page 7: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     7/  49  

1.2 Data  sources      The  quantitative  analysis  in  section  0  draws  on  a  proprietary  database  of  offshore  wind  projects  developed  by  DNV  GL  Energy.  The  database  employs  a  statistical  analysis  of  all  known  offshore  wind  projects  and  programmes.      

1.2.1 The  Netherlands’  offshore  wind  programme    The  recently  re-­‐stated  offshore  wind  ambition  of  the  Netherlands  is  both  a  driving  factor  behind  the  commissioning   of   this   report   and   an   integral   element   of   the   analysis.   Recent   announcements  confirm   the  government’s   intention   to   see  3,450MW  of  addition  offshore  wind  between  now  and  2023.   Figure   1-­‐2   shows   the   recently   announced   areas   of   search,   along  with   the   existing   offshore  wind  projects  and  other  constraints  in  the  marine  environment  while  Figure  1-­‐3  shows  the  expected  build  profile.      There  is  a  large  amount  of  uncertainty  as  to  which  projects  will  come  forward  to  fill  this  capacity  and  so   DNV   GL   have   used   the   technical   characteristics   (water   depth,   distance   to   shore)   of   projects  previously  being  developed  in  the  Netherlands  as  a  proxy  for  the  type  and  location  of  projects  that  will   come   forward   by   2023.   Assumptions   around   depth   of  water   are   provided   in   Figure   1-­‐4.  Over  time   this  will  need   to  be   refined  but   in   the   interim  allows   the   range  of   technical   characteristics   in  Dutch  projects  to  be  considered.    

 Figure  1-­‐2:  Offshore  wind  search  zones  in  the  Netherlands  

Page 8: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     8/  49  

 Figure  1-­‐3:  Netherlands  offshore  wind  projections  

 

 Figure  1-­‐4  -­‐  Water  depth  of  Dutch  projects  

     

0  

500  

1.000  

1.500  

2.000  

2.500  

3.000  

3.500  

4.000  

4.500  

5.000  

0  

100  

200  

300  

400  

500  

600  

700  

800  

900  

1.000  

2013   2014   2015   2016   2017   2018   2019   2020   2021   2022   2023  

Ope

rabo

nal  cap

acity

 (MW)  

Installabo

n  rate  (M

W/yr)  

Netherlands  (Energieakkoord)   Netherlands  cumulamve  (Energieakkoord)  

0%  

5%  

10%  

15%  

20%  

25%  

30%  

1   3   5   7   9   11   13   15   17   19   21   23   25   27   29   31   33   35   37   39   41   43   45   47  

Percen

tatge  of  fo

unda

bons  fo

r  NL  

Water  depth  (m)  

Source:  DNV  GL  

Source:  DNV  GL  

Page 9: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     9/  49  

2 Task  1  –  Demand  Projection    To  assess  whether  the  supply  chain  is  likely  to  be  a  constraint  on  the  roll  out  of  Dutch  offshore  wind  farms  it  is  first  important  to  understand  the  likely  demand  for  this  supply  chain  across  Europe,  and  where  relevant  globally.  By  tracking  all  known  offshore  wind  projects  in  a  proprietary  database  and  making   certain  qualified   assumptions   about   the  point   at  which  project  milestones   are   likely   to  be  achieved  it  is  possible  to  make  projections  of  the  rate  of  project  delivery  and,  by  inference,  demand  for  related  goods  and  services.      Demand   for   goods   and   services   related   to  offshore  wind  deployment  breaks   down   into   two  main  categories:    

1. Supply  of   capital   goods   for  offshore  wind   farm  construction.     Two  metrics   are   important  here.  The  first  is  the  number  of  turbine  units  installed  which  drives  the  run  rates  required  for  turbines,  foundations  and  corresponding  installation  vessels  (although  clearly  the  size  of  the  turbine  impacts  the  type  of  foundation  and  vessel  required).  The  second  is  the  MW  output  of   wind   farms   which   largely   drives   the   electrical   capacity   required,   although   distance   to  shore  is  also  important.  Array  cables  are  partly  driven  by  the  number  of  turbines.  .  Both  the  number  of  units  and  MW  capacity  installed  metrics  are  provided  where  relevant  throughout  the  document.  

2. Supply   of   goods   and   services   to   operational   projects.   This   category   scales  most   strongly  with  the  total  number  of  operational  turbines.  

 

2.1 Offshore  wind  capacity  projections    

2.1.1 Demand  for  capital  items  -­‐  Europe    The  major  driver  of  demand   for   capital  goods   such  as  wind   turbines  and   the  balance  of  plant  and  services  such  as  installation  vessels  is  the  rate  at  which  offshore  wind  capacity  is  deployed  in  Europe.      Figure  2-­‐1  shows  the  historical  and  projected  annual  MW  installed   in  Europe  by  country.   It  can  be  seen  that  2013  was  an  historic  year  for  offshore  wind  with  1.8GW  installed  across  Europe  –  a  50%  increase   on   the   corresponding   2012   figure.   The   reduction   in   capacity   in   2014   and   2015   suggests  there   could   be   over-­‐supply   in   the   market   and   this   “jumpy”   deployment   profile   represents   a  challenge  for  the  supply  chain.      

Page 10: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     10/  49  

 Figure  2-­‐1:  Annual  European  offshore  wind  installation  rate  –  MW  

 The  market  is  expected  to  ramp  up  again  in  2016,  although  with  capacity  downgrades  and  Round  3  continuing  to  move  to  the  right  in  the  UK,  the  total  capacity  expected  across  Europe  is  far  less  than  what  was  expected  a  couple  of  years  ago.  Expected  capacity   in  2016  represents  a  20%  increase  on  2013  figures  which  should  be  manageable  by  the  supply  chain,  although  the  dip   in  2014  and  2015  does  not  help   this.   Looking   longer   term,   the  market   is  again  expected   to  step  up  again   in  2019  to  become   a   3GW   plus/year   market   out   to   2024.   At   current   cost   this   represents   a   €11   billion/year  investment  opportunity.      

2.1.2 Demand  for  capital  items  –  outside  of  Europe      Offshore  wind  is  becoming  an  increasingly  global  sector  and  an  increasingly  global  supply  chain  may  mean  that  surges  in  demand  outside  Europe  could  impact  the  ability  of  European  projects  to  access  certain   components.   The   historical   and   projected   annual   rate   of   installation   in   Asia   and   North  America  is  shown  in  the  figure  below2.    As  can  be  seen  the  bulk  of  this  growth  is  provided  by  China  which  after  a  stuttering  couple  of  years  appears   to   be   ramping   up   for   rapid   deployment.   Although   large   in   terms   of   capacity,   this   rapid  increase  may   have   relatively   little   impact   on   European   projects  with   the   bulk   of   Chinese   projects  provided  by  indigenous  companies  not  currently  servicing  the  European  market.      Projections  in  the  North  American  market  remain  uncertain  given  the  political  environment  but  the  total   demand   appears   muted   in   the   context   of   the   European   and   Asian   markets   and   unlikely   to  create  a  domestic  manufacturing  industry.  As  a  result  there  appears  to  be  greater  potential  for  this  capacity  to  be  serviced  from  Europe  with  Siemens  supplying  turbines  to  Cape  Wind  a  prime  example.  There  may  therefore  be  some  limited  impact  on  European  projects.        

                                                                                                                         2  Reductions  in  demand  in  2022  and  2023  are  likely  to  be  associated  with  a  lack  of  visibility  of  projects  this  far  

ahead  as  opposed  to  expected  deployment.  

0  500  1000  1500  2000  2500  3000  3500  4000  4500  

Belgium   Germany   Denmark   Netherlands  

United  Kingdom   France   Europe  other  

Source:  DNV  GL  

Page 11: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     11/  49  

 Figure  2-­‐2  Annual  offshore  wind  installation  rate  outside  of  Europe  

   

2.1.3 Demand  for  operations  goods  and  services    Demand   for   operational   goods   and   services   such   as   O&M   port   facilities   and   service   vessels   are  driven   primarily   by   the   total   number   of   operational   turbines.   The   operations  market   is   even   less  likely   to   be   influenced   by   activity   outside   Europe   therefore  North   American   and   Asian   capacity   is  excluded.      As  Figure  2-­‐3,  below  shows,   the  operations  and  maintenance  market   is  expected   to  grow  strongly  over   the   next   decade  with   the   numbers   of   operational   turbines   expect   to  more   than   treble.   The  increase  is  relatively  steady  through  the  period  which  should  facilitate  timely  build  up  in  operational  capability  across  Europe.  The  operations  market  is  often  forgotten  about,  given  the  focus  on  CapEx,  but   previous   DNV   GL   studies   suggest   18GW   of   offshore   wind   capacity   creates   an   annual   O&M  market  of  around  €2.5  billion/year.    

 Figure  2-­‐3  Number  of  operational  turbines  in  European  waters  -­‐  projection  

0  

500  

1.000  

1.500  

2.000  

2.500  

3.000  

2008  A  

2009  A  

2010  A  

2011  A  

2012  A  

2013  A  

2014  E  

2015  E  

2016  E  

2017  E  

2018  E  

2019  E  

2020  E  

2021  E  

2022  E  

2023  E  

Installabo

n  rate  (M

W/yr)  

China   Japan   S.  Korea   Taiwan   USA   Canada  

0  

1.000  

2.000  

3.000  

4.000  

5.000  

6.000  

7.000  

8.000  

2013  A   2014  E   2015  E   2016  E   2017  E   2018  E   2019  E   2020  E   2021  E   2022  E   2023  E  

Turbines  

Belgium   Germany   Denmark   Netherlands  

United  Kingdom   France   Europe  other  

Source:  DNV  GL  

Source:  DNV  GL  

Page 12: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     12/  49  

 

2.2 Impacts  of  water  depth  and  distance  from  shore    

2.2.1 Water  depth    Demand   for   some  goods   and   services   such  as   foundations   are   impacted  by   the  depth  of  water   in  which  deployment  is  occurring.  The  chart  below  shows  the  breakdown  of  European  deployment  by  water   depth.   Post   2015   there   is   an   increase   in   projects   over   30m   of   depth   which   is   roughly   the  threshold   at   which   jackets   become   competitive   over   monopiles   (particularly   for   larger   turbines),  although  developments  of  XL  monopiles  may  change  this.      

 Figure  2-­‐4:  Projected  installation  rate  in  Europe  by  depth  of  water  –  turbines/yr  

   

2.2.2 Distance  from  shore    Demand  for  capital  items  such  as  export  cables  depends  to  a  large  extent  on  the  distance  from  shore  of  projects  with  Figure  2-­‐5  showing  changes  in  distance  out  to  2023.      

0  

100  

200  

300  

400  

500  

600  

700  

800  

2014   2015   2016   2017   2018   2019   2020   2021   2022   2023  

Installabo

n  rate  (turbine

s/yr))  

Unknown   0-­‐10m   10-­‐20m   20-­‐30m   30-­‐40m   40-­‐50m   50-­‐75m   >75m  

Source:  DNV  GL  

Page 13: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     13/  49  

 Figure  2-­‐5:  Installation  rate  in  Europe  by  distance  from  shore  

 Distance  to  shore  is  particularly  important  because  there  is  a  threshold  at  which  DC  systems  become  economic   over  AC.   This   threshold  will   vary   on   a   case   specific   basis   and  over   time  but   is   currently  estimated   to   be   around   70-­‐75km   for   a   project   with   radial   connections.   However   the   issue   is  complicated  by  potential  clustering  of  grid  connections  –  with  multiple  wind  farms  connecting   into  one   offshore   connection   point   -­‐   usually   provided   by   the   transmission   system   operator   under  socialised  grid  systems.  The  need  to  connect  multiple  wind   farms  through  one  offshore  substation  could  mean  that  projects  below  70-­‐75km  could  use  DC  systems  and  for  the  purposes  of  this  analysis  all  projects  greater  than  50km  have  been  assumed  to  be  potentially  DC  connected.  Figure  2-­‐6  shows  that  there  appears  to  be  demand  for  a  maximum  of  1.1GW  of  DC  links  out  to  2021.      

 Figure  2-­‐6:  MW  of  projects  greater  than  50km  from  shore  

0  

500  

1.000  

1.500  

2.000  

2.500  

3.000  

3.500  

4.000  

2014   2015   2016   2017   2018   2019   2020   2021   2022   2023  

Installabo

n  rate  (M

W/year)  

0-­‐10km   10-­‐20km   20-­‐30km   30-­‐40km   40-­‐50km   50-­‐75km   >75km  

0  

200  

400  

600  

800  

1.000  

1.200  

1.400  

1.600  

2014   2015   2016   2017   2018   2019   2020   2021   2022   2023  

Installabo

n  rate  (M

W/year)  

50-­‐75km   >75km  

Source:  DNV  GL  

Source:  DNV  GL  

Page 14: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     14/  49  

3 Task  2:  Qualitative  supply  Chain  Assessment    In  this  section  of  the  report,  an  assessment  is  made  of  the  salient  points  that  relate  to  particular  sub  elements  of  the  offshore  wind  supply  chain.  A  ‘traffic  light’  grading  is  given  to  each  sub  element:    

Traffic  light   Meaning  

J   Good  supply  –  unlikely  to  constrain  deployment  

K   Tight  supply  –  may  constrain  deployment  without  timely  investment  

L   Very  tight  supply  –  likely  to  constrain  deployment  and  significant  investment  required  

Table  2:  Traffic  light  scoring    

3.1 Pre-­‐construction  development  and  design  work    Description  Developing  an  offshore  wind  farm  requires  a  large  number  of  activities  focused  largely  around  two  areas:   a)   design   and   engineering   work   and   b)   obtaining   planning   consent   and   undertaking   the  environment   impact   assessment.   Supply   chain   capacity   in   this   element   is   mainly   focused   around  people,   with   a   wide   range   of   skill   sets   required.   Some   capital   equipment   is   required,   mainly   in  vessels  undertaking  geophysical,  geotechnical,  met  ocean  and  environmental  surveys.        Current  suppliers  Developers  will  manage   this   stage   and  have   substantial   in-­‐house   resource  which   is   supplemented  through  consultants:    

EIA/Planning  Consent   Survey   Design  Developers  (in-­‐house)   Fugro   Developers  (in-­‐house)  

Large  number  of  environmental  consultancies   Gardline   DNV  GL  

Lawyers   EMU   Ecofys     HiDef   Grontmij       Sgurr  

Pondera      COWI  Arcadis     ECN  

Royal  HaskoningDHV        Current  capacity  A  huge  amount  of  capacity  has  been  leased  and  developed,  primarily  in  Germany  and  the  UK,  with  over  50GW  of  offshore  wind  being  developed  in  the  UK  alone.  This  has  seen  development  teams  and  environmental  consultancies  expand  rapidly  to  meet  this   increase.  However,  recent  downgrades   in  2020  targets  in  the  UK  and  Germany  suggest  that  there  may  be  some  over-­‐capacity  in  the  market.      Despite  this,  more  upfront  design  work  and  a  better  consent  are  both  means  of  reducing  costs  and  truly  experienced  individuals  may  continue  to  be  scarce.  Unlike  capital  equipment,  language  may  be  a  barrier   to   the  easier  movement  of   skills  between  markets  and  emerging  markets  such  as  France  may  struggle  to  find  experienced  personnel  with  vital  local  knowledge.    

Page 15: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     15/  49  

 On   the   survey   side,   there   have   been   at   times   concerns   raised   around   capacity   but   recent  downgrades  in  capacity  should  mitigate  these  issues.      Barriers  to  entry  Offshore   wind   poses   unique   environmental   and   engineering   challenges   and   so   offshore   wind  experience  is  vital.      Summary  analysis  Design  and  development  is  not  generally  considered  as  a  bottleneck  by  the  sector  and  given  recent  downgrades   in   expectations   in   Germany   and   the   UK   there   should   be   sufficient   capability   in   the  market,  although  given  language  issues,  emerging  (and  less  English  speaking)  markets  such  as  France  may  have  difficulty  sourcing  experienced  people.      

J      

Page 16: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     16/  49  

3.2 Wind  turbines  

3.2.1 Turbine  assembly    Description  Before  transport  to  site  for  installation,  the  major  components  of  the  wind  turbine  generators  (WTG)  must   be   finished   and   assembled   into   final   product   at   specialist   facilities   by   the   OEM   (original  equipment  manufacturer).    Current  technology  To  date,  offshore  wind  turbines  have  been  in  the  3-­‐5MW  capacity  range  with  rotor  diameters  of  100  to   125m.   The   first   6MW  offshore   turbines  with   rotor   diameters   125m  plus   are   coming   to  market  with  a  number  installed  at  dedicated  test  facilities  and  the  first  commercial  scale  project  (Thornton  Bank)  commissioned  in  2013.    Technological  development  required  out  to  2023    Wind   turbines   are   expected   to   become   even   larger   with   significant   up-­‐scaling   of   rotors   and  generators   expected.   New   5-­‐7MW  models   with   rotors   150   to   170m   across   will   be   commercially  deployed  in  the  next  couple  of  years  while  manufacturers  have  already  begun  demonstrating  7MW  class  units  with  rotors  more  than  170m  across.    Current  manufacturing  capacity  and  suppliers  There  are   currently   sufficient   assembly   facilities   to  deliver   an  estimated   supply   capacity  of   2.5GW  per   annum   although   the   bulk   of   supply   is   of   turbines   in   the   3-­‐5MW   class  which  will   begin   losing  market   share   to   5-­‐7MW   class   machines.   Supply   of   offshore   turbines   has   been   dominated   by  Siemens,   with   Vestas,   Areva   and   REpower   (Senvion)   in   the   chasing   pack.   Sinovel   has   proven  capability  in  China.  The  market  has  seen  recent  consolidation  with  both  Vestas  and  Mitsubishi,  and  Areva   and   Gamesa   forming   two   separate   joint   ventures   seeking   to   challenge   Siemens’   market  dominance    There   are   also   a   large   number   of   heavyweight   new  entrants  who   currently   have   new  products   in  development.  These  include  Alstom,  Goldwind,  Ming  Yang  and  Samsung.      The  XEMC  Darwind  5MW,  115m  rotor  turbine  is  notable,  firstly  for  being  designed  and  distributed  by  a   Dutch   firm,   and   secondly   as   a   candidate   for   the   first   Chinese   built   offshore  wind   turbine   to   be  installed  outside  China  -­‐  at  the  Albatross1  wind  farm  in  the  German  North  Sea.    

Current  suppliers   New  entrants  or  products  in  development  

Siemens   Alstom  Vestas   Gamesa  Areva   Goldwind  

REpower  (Senvion)   Ming  Yang  Sinovel   Mitsubishi  (BARD)   Samsung  

  XEMC  Darwind  Table  3:  New  and  existing  wind  turbine  manufacturers  

Announced  manufacturing  capacity  

Page 17: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     17/  49  

Alstom   have   reached   final   investment   decision   on   a   turbine  manufacturing   facility   in   St.   Nazaire,  France   to   come   online   in   2015.   Many   others   have   announced   intentions   to   invest,   signing  Memorandum   of   Understanding   with   different   ports,   but   have   yet   to   invest.   Most   notable   is  Siemens  who  have  stated  their   intention  to   invest   in  Hull   in  the  UK.  More  confidence  in  post-­‐2020  deployment   should   lead   to  more   announcements   from   a   number   of   facilities   in   various   stages  of  planning.    Lead  times  for  new  factories  Lead  time  for  new  factory  is  around  18  months  to  first  unit  and  24  months  to  serial  production.    Investment  requirements  in  new  factories  Significant  new  capacity   is   required.  Our  analysis   suggests   that   the  European  market  will   be  more  than   3GW   a   year   by   2020   and   the   move   to   larger   turbines   will   require   changes   to   production  facilities.    Synergies  to  other  sectors  Although   all   components   and   sub-­‐assemblies   used   in   the  manufacture   of   offshore   wind   turbines  (especially  newer,  larger  models  coming  to  market)  tend  to  be  distinct  from  onshore  models,  some  advantage  may  lie  in  sharing  of  fixed-­‐cost  items  such  as  premises  etc.    Barriers  to  entry  The  main   barriers   to   supplying   turbine   products   to   the   offshore   wind  market   is   attaining   a   track  record   –   an   expensive   and   time   consuming   exercise   generally   considered   to   require   a   product   to  demonstrate   200   MW   of   offshore   installation.   Supplying   offshore   wind   turbines,   especially   the  newer,  larger  models  demanded  by  the  market,  requires  very  significant  financial  strength,  limiting  the  number  of  potential  competitors.    Summary  analysis  Current  and  planned  capacity  is  thought  to  be  adequate  to  meet  near-­‐term  demand  but  in  the  later  years   of   this   decade   there   may   be   a   constraint   if   new   manufacturing   capacity,   which   has   been  announced,  does  not  get  built.      Traffic  Light  

K      

3.2.2 Turbine  blades    Description  The  function  of  the  blade  is  to  convert  the  energy  in  the  airstream  into  rotational  torque  on  the  main  shaft   which   drives   the   generator.   The   highly   specialised   and   low-­‐volume   nature   of   the   product  means   that  offshore  blades  are  more   likely   to  be  manufactured   ‘in-­‐house’  by  wind   turbine  brands  

Page 18: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     18/  49  

than  onshore  blades,  but   can  be   laminated  at  a   separate  physical   location   from   the  main   turbine.  Diversification  of  supply  is  expected  as  new,  specialist  entrants  enter  the  offshore  blade  market.    Current  technology  Current   3-­‐5MW   class   turbines   have   blades   around   50-­‐60m   in   length   while   new   6MW+   turbine  models   demand   blades   in   the   70m+   range.   The   largest   blade   deployed   to   date   is   83m   for   the  Samsung   7MW   turbine.   Companies   are   exploring   longer   blade   diameters   including   advances   in  modular  designs.    Technological  development  required  out  to  2023  (including  project  changes)  Increasing   blade   lengths   demand   advances   in  materials   technology   to   keep   blade   weight   down   -­‐  including  the  use  of  carbon  fibre.  The  scale  of  next-­‐generation  blades  means  that  developments  such  as  modular  multi-­‐piece  designs  may  emerge  to  reduce  the  cost  of  logistics  and  handling.    Current  manufacturing  capacity  and  suppliers  There  is  proven  capability  in  Areva,  LM  Wind  Power,  REpower,  Siemens  and  Vestas  which  has  been  sufficient  to  meet  current  demand.  Future  capacity  may  come  forward  from  turbine  OEMs  or  from  specialists  such  as  Euros,  Blade  Dynamics,  Sinoi  or  SSP  Technology.      

Current  suppliers3   Potential  new  entrants  Siemens   Eurus  Vestas   Blade  Dynamics  Areva   Sinoi  

REPower  (Senvion)   SSP  Technology  LM  Wind  Power    

   Table  4:  New  and  existing  blade  suppliers    

 Lead  times  for  new  factories/products  The   lead   time   to   establish   a   blade  manufacturing   facility   is   shorter   than   the   lead   time   for   a  main  turbine   assembly   factory,   meaning   that   financial   investment   decisions   can   be   taken   after   the  confirmation  of  new  turbine  assembly  facilities.    Relevant  framework  agreements  Although  many  of  the  incumbent  OEMs  build  blades  in  house,  a  number  of  wind  turbine  OEMs  are  using  or  are  planning  to  use  third  party  suppliers.  For  instance,  Alstom  have  entered  an  agreement  with  LM  Wind  Power,  Mitsubishi  have  sourced  blades  from  Euros  and  Samsung  have  used  SSP  blades  for  testing.      Synergies  to  other  sectors  Blade  factories  can  be  used  to  produce  a  range  of  products  –  including  onshore  wind  blades.      Barriers  to  entry  The   main   barrier   to   entry   of   new,   independent   suppliers   is   the   trend   for   offshore   blades   to   be  manufactured  in  house,  although  this  is  expected  to  change.  Also,  the  size  of  these  items  means  that  a  coastal  location  is  really  the  only  viable  option  for  blade  manufacture.  To  date,  only  one  third  party  manufacturer  (LM  Wind  Power)  has  a  track-­‐record  in  supply  of  blades  for  offshore  turbines.  

                                                                                                                         3  Wind  turbine  OEMs  in  italics  

Page 19: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     19/  49  

 Summary  analysis  The  shorter  facility  lead  times  mean  that  investment  in  blade  manufacture  can  occur  once  a  turbine  assembly  plant  has  been  confirmed,  providing  scalability  in  capacity.  Blade  manufacture  is  not  seen  as  a  current  or  future  constraint  on  deployment  although  new  investment  will  be  needed.    Traffic  Light  

J      

3.2.3 Castings  and  forgings    Description  Offshore   wind   turbine   manufacture   requires   heavy   duty   metal   work   for   several   components.  Castings  are  needed  for  items  such  as  the  rotor  hub,  nacelle  bedplate,  bearing  housing  and  gear  box  housing  and  steel  forgings  are  needed  for  bearings,  shafts,  gear  wheels  and  flanges.    Technological  development  required  out  to  2023  The  manufacture  of  these  items  is  based  on  well-­‐known  and  mature  engineering  techniques  and  no  major   changes   are   envisaged   this   decade.   Cast   iron   may   be   replaced   post-­‐2020   by   composite  materials  in  applications  where  weight  reduction  offers  cost  savings  to  offset  the  cost.    Current  manufacturing  capacity  and  suppliers  The  size  of  the  iron  castings  needed  by  very  large  offshore  wind  turbines  (in  excess  of  20,000kg)  can  only  be  cast  by  a   limited  number  of  European   foundries.  The  number  of   facilities  with  convenient  access  to  where  the  parts  are  needed  is  even  fewer.  However,  foundries  in  Asia  and  elsewhere  can  cost   effectively   supply   European  demand   if   needed,   although   indigenous   growth   in   offshore  wind  may  limit  export  capacity.    Castings   and   forgings   have   been   supplied   to   offshore   wind   by   suppliers   such   as   Felguera   Melt,  Fonderia  Vigevanese,  Metso,  MeuselWitz,  Sakana,  Siempelkamp,  Torgelow  and  VTC      

Suppliers  of  castings  and  forgings  to  the  offshore  wind  sector  

Felguera  Melt  Fonderia  Vigevanese  

Metso  MeuselWitz  Sakana  

Siempelkamp  Torgelow  

Page 20: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     20/  49  

VTC4  Table  5:  Previous  suppliers  of  castings  and  forgings  to  offshore  wind    

   Synergies  to  other  sectors  By  their  nature,  these  items  are  produced  in  facilities  that  cater  to  a  variety  of  industries.  However,  the  demands  of  very  large  offshore  wind  turbines  (large  items  AND  reasonably  high  volume)  sets  it  apart  from  other  sources  of  business.    Barriers  to  entry  The   very   large   costs   and   diverse   customer   base  mean   that   it   is   unlikely   that   a   new   supplier   will  emerge  solely  to  supply  the  offshore  wind  sector.    Summary  analysis  While  it  remains  unclear  whether  European  offshore  wind  will  be  supplied  with  castings  and  forgings  from  Europe  or  Asia,  there  is  little  risk  that  the  availability  of  manufacturing  capacity  in  casting  and  forging  will  be  a  constraint  on  deployment.    Traffic  Light  

J      

                                                                                                                         4  Acquired  Vestas’  castings  facility  

Page 21: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     21/  49  

3.2.4 Gearbox  and  generators    Description  The  major  components   in  the  drive  train  of  offshore  wind  turbines  are  the  generator  unit  and  (for  non-­‐direct-­‐drive  models)  the  gearbox.    Technology  status  Larger  turbines  and  the  demands  of  maintenance  at  sea  mean  that  there  is  a  general  shift  away  from  the  3-­‐speed  gearbox  drive  trains  that  have  dominated  the  wind  industry  (on-­‐  and  offshore)  to  date  and   a   range   of   increasingly   product-­‐specific   solutions   such   as   mid-­‐speed,   direct   drive   or   even  hydraulic   power   transmission   are   emerging.   The   main   supply   chain   challenge   of   direct-­‐drive  concepts  is  the  large  amount  of  rare  earth  metals  required.      Current  suppliers    

Gearboxes  (current)  

Gearboxes  (future)  

Generators    (current)  

Generators  (future)  

Bosch  Rexroth   David  Brown   ABB   GE  Power  Conversion  Eickhoff   Mitsubishi   Elin    

ZF  Wind  Power  (Hansen  until  

December  2011)    

  Ingeteam    

Moventas     Leroy  Somer    RENK     VEM    

Winergy  (Siemens)          

Table  6:  New  and  existing  gearbox  and  generator  suppliers      Lead  times  for  new  factories/products  Similarly  to  blade  manufacture,  drive  train  component  factory  capacity  scales  with  turbine  assembly  capacity.  Lead  times  are  around  one  to  two  years  following  Financial  Investment  Decision  (FID).    Synergies  to  other  sectors  Gearbox  and  generator  factories  are  able  to  supply  a  range  of  non-­‐wind   industries  such  as  mining,  shipbuilding  and  other  heavy  plant  applications  which  may  lead  to  competition  for  capacity.    Barriers  to  entry  New  drive  train  concepts  need  a  track  record  before  taking  a  stake  in  the  market.    Summary  analysis  Market   is   diversifying   as   OEMs   take   different   drive   train   approaches.   Industry   does   not   appear  concerned  at  supply  of  generators  and  gearboxes.  As  a  complement  to  turbine  assembly,  supply  of  gearboxes  and  generators  will  scale  with  turbine  capacity.              

Page 22: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     22/  49  

Traffic  Light  

J    

Page 23: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     23/  49  

3.2.5 Towers    Description  Current   technology   is   common   to   on-­‐   and   offshore   wind   –   albeit   on   a   larger   scale   offshore.  Structures  are  rolled,  tapered  steel  tubes  which  are  flanged  and  bolted  together  in  sections.    Technological  development  required  out  to  2023  (including  project  changes)  As  turbines  increase  in  size  the  tower  will  also  need  to  increase  in  size.  Most  technical  development  is   likely   to   occur   in   the   area   of   structural   optimisation   through   integration   of   turbine,   tower   and  foundation  to  optimise  loads.    Current  manufacturing  capacity  and  suppliers  Suppliers  with  demonstrated  offshore  capability   Suppliers  with  capability  that  may  enter  the  

market  Ambau   CS  Wind  

Marsh  Wind   DS  SM  SIAG   Gestamp  Wind  Steel  

Titan  Towers   TAG  Energy  Solutions  Welcon   Wind  Towers  Scotland  

  Sif  Table  7:  Tower  suppliers  

 Lead  times  for  new  factories  FID  for  tower  capacity  can  be  made  alongside  turbine  assembly  plant  decisions.    Investment  requirements  in  new  factories/products  The   scale   of   the   demand   for   offshore   wind   capacity   suggests   that   new   European   supply   will   be  required   to  meet   it.   However,   since   lead   times   are   short   and   barriers   to   entry   fairly   low   due   the  straightforward  engineering  required,   it   is   likely  that  new  capacity  will  keep  pace  with  demand  for  turbines.  Monopile  providers  may  be  able  to  transfer  competence  aswell.      Synergies  with  other  sectors  Factories  building  towers  for  offshore  wind  can  also  serve  the  onshore  wind  market,  provided  that  the  logistics  of  accessing  markets  make  sense.    Summary  analysis  Low  barriers   to  entry  and  short   lead   times   for  new  manufacturing  capacity  mean   that  despite   the  need  for  new  facilities,  the  availability  of  towers  is  unlikely  to  constrain  offshore  wind  deployment.    Traffic  Light  

J      

Page 24: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     24/  49  

3.3 Electricals    

3.3.1 Export  cables    Description  In  order  to  transport  energy  ashore  armoured  high  voltage  (132kV  or  greater)  cables  are   installed.  Typically  these  have  been  operated  using  Alternating  Current  transmission  (AC)  although  as  projects  move  further  offshore  Direct  Current  (DC)  is  being  selected,  particularly  in  Germany.      Current  technology  The   transmission   technology   used   is   dependent   on   the   size   of   the  wind   farm   and   its   distance   to  shore.   High   Voltage   Alternating   Current   (HVAC)   is   technically   feasible   up   to   a   distance   of   around  70km  from  shore.  High  Voltage  Direct  Current   (HVDC)   is  used   for   larger  and/or  more  distant  wind  farms  as  this  technology  has  the  technical  capability  to  transport  bulk  power  over   longer  distances  with  reduced  losses.      Technological  development  required  out  to  2023  (including  project  changes)  Higher   voltages   allow   greater   power   transmission   for   the   same   conductor   size,   which   has   the  potential   to   reduce   cable   supply   and   installation   costs.   The   industry   is   therefore   exploring   higher  rated  AC  connections.  More  innovative  approaches  are  being  applied  to  dynamic  loading,  operating  at  higher  temperatures  and  vibration  monitoring  as  this  may  further  increase  efficiencies.  For  large  projects  further  offshore,  HVDC  cables  are  at  the  present  time,  the  only  viable  option      Current  suppliers  Table  7  below  provides  a  short  list  of  key  worldwide  export  cable  suppliers;    

Established  suppliers   New  entrants  ABB*   LS  Cable  &  Systems  Nexans   NSW  General  Cable  

Prysmian*   JDR  Cables  NKT  Cables    

Table  8:  Export  cable  suppliers  (*  has  supplied  HVDC  export  cable  to  offshore  wind  sector)    At   the   present   time,   the   European   cable   supply   capacity   is   around   1,000km   per   year.   Given   the  demand   from   other   sectors   such   as   interconnectors,   this   is   expected   to   result   in   limited   supply  levels,  particularly  of  DC  cables  (of  which  there  are  fewer  suppliers)  for  delivery  in  2016/17.    Announced  manufacturing  capacity  ABB  are  doubling  capacity  at  their  Karlskrona  facility  (Sweden)  at  a  cost  of  $400m  by  2015.  Nexans  has  doubled  its  workforce  at  their  Halden  plant  and  is  considering  expanding  in  Asia.  Various  Chinese  manufacturers   are   developing   capacity.  More   confidence   in   post-­‐2020  deployment   should   lead   to  more  announcements  from  a  number  of  facilities  in  various  stages  of  planning.      Lead  times  for  new  factories/products  The   lead   time   for   a   new   factory   is   around   4   years.   Expansion   of   an   existing   facility   is   around   2-­‐3  years.    Investment  requirements  in  new  factories/products?  

Page 25: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     25/  49  

Despite   recent   announcements,   demand   for   export   cable   is   likely   to   outstrip   supply   without  additional  investment.    Relevant  framework  agreements  The  small  number  of  suppliers  and  the  large  size  of  individual  jobs  mean  that  framework  agreements  are  not  particularly  relevant  for  this  component.  This  situation  could  change  with  the  introduction  of  more  suppliers.    Synergies  to  other  sectors  At   this   voltage   there   is   limited   overlap   with   the   offshore   oil   &   gas   market.   However   there   is  significant   overlap   with   the   international   interconnector   market,   particularly   HVDC..   All   suppliers  also  produce  onshore   cables   and   lower   voltage   cables,   although   the   technology   requirements   are  slightly  different.    Barriers  to  entry  Very  large  investment  required  to  establish  technical  knowledge  and  capability  and  costly  facilities.  The   market   is   currently   dominated   by   a   few   very   well   established   players,   although   further  experienced  cable  manufacturers  are  entering  the  offshore  HV  cable  market.    Summary  analysis  Export  cabling  is  an  existing  bottleneck.  New  capacity  is  being  developed,  but  it  may  not  match  the  pace   of   offshore   wind   development.   While   the   number   of   suppliers   and   risks   of   investing   in   AC  capacity  are  such  that  there  is  a  good  chance  that,  should  new  investment  occur  soon,  supply  may  be  adequate.  However,  the  limited  number  of  suppliers  of  DC  cables,  combined  with  strong  growth  in  other  sectors,  means  that  HVDC  cabling  supply  is,  and  is  likely  to  remain,  an  issue  for  the  offshore  wind  industry  for  the  medium  term.    Traffic  Light    AC  subsea  export  cables  

K      DC  subsea  export  cables    

L  

 

Page 26: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     26/  49  

3.3.2 Array  cables    Description  Subsea   cables   are   used   to   collect   the   output   of   the   wind   turbines   and   transport   it   to,   where  applicable,  a  central  offshore  substation.    Current  technology  The  most  commonly  used  technology  is  Medium  Voltage  AC  (MVAC)  at  33kV,  although  voltages  up  to  66kV  are  being  considered.  The  most  common  material   is  XLPE  (Cross-­‐Linked  Polyethylene)  with  copper  core(s)  and  steel  wire  armouring.    Technological  development  required  out  to  2023  (including  project  changes)  Larger  turbines  drive  the  requirement  for  higher  cable  capacities,  which  can  be  met  by  increasing  the  voltage   (e.g.   to   66kV).   66kV   could   allow   smaller   projects   which   are   relatively   close   to   shore   to  connect  directly  to  land  without  the  need  for  an  offshore  substation.      Current  manufacturing  capacity  and  suppliers  Table  9  below  provides  a  short  list  of  key  worldwide  array  cable  suppliers;    

Established  suppliers   Possible  future  suppliers  ABB   Hellenic  Cables  

Nexans   J-­‐Power  Prysmian   LS  Cable  JDR  Cables   Twentsche  Kabelfabriek  (NL)  

NSW  General  Cable   Viscas  Parker  Scanrope   Yuanyang  Cable  

NKT   Jiagsu  Zhongtian  Technology  Draka   Qingdao  Hanhe  Cable  

 Table  9:  Array  cable  suppliers  

 Lead  times  for  new  factories/products  New   factories   require   3-­‐4   years   lead   time   but   extra   capacity   can   be   made   available   at   existing  facilities   within   1   year   of   an   investment   decision,   and   current   suppliers   can   make   sufficient  additional  capacity  available  to  meet  projected  demand.    Synergies  to  other  sectors  Cables   can   be   used   in   the   offshore   oil   &   gas   market.   All   suppliers   also   produce   onshore   cables,  although  the  technology  requirements  are  slightly  different,  particularly  in  terms  of  armouring.    Barriers  to  entry  High  investment  required  for  technical  knowledge  &  capability,  and  costly  facilities.    Summary  analysis  Array   cable   supply   is   not   currently   a   bottleneck.   Also,   the   lead   times   of   up   to   1   year   for   more  capacity   can   be   factored   in   to   project   planning.   Supply   capacity   is   unlikely   to   be   a   significant  constraint  as  existing  suppliers  can  relatively  easily  increase  output.      

Page 27: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     27/  49  

Traffic  Light  

J  

3.3.3 AC  offshore  substation    Description  The   primary   function   of   the   offshore   substation   is   to   step   the   voltage   up   from   the   array   cable  operating  voltage  to  the  export  system  operating  voltage.  The  key  piece  of  equipment  required  to  perform  this  duty  is  the  power  transformer.  However,  in  order  to  support  the  transformer  function,  further   electrical   plant   is   required.   This   plant  might   include   reactors,   switchgear,   control   and   low  voltage   auxiliary   systems   All   this   equipment   is   contained   in   a   large   fabricated   topside   structure  which   is   usually   includes   two   or  more   stories   and   is   installed   upon   a   support   structure   (usually   a  jacket).      Current  technology  High   Voltage   AC   substation   technology   is   mature   and   well   understood   onshore,   and   although  application  offshore  poses  some  additional  challenges,  technology  risk   is  considered  relatively   low.  Given   the   size   and   weight,   fabrication   of   top   sides   is   a   major   manufacturing   challenge.   To   date  almost  all  substations  have  been  bespoke  designs.        Technological  development  required  out  to  2023  (including  project  changes)  Although   relatively   mature   compared   to   DC   technology,   there   is   likely   to   be   ongoing   technical  development   in  AC  substations,  particularly  with  regards   to  uprating  of  systems  to  drive  efficiency  gains.   Standardisation   of   substation   design   has   long   been   discussed   but   little   progress   has   been  made  to  date.    Current  manufacturing  capacity  and  suppliers  There  are  a  number  of  suitable  suppliers  of  AC  electrical  equipment  with  a  current  overcapacity   in  manufacture.   A   number   of   yards   have   fabricated   substation   topsides  with   the   potential   for   other  companies  to  move  in  to  the  market.  These  are  listed  in  table  10  below.    

Current  electrical  suppliers  

Possible  future  electrical  suppliers  

Current  fabricators   Potential  fabricators  

ABB   MHI   Heerema   HSM  Offshore  Alstom  Grid   Hyundai   Strukton-­‐Hollandia    CG  Power   Hitachi   Fabricom    

Siemens  Energy  Transmission   Melco   Lemanz         Harland  &  Wolff         Bladt         BiFab         Semco  Maritime         Keppel  Verolme    

Table  10:  AC  offshore  substation  suppliers    

Page 28: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     28/  49  

Lead  times  for  new  factories/products  Lead  times  depend  on  global  market  demand  at  the  time  of  order  placement  and  are  currently  less  than  1.5   years.  Design  of   the   foundation   and   topside   that   house   a   project’s   substation   cannot   be  completed   until   the   electrical   design   is  well   advanced   and   it   is   to   be   noted   that   the   substation   is  installed   early   in   the   construction   of   a   wind   farm.   For   this   reason,   the   lead-­‐time   for   substation  equipment  has  a  significant  bearing  on  a  project  developers’  construction  time  table.    Investment  requirements  in  new  factories/products?  The  global  nature  of  the  power  generation  supply  chain  and  large  fabrication  capability  means  that  no  additional  or  extra  investment  in  capacity  is  likely  to  be  needed  specifically  for  offshore  wind.      Synergies  to  other  sectors  The  supply  chain  for  AC  plant  to  the  power  sector  is  global  and  not  directly  related  to  offshore  wind  demand  or   supply.   This   has   the   advantage   of   providing   a   deep   pool   of   design   and  manufacturing  resource  but  also  puts  offshore  wind  in  competition  for  supply  at  times  of  high  demand  from  other  sectors.    Summary  analysis  A   deep   pool   of   global   capacity   means   that   this   element   of   offshore   wind   supply   is   not   likely   to  constrain   deployment,   but   may   impact   on   lead   times   should   extraordinary   demand   come   from  another  sector.    Traffic  Light  

J      

3.3.4 DC  offshore  substation    Description  A   Direct   Current   (DC)   substation   includes   all   equipment   necessary   to   convert   the   AC   power  produced  by  the  wind  farm  to  Direct  Current  for  transmission  of  power  to  shore.  Generally  and  to  date,  offshore  DC  substations  do  not   include  the  voltage  transformation  stage  and  have  only  been  used  to  connect  wind  farm  clusters  to  shore.    Current  technology  Offshore  wind  farms  use  Voltage  Source  DC  technology  which  is  extremely  innovative  and  immature  (as   opposed   to   older   current   source   based   technology).   The   first   few   DC   substations   are   being  installed   in   the  German  Bight.  These  platforms  are  designed   to  collect  up   to  924MW  of  AC  power  from  the  surrounding  wind  farms,  and  convert  it  to  DC.  Large  capacity  and  distant  round  3  projects  in  the  UK  are  considering  HVDC  substations  although  it   is  understood  that  the  economics  have  not  worked  for  a  single  project  yet.  These  substations  are  extremely  large  (up  to  14,000  tonnes)  and  are  towards   the   upper   end   of   what   has   been   installed   in   the   oil   and   gas   sector.   This   represents   a  

Page 29: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     29/  49  

significant  manufacturing   challenge  and   reduces   installation  options.   Far  offshore   substations  may  include  an  accommodation  platform  as  has  been  seen  at  Horns  Rev  2.    Technological  development  required  out  to  2023  (including  project  changes)  DC  technology  is  still  developing,  and  it  is  likely  that  there  are  cost  savings  to  be  made  in  equipment  sizes  and  efficiencies.  Reductions   in   the  dimensions  of   insulation  systems   for  high  voltage  systems  could   reduce   platform   size.   Increasing   project   sizes   and   distances   from   shore   (e.g.   UK   Round   3,  Germany)   should   make   DC   transmission   more   attractive   and   require   further   deployment   of   DC  substations.  Given  the  size  of  these  structures  it  is  likely  to  be  a  bespoke  manufacturing  process  with  little  potential  for  industrialisation.      Current  suppliers  Table   11   below   provides   a   list   of   direct   current   technology   suppliers.   Alstom   is   a   relatively   new  entrant   to   the   supply  of  DC  equipment   suitable   for  offshore  wind  export   systems.   Fabrication   is   a  major  challenge  with  a  small  number  of  facilities  with  sufficient  space  and  cranage.      

Current  electrical  suppliers  

Possible  future  electrical  suppliers  

Current  Fabricators  

ABB   Manufacturers  based  in  Asia  

Heerema  

Alstom  Grid     Nordic  Yards  Siemens  Energy  Transmission  

  Drydocks  

Table  11:  DC  offshore  substation  suppliers    

Lead  times  for  new  factories/products  Lead   times   for  HVDC   substation   supply   are   currently   around  4   years.  As   for  AC   substation   supply,  design  of  the  foundation  and  steel  topsides  that  house  a  project’s  substation  cannot  be  completed  until  the  electrical  design  is  well  advanced.  For  this  reason,  the  lead-­‐time  for  substation  equipment  has  a  significant  bearing  on  a  project  developers’  construction  time  table.    Synergies  to  other  sectors  HVDC   equipment   is   also   used   for   national   and   international   interconnectors   and   this   market   is  expected   to   grow   over   the   next   decade   limiting   supply   capacity.     Sub-­‐components   are   sourced  globally  and  are  used  in  a  variety  of  power  sectors.      Barriers  to  entry  High  investment  is  required  in  technical  capabilities  and  facilities  for  production  of  HVDC  technology.  This   is   a   highly   concentrated   and   specialised  market,  with   only   a   handful   of   companies   supplying  global   demand.   There   are   only   three   companies   which   produce   the   voltage   source   converter  technology   used   in   HVDC   offshore  wind   farm   substations.   Fabrication   requires   an   enormous   yard  and  significant  project  management  skills  and  has  begun  to  the  Middle  and  Far  East.      Summary  analysis  High  profile  delays  and  overruns   in   the  German  market  highlight   the   challenge   in  delivering   these  massive,   innovative   substations  with  only   three   companies   able   to   supply   the  equipment   to  date.  Fabrication   and   installation   will   remain   a   huge   challenge   given   the   size   and   developers   have  expressed   concern   around   the   price,   long   and   variable   lead   time   and   risk   associated   with   this  technology.  Furthermore,  demand  from  other  sectors  such  as  interconnectors,  is  likely  to  mean  that  DC  substations  remain  a  bottleneck  for  the  offshore  wind  sector  for  some  time  to  come.    

Page 30: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     30/  49  

 Traffic  Light  

L      

3.4 Foundations    

3.4.1 Monopiles      Description  Steel   tubular   structures,   between   30m   and   60m   in   length,   embedded   in   the   ground   using   large  hammers  and  if  necessary  drills.  Tubular  sections  are  rolled  from  steel  plate  then  welded  together.  A  transition  piece,  consisting  of  more  complex  welded  steel  sections,  acts  as  the  interface  between  the  monopile  and  the  turbine.    Current  technology  To  date  7.5m  has  been  the  maximum  diameter  with  a  wall  thickness  of  ~100mm.  Maximum  feasible  water  depth  to  date  is  ~35m  for  a  small  turbine  in  ideal  ground  conditions.    Technological  development  required  out  to  2023    The  development  of  XL  monopiles  could  push  water  depth  limits  to  40-­‐50m  (depending  on  turbine  size).   This  will   require   rolling  of   large  diameter   sections   such  as   the  10m   tubular   created  by  EEW.  Further  complications  exist  due  to  handling,  transportation  and  installation  of  such  large  monopiles,  but  this  technology  has  the  potential  to  be  cost  competitive  with   jackets  even  at  the   largest  water  depths  and  is  subject  to  ongoing  research.      Current  manufacturing  capacity  and  suppliers    

Existing  suppliers   Possible  future  suppliers  Ambau   Dillinger  Hütte  

Bladt   Bilfinger  Berger  EEW    SIAG    Sif    

Smulders  Group    TAG  Energy  Solutions    

ZPMC    Table  12:  Monopile  foundation  suppliers  

     

Page 31: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     31/  49  

Lead  times  for  new  factories/products  For  production  of   larger  monopiles,   investment   is   required   in  new  rolling  machinery  and   facilities;  lead  times  are  likely  to  be  around  2-­‐4  years.      Investment  requirements  in  new  factories/products?  There   has   recently   been   significant   investment   in   new  manufacturing   facilities   from   TAG   Energy,  Dillinger  Huette  and  Bilfinger  Berger.  If  XL  monopiles  are  a  success,  then  there  will  be  a  requirement  for   new   suppliers,   as   there   are   currently   only   a   few   companies   capable   of   producing   such   large  components.    Relevant  framework  agreements  Sif  and  Smulders  generally  cooperate  to  produce  finished  monopiles,  with  Sif  creating  the  main  pile,  and   Smulders   producing   the   transition   piece.   DONG   Energy   has   signed   a   long   term   framework  agreement  with  Bladt.      Synergies  to  other  sectors  Steel  piles  are  used   for   jacket   foundations.   Steel   tubulars  are  used   in  oil   and  gas  platforms.  Many  industries  use  steel  plate.    Barriers  to  entry  High  investment  required  in  equipment.    Summary  analysis  Current  capacity  is  meeting  demand.  As  projects  are  developed  in  deeper  waters,  XL  monopiles  may  be   required   –   the   market   for   these   is   currently   very   constrained,   but   with   sufficient   demand,  investment  in  new  facilities  is  likely.    Traffic  Light  

J        

Page 32: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     32/  49  

3.4.2 Jacket  foundations    Description  These   include   4-­‐legged   jackets   (the   most   common   alternative   to   monopiles),   tripods,   tri-­‐piles   (a  proprietary  BARD  design),  and  variations  on  the  jacket  structure.  Jackets  are  currently  considered  by  DNV  GL  to  be  the  most  cost-­‐competitive  of  the  above  technologies,  and  are  the  focus  of  this  section.  Jackets  are  generally  more  costly  to  produce  than  monopiles  (for  equivalent  wind  farm  sites),  due  to  the  increased  complexity  of  the  structure,  and  the  greater  man-­‐hours  required  to  complete  all  of  the  complex   welds.   Nevertheless,   they   have   a   much   greater   water   depth   range   than   conventional  monopiles,   and   use   smaller   individual   steel   tubulars   –   hence   avoiding   the   need   to   roll   such   thick  steel  plates.    Current  technology  Jackets  most   commonly   have   four   legs,   and   are   affixed   to   the   seabed  using   piles   of   around   2-­‐3m  diameter.   These   can  be  pre-­‐piled,   and   the   jacket   lowered  on   subsequently,   or  post-­‐piled,   through  the   sleeves   at   the   base   of   the   positioned   jacket.   Jackets   are   commonly   used   in   the   oil   and   gas  industry  for  fixed  platforms.    Technological  development  required  out  to  2023  (including  project  changes)  The   main   focus   of   jacket   technology   is   in   cost   reduction   through   standardisation   and   process  optimisation.  The  approach  to  offshore  wind  projects  (many  units  at  low  cost)  is  inherently  different  to  that  taken  to  oil  and  gas  projects  (one  or  two  units,  at  much  higher  budget);   jacket  suppliers  to  the  offshore  wind  industry  must  take  this  into  account  to  help  meet  future  cost  reduction  targets.    Current  manufacturing  capacity  and  suppliers    

Current  suppliers   Possible  new  entrants    Bifab   Aquind  

Technip   Crist/Bilfinger  Berger  Aker   Global  Energy  Group  

Weserwind   Harland  &  Wolff  Kvaerner   Jade  Werke  

Smulders  Group   Navantia  SIAG  Nordseewerke     OGN  Group  

EEW   Samsung  Heavy  Industries  Bladt   Steel  Engineering  

  STX  Europe     TAG  Energy  Solutions     ThyssenKrupp  Mannex  

Table  13:  New  and  existing  non-­‐monopile  steel  foundation  manufacturers    Bladt  recently  announced  a  new  portside  fabrication  facility  to  supply  jackets.    Lead  times  for  new  factories/products  New  facilities  are  likely  to  have  a  lead  time  of  2-­‐3  years  to  come  to  commercial  production.        

Page 33: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     33/  49  

Investment  requirements  in  new  factories/products?  There  is  some  uncertainty  around  the  expected  market  demand  for  jackets  with  the  downgrades  in  the  UK  and  Germany  likely  to  see  the  more  challenging  sites  fall  by  the  wayside.  At  the  same  time  the   development   of   the   XL   monopile   could   further   cut   into   market   share   for   jackets.   Jacket  manufacturers   also   need   to   demonstrate   a   fully   industrialised   manufacturing   process   which   cuts  costs.      Synergies  to  other  sectors  This   technology   has   mainly   been   imported   from   the   oil   and   gas   industry,   where   large   jacket  structures   support   platforms   in   deep   waters.   These   industries   can   divert   resources   away   from  offshore  wind  fabrication,  although  the  products  have  some  differences.    Summary  analysis  As   projects   move   into   deeper   waters   and   turbines   get   bigger   the   industry   is   expected   to   move  towards  jacket  structures  and  the  announcement  by  Bladt  suggests  a  potential  short  fall  in  capacity.  However,   issues   remain   around   industrialising   the   manufacturing   process   and   thereby   achieving  substantial   cost   reductions.   The   potential   for   XL   monopiles   to   cut   into   market   share   for   jackets  increases   uncertainty.   Although   there   is   unlikely   to   be   a   shortfall   in   overall   capacity,   without  investment   in   new   manufacturing   capacity,   costs   may   not   fall   which   could   in   turn   hinder   the  development  of  the  sector.        Traffic  Light  

K      

3.4.3 Gravity  base  concrete  foundations    Description  Gravity   base   structures   (GBS)   are   constructed   from   reinforced   concrete,   using   formwork   and  concrete   pours,   as   for   other   civil   engineering   projects.   Due   to   their   great   mass   (>3000   tons),  manoeuvring  GBS  on  land  is  a  slow  and  difficult  process  –  hence  they  are  constructed  in  the  harbour  from  which  they  are  installed.  With  a  footprint  of  30m  or  more,  this  means  that  significant  space  is  required  for  fabrication.      Before   installation,   the   seabed  must   be   prepared   to   ensure   it   is   flat   and   even.   Once   installed   in  place,  foundations  are  filled  with  ballast  material  (rock  and  sand)  to  weight  them  to  the  seabed.  An  advantage  of  GBS   technology   is   that  no  drilling  or  piling   is   required,  hence   rock  under   the   seabed  surface  is  less  of  an  issue  than  with  other  steel  foundations.    Current  technology  GBS   have   been   used   predominantly   in   the   Baltic   Sea,   where   sea-­‐ice   can   be   a   problem   for   more  flexible   foundations.  Due   to   their   large   size   and   associated   cost,  GBS   have   only   been   deployed   in  

Page 34: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     34/  49  

shallow  waters  to  date  (up  to  ~15m).  While  there  are  no  physical  constraints  on  the  size  of  concrete  foundations,  costs  quickly  become  uncompetitive  at  larger  water  depths.      Technological  development  required  out  to  2023  (including  project  changes)  Full  scale  demonstration  of  new  designs  and  corresponding  reductions  in  the  cost  of  energy  are  key  in  the  next  ten  years.  There  have  been  novel  GBS  concepts  suggested,  but  so  far  none  have  come  to  market.  If  any  concepts  can  significantly  improve  either  capital  or  operational  costs,  then  these  will  be   attractive   in   the   current   climate.   Concepts   which   avoid   the   need   for   costly   high-­‐specification  installation  vessels  may  have  an  advantage.    Current  manufacturing  capacity  and  suppliers  

Current  suppliers   Possible  new  entrants    MT  Hojgaard   Strabag  Ballast  Nedam    

DEME    Aarslef  /  Bilfinger  Berger    Table  14:  New  and  existing  gravity  base  concrete  foundation  manufacturers  

 Supply  capacity  is  not  an  issue,  as  fabrication  can  take  place  at  any  port  with  sufficient  space.  Supply  of  concrete  and  steel  re-­‐bar  (reinforcement)  overlaps  directly  with  the  civil  construction  industry,  so  will  not  present  a  bottleneck.    Lead  times  for  new  factories/products  Establishment  of  a  new  GBS  production  facility  at  a  suitable  quay  may  take  less  than  a  year.  This  may  be  extended  if  quayside  reinforcements  are  required.    Investment  requirements  in  new  factories/products?  New  products  are  needed  to  become  cost-­‐competitive  with  steel  foundations,  particularly  in  deeper  waters.      Synergies  to  other  sectors  Fabrication  techniques  and  materials  correspond  directly  to  the  civil  construction  industry.    Summary  analysis  GBS   foundations   have   suffered   limited   success   outside   of   the   Baltic   Sea,   losing   out   to  more   cost-­‐effective   steel   solutions.   Difficulties   include   fabrication   facilities   (finding   quays   big   enough),   and  transportation  of  such  large  structures  to  site.  If  GBS  technology  is  to  compete  with  established  steel  foundations,   novel   forms   and   installation   strategies   need   to   be   demonstrated   and   scaled   up  appropriately.      Traffic  Light  

K    

Page 35: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     35/  49  

3.5 Construction  vessels  and  infrastructure    There   are   4   main   elements   required   to   enable   construction   and   installation   of   offshore   wind  turbines:    

• Turbine  installation  vessels;  • Foundation  installation  vessels;  • Sub-­‐sea  cable  installation  vessels;  • Construction  and  installation  ports.  

3.5.1 Turbine  installation  vessels    Description    The  weight,  height  and  precision  required  for  nacelle  and  blade   installation  requires  self-­‐propelled  jack  up  vessels.      Current  technology    Although   a   wide   range   of   vessels   have   been   used   historically   the   high   lift   height,   weight   and  precision  means   that   jack   up   vessels   dominate   the  market.   Crane   capacity,  max  water   depth   and  deck  area  are  the  three  primary  drivers.      Technology  development  required  out  to  2023  As   turbines   get   larger   and   are   installed   in   deeper  water   the   requirements   for   turbine   installation  vessels  will  change.  According  to  previous  DNV  GL  estimates,  over  a  five  year  horizon,  about  half  the  in-­‐service  fleet  has  good  market  access  in  terms  of  water  depth  (30m+)  and  maximum  lift  (500tonne  at  25m),  while  all   the  new  builds  have  good  market  access.  However  over  a   ten  year  horizon  and  considering  water  depths  of  50m  +  then  even  the  service  fleet  may  be  redundant  while  even  some  new  build  specs  may  fall  short.      Current  manufacturing  capacity  and  suppliers  Historically   installation  vessels  have  been  a  major  bottleneck  for  the  sector  with  few  purpose  built  vessels  and  demand  from  a  buoyant  oil  and  gas  market  driving  up  prices  and  reducing  capacity  for  offshore  wind  developers.  However,  over  the  past   few  years  around  14  purpose  built  vessels  have  been  ordered,  many  of  which  are  now  coming  on  stream.  As  a   result  over-­‐supply   in   the  market   is  likely,  at  least  for  the  next  couple  of  years,  although  Asian  demand  could  potentially  reduce  this.  This  can  be   seen  by   the   recent   announcement   that   Seafox   5,   a   state  of   the   art   installation   vessel,  will  move  to  the  oil  and  gas  market  for  a  year  or  so.  Looking  longer  term,  specs  may  need  boosting  for  more  challenging  sites.      

Suppliers  with  proven  track  record   Additional  capacity  A2SEA   Fred  Olsen  Windcarrier  Geosea   HGO  Infrasea  Solutions  

MPI  Offshore   RWE  OLC  Seajacks   Subsea7  

Swire  Blue  Ocean   Van  Oord  Jack  up  Barges  BV   Workfox  Geosea/DEME    Gusto  MSC    

IHC  Merwede    Table  15:  Turbine  installation  vessel  suppliers  

Page 36: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     36/  49  

 Lead  times  for  new  products  It   takes   around   24  months   to   commission   a   ship   from   FID,   although   typically   there  may   be   some  teething   problems   and   a   number   of   offshore  wind   farms   have   suffered   from   delays   to   new   build  vessels      Notable  commercial  arrangements  A2Sea,   a  major   player   in   offshore  wind   installation   is   jointly   owned   by   Siemens  Wind   Power   and  DONG  Energy.    Investment  requirements  in  new  factories/products  Significant   recent   investment  has  moved   the  market   to  one  of  oversupply.  However   in   the   longer  term  more  challenging  sites  may  require  even  new  build  vessels  to  be  amended.      

Owner   Vessel  name  HGO   Vidar  

Seajacks     Scylla  Seajacks     Hydra  

Gulf  Marine  Services   NG  1800  Gulf  Marine  Services     GMS  Enterprise  

A2Sea     Sea  Challenger  (sister  of  recent  new-­‐build  Sea  Installer)  

Jackup  Barges     JB118  Van  Oord   Aeolus  

Table  16:  Examples  of  turbine  installation  vessels  in  build    Synergies  Jack-­‐ups  with   long,   lattice   legs,  notably  those  of  Seajack’s  fleet  and  Gulf  Marine  Services’s  recently  purchased   NG1600s   have   an   application   to   the   oil   and   gas   sector,   reducing   investment   risk   and  partly  explaining  the  current  over  supply  of  vessels.    Synergy  with  the  oil  and  gas  business  has  been  problematic  for  the  offshore  wind  sector  in  the  past  with  oil  and  gas  demand  driving  up  prices.  However,  there  appears  to  sufficient  supply  for  this  to  be  less  of  a  concern  going  forward.  Offshore  wind  also  requires  a  much  greater  number  of  jack  ups  than  other  sectors  which  poses  some  design  challenges.      A   further   complicating   factor   is   the   need   for   jack-­‐up   vessels   for   major   component   replacement  during   the  operational  phase  of  a  wind   farms   life   cycle.  There   is  evidence   that   the   supply   chain   is  gearing  up  to  provide  vessels  and  services  targeting  this  activity.    Summary  analysis  The   five   year   turbine   installation  market   appears   to   be   characterised   by   over-­‐supply  with   a   large  number   of   new   build   vessels   coming   on   stream.   Asian   demand   could   potentially   impact   this  oversupply  although  there  is  as  yet  no  indication  of  this.  In  the  longer  term,  more  challenging  sites  may   require   some   boosting   of   specifications   but   turbine   installation   vessels   are   not   considered   a  bottleneck.    

Page 37: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     37/  49  

J      

3.5.2 Foundation  installation  vessels    Description    Vessels  and  other  hardware  for  transporting,  lifting  and  installing  wind  turbine  foundations  offshore.    Current  technology  Jack  ups  or  floating  vessels  can  be  used  with  standard  size  monopiles  requiring  lifting  capacity  of  up  to  1,200t.  XL  monopiles  (greater  than  7.5m  diameter)  require  greater  lifting  capacity.    Current  manufacturing  capacity  and  suppliers  There  is  limited  supply  of  vessels  able  to  lift  extra  large  monopiles  and  jacket-­‐type  foundations  but  there  is  good  supply  of  standard  size  monopile  installation  capacity.    

Suppliers  with  proven  track  record   Additional  capacity  A2SEA   Jumbo  Offshore  

Ballast  Nedam   Saipem  Geosea   Technip  

HGO  Infrasea  Solutions   Van  Oord  MPI  Offshore   Volker  Wessels  RWE  OLC    Scaldis    Seajacks    

Seaway  Heavy  Lifting  (Subsea7)    Swire  Blue  Ocean    

Workfox    Table  17:  Foundation  installation  suppliers  

 Investment  requirements  in  new  factories/products  Investment  is  needed  for  jacket  installation  vessels  and  lifting  capability  for  extra-­‐large  monopiles.      Synergies  to  other  sectors  Vessels  that  can  lift  extra-­‐large  monopiles  may  be  suitable  for  wind  turbine  installation  applications  but  the  non-­‐wind  applications  for  floating  heavy  lift  vessels  is  limited  to  some  oil  and  gas  activity.    Summary  analysis  There  is  sufficient  supply  of  capacity  for  standard  monopile  installation  while  the  supply  of  the  lifting  capability   needed   to   install   monopiles   with   diameter   greater   than   7.5   metres   will   need   to   be  invested   in   to  meet   projected   demand.   Jacket   installation   vessels  with   adequate   deck   capacity   to  

Page 38: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     38/  49  

carried  more   than   three   foundations   are   very   limited   in   supply   and  will   constrain   deployment   at  deep  water  sites  without  investment  in  more  vessels.    Traffic  Light  

Standard  size  monopile  installation  J  

Extra  large  (>7.5m  Ø)  monopiles  installation  K  

Jacket  installation  L  

3.5.3 Cable  installation  vessels    Description  Vessels  and  other  equipment  needed  to   install  and  bury  export  and  array  cables  for  offshore  wind  farms.    Current  technology  Historically   a   range   of   installation   vessels   have   been   used   including   dumb   barges   and   modified  vessels.  However  due  to  significant  issues  during  cable  installation  across  the  sector,  an  increasingly  number   of   purpose   built   dynamic   positioning   vessels   are   coming   on   stream.   In   terms   of   tools,  ploughs   are   most   typically   used,   with   jetting   and   trenching   options   for   more   challenging  environments.      Technological  development  required  out  to  2023    Cable  installation  remains  a  major  challenge  for  the  sector  and  a  number  of   industry  initiatives  are  seeking   to   reduce   the   risk   from   this   area.  As   cables  get   larger,   carousels  and  vessels  may  need   to  increase  in  size.      Current  manufacturing  capacity  and  suppliers  Capacity   is   sufficient   to  meet  supply,  with   investment   in  vessels  and  equipment   targeting  multiple  offshore  sectors.    

Suppliers  with  proven  track  record   Additional  capacity  Canyon  Offshore  (trenching)   Jan  de  Nul  CT  Offshore  DeepOcean   Siem  Offshore  

EMAS  AMC   Tideway  

Page 39: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     39/  49  

Prysmian  Powerlink  Services  (Global  Marine  Energy)    

Nexans    Reef  Subsea    

Technip  Offshore  Wind    Van  Oord    

Visser  &  Smit  Marine  Contracting    Table  18:  Cable  installation  vessel  suppliers  

 Synergies  to  other  sectors  Suitable   vessels   are   able   to   serve   the   oil   and   gas,   electricity   transmission   interconnector,   pipeline  and   other   markets.   This   deepens   the   pool   of   available   vessels   but   also   means   that   increased  interconnector  development  may   impact  on  vessel  availability.  There   is  also  projected   to  be  some  demand  for  these  vessels  for  the  repair  of  damaged  cables  on  operational  offshore  wind  farms.    Summary  analysis  Greater  understanding  of  earlier  technical  issues  and  a  large  pool  of  available  vessels  across  a  range  of  offshore  industries  means  that  availability  of  cable  installation  vessels  is  unlikely  to  be  a  constraint  on  offshore  wind  deployment.    Traffic  Light  

J      

3.5.4 Ports    Description  Port  facilities  used  as  either  installation  logistics  and  marshalling  bases  or  as  manufacturing  centres  are  vital  to  offshore  wind  build  out.      Technological  development  required  out  to  2023  (including  project  changes)  It  is  likely  that  future  installation  strategies  (for  larger  wind  farms  of  larger  wind  turbines)  will  benefit  from  larger  lay-­‐down  areas  and  increased  use  of  manufacturing  ports.    Current  manufacturing  capacity  and  suppliers  North  West  Europe,  including  the  Netherlands,  has  a  large  number  of  ports  which  are  being  used  for  offshore  wind  installation  including:              

Page 40: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     40/  49  

Country   Port  

UK  

Belfast  Great  Yarmouth  

Harwich  Hull  

Merseyside  Mostyn  Teesside  

BE   Ostend  DK   Esbjerg  

NL  Eemshaven  Vlissingen  IJmuiden  

DE  Bremerhaven*  

Cuxhaven  Emden*  

Table  19:  European  offshore  wind  installation  ports  (*has  been  used  as  manufacturing  port)    Announced  investment  in  capacity  A  large  number  of  ports  have  announced  investment  in  new  facilities.  These  include  Bremerhaven  in  Germany,   Ostend   in   Belgium,   Belfast   in   the   UK   and   St   Nazaire   in   France.   Siemens   have   received  planning  consent  for  a  new  facility  at  Green  Port  Hull,  while  across  the  Humber,  Able  recently  gained  planning   consent   for   325   hectare   site   for   a   range   of   marine   energy   activities   including   quayside  access  with  11m  draft.      Lead  times  for  new  factories/products  The   lead   times   for   new   port   infrastructure   tend   to   be   longer   than   for   individual   offshore   wind  projects,  especially  since  investment  cannot  occur  until  a  project’s  turbine  model  has  been  decided  upon,  which  happens  relatively  late  in  the  development  process.  However,  investment  in  integrated  facilities   is   likely   to  occur   to  meet   the  needs  of   the   industry  as   it   grows  and,   if   it  doesn’t,   existing  ports  will  be  used  in  albeit  sub-­‐optimal  logistics  strategies.      Relevant  framework  agreements  A   notable   arrangement   is   the   DONG/Scottish   Power   Renewables   arrangement   with   the   port   of  Belfast   and   other   ports   are   in   receipt   of   investment   by   developers   of   wind   farms   such   as   RWE’s  £50m  deal  with  the  port  of  Mostyn  to  support  Gwynt  y  Môr  wind  farm.    Synergies  to  other  sectors  There  may  be   competition   from   traditional   uses   for   ports   such   as   goods   transport   and   storage   as  well  as  more  contemporary  uses  such  as  leisure  and  housing.  This  is  particularly  important  within  the  UK   where   ports   are   privatised   commercial   operators   and   therefore   unable   to   take   into   account  wider  social  benefits  of  manufacturing  facilities.        Summary  analysis  The  cost  optimal  solution  to  Europe’s  offshore  wind  ambition  includes  investment  in  new  integrated  waterfront   infrastructure.   However,   existing   North   Sea   ports   are   sufficient   to   enable   planned  deployment  and  availability  is  not  expected  constrain  deployment  in  the  Netherlands.      

Page 41: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     41/  49  

Traffic  Light  

J  3.6 Operations  and  maintenance    Availability  of  goods  and  services   required  by  operations  and  maintenance   is   less   likely   to  act  as  a  constraint  on  the  build  out  of  offshore  wind.  While  the  operation  and  maintenance  of  offshore  wind  farms   requires   a   significant   number   of   supply   chain   activities5,   the  majority   of   these   either   have  shorter   lead   times   than   the   time   taken   between   financial   close   and   commissioning   of   projects   or  draw  from  a  supply  area  which  is  required  to  install  turbines.    In   this   section   we   examine   two   critical   areas:   personnel   transfer   vessels   and   adequately   trained  personnel.    

3.6.1 Personnel  transfer  vessels    Description  Crew   transfer   vessels,   aircraft   and   other   hardware   required   to  maintain   and   operate   wind   farms  once  commissioned.      Current  technology  Most  access  to  turbines  for  maintenance  purposes  is  carried  out  using  day-­‐boats  although  there  are  some   examples   of   the   use   of   both   helicopters   and   fixed   or   floating   offshore   accommodation  platforms.    Technological  development  required  out  to  2023  (including  project  changes)  As   wind   farms   get   larger   and   further   from   shore   –   and   as   more   turbines   are   out   of   the  manufacturers’   warranty   period,   new   access   concepts   such   as   workboats   with   vessel-­‐mounted  access   systems,   helicopter   support   and   offshore   accommodation   will   increase   in   prevalence.  However  there  is  a  great  deal  of  uncertainty  about  the  nature  and  number  of  vessels,  platforms  and  aircraft  that  may  be  required  at  individual  sites.  Nevertheless,  the  demand  for  work  boats  is  likely  to  remain   for   the   foreseeable   future,  with   an   estimated   0.03   -­‐   0.06  work   boats   per   turbine   at  most  projects.    Current  manufacturing  capacity  and  suppliers  There  is  a  thriving  and  competitive  industry  in  the  manufacture  of  personnel  transfer  vessels.  With  a  large  number  of  yards  already  engaged  in  the  supply  of  vessels  including  from  the  Netherlands6.  The  following  list  is  a  non-­‐exhaustive  snapshot  of  some  major  players:    

Supplier   Country  AF  Theriault   Canada  

                                                                                                                         5  http://www.scottish-­‐enterprise.com/knowledge-­‐hub/articles/guide/offshore-­‐wind-­‐operations-­‐and-­‐maintenance-­‐opportunities  6  http://www.damen.com/en/markets/offshore-­‐wind

Page 42: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     42/  49  

Alnmaritec   UK  Alicat   UK  

Southboats   UK  Austal   Philippines  

Båtservice   Norway  CWind   UK  Damen   Netherlands  

Danish  Yachts   Denmark  Fjellstrand   Norway  Mercurio   Spain  Mobimar   Finland  

Strategic  Marine   Singapore  Topaz  Engineering   United  Arab  Emirates  Table  20:  Personnel  transfer  vessel  suppliers  

 Lead  times  for  new  factories/products  It   is  unlikely   that  new  yards  will  be  established   specifically   for   the  offshore  wind  market,  but   lead  times  for  new  vessels  from  existing  facilities  may  increase  at  times  of  high  demand.    Investment  requirements  in  new  factories/products  While   significant   new   capacity   will   need   to   be   built   or   dedicated   to   the   construction   of   logistics  vessels  for  offshore  wind,  demand  is  visible  a  long  time  into  the  future  and  there  is  a  great  deal  of  global  shipbuilding  capacity  that  could  be  dedicated  to  offshore  wind  if  required.    Synergies  to  other  sectors  The  transfer  demands  of  offshore  wind  are  distinct  from  those  of  other  offshore  sectors  such  as  oil  and  gas,  so  boats  tend  to  be  specialised  to  the  task.  However,  existing  yards  and  manufacturers  are  able  to  build  offshore  wind  transfer  boats.    Summary  analysis  The   forward   visibility   and   the   global   capacity   to   build   new   craft   mean   that   the   availability   of  personnel  transfer  vessels  is  unlikely  to  be  a  constraint  on  the  build  out  of  offshore  wind.    Traffic  Light  

J  

   

Page 43: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     43/  49  

3.6.2 Operations  and  maintenance  technicians    Description  Similarly  to  other  emergent  industry  sectors,  the  availability  of  suitably  qualified  and,  perhaps  more  crucially,  experienced  personnel  is  vital  to  the  long-­‐term  sustainability  of  the  offshore  wind  sector.  A  potential   ‘skills   gap’   has   been   identified7   in   the  on-­‐   and  offshore  wind   sectors  which   threatens   to  grow  significantly  in  the  next  decade  –  most  notably  in  the  operations  and  maintenance  subsector.      Technological  development  required  out  to  2023  Operations  and  maintenance  of  wind  turbines  is  a  rapidly  changing  field  as  new  access  technologies  and   turbine   designs   come   online.   However,   provided  with   a   sufficiently   qualified   pool   of   recruits  wind  turbine  manufacturers  are  well  placed  to  provide  training  on  technology  specific  elements.    Current  manufacturing  capacity  and  suppliers  In  addition  to  training  provided  by  manufacturers  such  as  Siemens8,  a  number  of  academic  courses  and   programmes   provide   wind   energy   (on   and   offshore)   technical   and   commercial   training.  However,   there   is   an   accepted   underlying   demographic   challenge   to   European   industry   as   the  proportion  of  the  wider  work-­‐force  with  strong  STEM9  qualifications  declines.    Investment  requirements  in  new  factories/products  The  European  Wind  Energy  Association  estimates  that  the  EU  wind  energy  industry  will  face  a  skills  gap  of  up  to  15,000  workers  by  2030  on-­‐  and  offshore,  two  thirds  of  which  will  be  in  the  operations  and  maintenance  area.    Our  analysis  of  offshore  wind  shift  patterns   indicates   that  across  Europe,   the  number  of   full-­‐time-­‐equivalent   jobs   (FTE)   need   by   operations   and   maintenance   is   between   0.5   and   1.5   FTE   per  operational  turbine  or  up  to  11,000  FTE  in  Europe  in  2023.    Synergies  to  other  sectors  Although  much   of   the   technical  work  may   be   similar   in   principle   to   onshore  work,   there   are   also  similarities  working  patterns  with  the  offshore  oil  and  gas  sector  which  may  compete  for  staff  –  and  possibly  be  willing  to  pay  higher  salaries.    Summary  analysis  Although   there   is   a   long   lead-­‐time   for  operations  activities,   there  are  also   some  challenges   to   the  creation   of   a   suitably   skilled   and   experienced  workforce,   not   least   the   economy-­‐wide   shortage   of  technical  graduates  and  the  competition  for  staff  with  the  offshore  oil  and  gas  sector.    Traffic  Light  

K    

                                                                                                                         7  http://www.ewea.org/fileadmin/files/library/publications/reports/Workers_Wanted_TPwind.pdf  8  http://www.siemens.co.uk/en/wind/training-­‐centre-­‐profile.htm  9  Science,  technology,  engineering  and  mathematics

Page 44: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     44/  49  

3.7 Summary  of  Global  supply  chain  assessment    

Category   Item   Classification  –  EU  level  

  Pre-­‐construction  development  and  design  work   J  

Wind  turbines  

Turbine  assembly   K  Turbine  blades   J  

Castings  and  forgings   J  Gearbox  and  generators   J  

Towers   J  

Balance  of  plant  

Export  cables   AC:K  DC:L  

Array  cables   J  AC  offshore  substation   J  DC  offshore  substation   L  

Foundations  Monopiles   J  

Jacket  foundations   K  Gravity  base  concrete  foundations   J  

Construction  vessels  and  infrastructure  

Turbine  installation  vessels   J  

Foundation  installation  vessels  

Standard  size  monopile  installation  

J  

Extra  large  (>7.5m  Ø)  monopiles  installation  

K  

Jacket  installation   L    

Cable  installation  vessels   J  Ports   J  

Operations  and  maintenance  

 Personnel  transfer  vessels   J  Technicians   K  

 Items  for  which  supply  poses  a  risk  of  bottleneck  are:    

• Turbine  assembly  • Export  cables  • DC  offshore  substations  • Jacket  foundations  • Foundation  installation  vessels  • Operations  and  maintenance  technicians  

 The  next  section  will  review  the  implications  for  the  Netherlands’  programme  of  these  potential  bottlenecks.    

Page 45: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     45/  49  

4 Implications  for  the  Netherlands  offshore  wind  build-­‐out    The   components   identified   in   section   3   to   be   either   amber   or   red   are   here   considered   from   the  perspective  of  the  Netherlands’  offshore  wind  ambition.    

4.1 Turbine  assembly    On  the  whole   the  capacity  of  European  offshore  wind  turbine  assembly   is  a  supply  constraint   that  generally  affects  all  national  markets  equally,  although  local  content  requirements  can  change  this.  As  the  Dutch  market  is  expected  to  be  open,  this  is  unlikely  to  impact  Dutch  projects,  although  as  the  French  and  Dutch  programmes  are  likely  to  ramp  up  at  the  same  time,  French  turbine  manufacturers  may  have  limited  export  capacity  for  Dutch  projects.  However  this  is  unlikely  to  significantly  impact  overall  market   supply   and   the  Dutch   sector   can  be   considered   to  have   the   same  overall   issues   as  Europe  as  a  whole.    

 Figure  4-­‐1:  Annual  rate  of  capacity  installation  –  non  NL  EU  and  NL  

 Implication  for  NL:  

• Without  additional   investment   in  wind   turbine  manufacture,  particularly   for   larger   turbine  sizes,  there  is  likely  to  be  a  supply  constraint  towards  the  end  of  the  decade.    

 EU/Global  traffic  light:    

K    NL-­‐specific  traffic  light:    K  

     

0  

500  

1.000  

1.500  

2.000  

2.500  

3.000  

3.500  

2014   2015   2016   2017   2018   2019   2020   2021   2022   2023  

Capa

city  installs  (M

W/yr)  

Annual  rate  -­‐  EU  excl  NL   Netherlands  (Energieakkoord)  

Page 46: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     46/  49  

4.2 Export  cables    As  discussed  earlier,  there  are  likely  to  be  different  supply/demand  conditions  for  DC  and  AC  export  cables.   To  understand   the  Netherlands  pipeline,   it   is   useful   to  make   some  assumptions   about   the  breakdown  between  Netherlands  projects  which  are  more  likely  to  use  DC  transmission  technology  and  those  that  are  more   likely  to  use  AC  technology10.  Analysis  suggests  that  all  known  projects   in  the  Netherlands  can  or  are  likely  to  use  AC  (medium  or  high  voltage)  transmission  technology.    The  volume  of  global  capacity  to  be  installed  closer  to  shore  than  75km  gives  an  indication  of  global  demand  for  AC  export  cabling.   It  can  be  seen  from  the  figure  below  that  although  demand  rapidly  increases   for   AC   export   cables,   much   of   the   Netherlands’   projected   deployment   occurs   after   the  peak   in  demand   in  2019/20,  although  this  optimism  should  be  tempered  by  acknowledgment   that  the   decline   in   known   installations   from   2019/20   represents   the   current   focus   on   2020   target  delivery11.      

 Figure  4-­‐2:  NL  deployment  vs  European  deployment  closer  than  75km  from  shore  

 Implication  for  NL:  

• Analysis   suggests   that   the  Netherlands’  pipeline   can  be  built   out  using  AC  export   cables   if  necessary;  

• Constrained   supply  may   be   a   challenge   for   the   remainder   of   the   decade   by  much   of   the  Netherlands’   capacity   is   projected   to  be   installed  after   the  peak  of   global  AC  export   cable  demand  

 EU/Global  traffic  light:    

AC:K  DC:L  

NL-­‐specific  traffic  light:    AC:K/  J  DC:NA  

     

                                                                                                                         10  It  is  important  to  note  that  project  economics  are  not  the  only  factor  governing  the  decision  whether  to  use  AC  or  DC  transmission  

technology.  Issues  such  as  bundling  of  connections  and  crossing  of  sea  barriers  are  also  relevant.  11  Post  2020  targets  at  an  EU  or  Member  State  level  may  alter  this  picture  significantly.

0  

500  

1.000  

1.500  

2.000  

2.500  

3.000  

2014   2015   2016   2017   2018   2019   2020   2021   2022   2023  

Installabo

n  rate  (M

W/yr)  

<75km  (excl  NL)   Netherlands  (Energieakkoord)  

Page 47: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     47/  49  

4.3 DC  offshore  electrical  systems    The  fact  that  the  Netherlands’  pipeline  can  be  built  using  AC  export  transmission  technology  means  that   the   constrained   supply   of   DC   offshore   substation   plant   should   not   impact   the   Netherlands’  programme  on  a  project  basis.  However  if  the  decision  is  made  to  bundle  connections  through  a  DC  link  then  this  constraint  could  become  live    Implication  for  NL:  

• On  a   project   basis,   the  Netherlands   has   a  more   favorable   supply   outlook   for  DC   electrical  systems  than  other  EU  national  markets.  However,  if  a  decision  is  made  to  bundle  multiple  wind  farms  through  one  DC  grid  connection  then  this  constraint  could  become  live  

 

EU/Global  traffic  light:  K   NL-­‐specific  traffic  light:  N/A  (subject  to  grid  policy)  

 

4.4 Jacket  foundations    The  most  significant  determinant  of   the  class  of   foundation  used   for  offshore  wind   turbines   is   the  depth   of   water   in   which   it   being   installed.   The   large   majority   of   offshore   wind   projects   in   the  Netherlands’  pipeline  are  expected  to  be   in  maximum  water  depths  of  between  20  and  30  metres  with  three  quarters  of  the  total  number  of  foundations  projected  to  be   installed   in  this  range.   It   is  reasonable  to  assume  that  other  projects  elsewhere  being  constructed  in  similar  depths  of  water  will  be   competing   for   the   same   supply   of   depth-­‐specific   products   -­‐   such   as   foundations   and   jack-­‐up  installation  vessels.    The  figure  below  shows  the  installation  rate  for  this  segment  of  the  global  market  and  indicates  that,  as  offshore  wind  development  in  water  depths  of  20-­‐30m  in  markets  such  as  the  UK  and  Germany  declines   with   projects   moving   into   deeper   water,   development   in   the   Netherlands   will   steadily  increase.  

   Figure  4-­‐3:  Annual  installation  rate  for  European  (non-­‐NL)  offshore  wind  in  water  depths  of  20  to  30  metres  and  

total  NL  deployment.      Implication  for  NL:  

0,0  

50,0  

100,0  

150,0  

200,0  

250,0  

2014  2015  2016  2017  2018  2019  2020  2021  2022  2023  

Num

ber  o

f  turbine

s  p.a  

20-­‐30m  excl  NL  

Netherlands  (Energieakkoord)  

Page 48: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     48/  49  

• The  vast  bulk  (if  not  all)  of  the  Netherland’s  pipeline  can  be  built  out  without  the  need  for  jacket  foundations;  

• Furthermore,  the  demand  for  monopiles  in  the  Netherlands  ramps  up  as  many  of  the  leading  countries’   demand   moves   away   from   monopiles   towards   greater   use   of   non-­‐monopile  foundations.  

 

EU/Global  traffic  light:  K   NL-­‐specific  traffic  light:  J    

4.5 Foundation  installation  vessels    As  noted  above,  the  majority  of  Dutch  projects   is   in  water  depths  of  20-­‐30m  and  therefore  can  be  built   using   monopile   foundations.   Supply   of   installation   vessels   for   standard   monopiles   is   not  expected  to  be  constrained  and  so  this  appears  to  be  less  of  a  constraint  than  other  sectors.    Implication  for  NL:  

• Most  of   the  Netherlands  ambition  can  be  met  using  standard  size  monopile   foundations  –  vessels   for   installation  of  which   are   far  more   readily   available   than   for  more  exotic   vessel  types.  

Standard  size  monopile  installation    J  Extra  large  (>7.5m  Ø)  monopiles  installation    

K  

Jacket  installation    L    

                         NL-­‐specific  traffic  light:  J  

   

Page 49: 20140514 REP NL Offshore Wind Supply Chain Assessment F · 2017. 11. 1. · 20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx! ! 3/49! Inhoud’ EXECUTIVESUMMARY!.....!5!

         

   20140514_REP_NL_Offshore_Wind_Supply_Chain_Assessment_F.docx     49/  49  

5 Conclusions      1. Without   additional   investment   in  wind   turbine  manufacturing   facilities,   there   is   likely   to   be   a  

supply   constraint   towards   the   end   of   the   decade,   particularly   with   the   move   towards   larger  turbines.  This  will  impact  most  countries  in  Europe  equally  including  the  Netherlands;  

 2. Decisions  as  to  the  grid  connection  policy   in  the  Netherlands  will  determine  whether  AC  or  DC  

systems  are  used.  Both  have  potential  supply  shortages  although  DC  is  far  more  acute.      3. The  relatively  shallow  water  should  mean  that  the  bulk   (if  not  all)  of  the  Netherland’s  pipeline  

can  be  built  out  without  the  need  for  jacket  foundations  removing  concerns  over  supply  capacity  of  these  items.  Furthermore,  the  demand  for  monopiles  in  the  Netherlands  ramps  up  as  many  of  the   leading   countries’   demand   moves   away   from   monopiles   towards   greater   use   of   jacket  foundations;  

 4. Most   of   the   Netherlands   ambition   can   be   met   using   standard   size   monopile   foundations   –  

vessels  for  installation  of  which  are  far  more  readily  available  than  for  more  exotic  vessel  types.