2013_case_ii_a_b

14
APPLIED FLUID MECHANICS Objective: Volume flow rate Method II-A: No minor losses Example Problem 11.3 Uses Equation 11-3 to estimate the Figure 11.7 to maintain desired pressure at po System Data: SI Metric Units Pressure at point 1 = 415 kPa Elevation at point 1 = 0 Pressure at point 2 = 200 kPa Elevation at point 2 = 0 21.92 m Fluid Properties: Specific weight = 9.81 Kinematic viscosity = 1.15E-06 Pipe data: 6-in Schedule 40 steel pipe Visco Dinamica Diameter: D = 0.1023 m Densidad 4.60E-05 m Length: L = 100 m Results: Maximum values 8.21E-03 0.0412 2223.913 5.02 CLASS II SERIES SYSTEMS Volume flow rate: Q = 0.0200 415 Include minor losses; 344.17 then pressure at Point 2 is computed NOTE: Should be > 200 Additional Pipe Data: 978 is greater than desired pressure. Flow Velocity = 2.44 m/s locity at point 1 = 2.44 Velocity head = 0.302 m locity at point 2 = 2.44 Reynolds No. = 2.17E+05 Vel. head at point 1 = 0.302 0.0185 Vel. head at point 2 = 0.302 Energy losses in Pipe: K Qty. 18.11 5.47 5.78 1 1.75 0.00 0.00 0.00 0.00 0.00 0.00 7.22 II-A & II-B SI: CLASS II SERI Energy loss: hL = May need to compute: n = h/r kN/m 3 Wall roughness: e = Area: A = m 2 lume flow rate: Q = D/e = Velocity: v = Method II-B: Use results of Method IIA; Given: Pressure p1 = Pressure p2 = Adjust estimate for Q until p2 L/D = Friction factor: f = Pipe: K1 = f(L/D) = Energy loss hL1 = Elemento 2: K2 = Energy loss hL2 = Elemento 3: K3 = Energy loss hL3 = Element 4: K4 = Energy loss hL4 = Element 5: K5 = Energy loss hL5 = Element 6: K6 = Energy loss hL6 = Element 7: K7 = Energy loss hL7 = Element 8: K8 = Energy loss hL8 = Total energy loss hLtot =

Upload: christian-ft

Post on 27-Nov-2015

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2013_Case_II_A_B

APPLIED FLUID MECHANICSObjective: Volume flow rate Method II-A: No minor lossesExample Problem 11.3 Uses Equation 11-3 to estimate the allowable volume flow rateFigure 11.7 to maintain desired pressure at point 2 for a given pressure at point 1System Data: SI Metric Units

Pressure at point 1 = 415 kPa Elevation at point 1 = 0 mPressure at point 2 = 200 kPa Elevation at point 2 = 0 m

21.92 mFluid Properties:

Specific weight = 9.81 Kinematic viscosity = 1.15E-06Pipe data: 6-in Schedule 40 steel pipe Visco Dinamica

Diameter: D = 0.1023 m Densidad4.60E-05 m

Length: L = 100 m Results: Maximum values

8.21E-03 0.04122223.913 5.02 m/s

CLASS II SERIES SYSTEMS Volume flow rate: Q = 0.0200

415 kPa

Include minor losses; 344.17 kPathen pressure at Point 2 is computed NOTE: Should be > 200 kPa

Additional Pipe Data:978 is greater than desired pressure.

Flow Velocity = 2.44 m/s Velocity at point 1 = 2.44 m/s |--> If velocity is in pipe:Velocity head = 0.302 m Velocity at point 2 = 2.44 m/s |--> Enter "=B24"Reynolds No. = 2.17E+05 Vel. head at point 1 = 0.302 m

0.0185 Vel. head at point 2 = 0.302 mEnergy losses in Pipe: K Qty.

18.11 5.47 m Friction

5.78 1 1.75 m

0.00 m

0.00 m

0.00 m

0.00 m

0.00 m

0.00 m

7.22 m

II-A & II-B SI: CLASS II SERIES SYSTEMS

Energy loss: hL =May need to compute: n = h/r

kN/m3 m2/s

Wall roughness: e =

Area: A = m2 Volume flow rate: Q = m3/s Using Eq. 11-3D/e = Velocity: v =

m3/s

Method II-B: Use results of Method IIA; Given: Pressure p1 =

Pressure p2 =

Adjust estimate for Q until p2

L/D =

Friction factor: f =

Pipe: K1 = f(L/D) = Energy loss hL1 =

Elemento 2: K2 = Energy loss hL2 =

Elemento 3: K3 = Energy loss hL3 =

Element 4: K4 = Energy loss hL4 =

Element 5: K5 = Energy loss hL5 =

Element 6: K6 = Energy loss hL6 =

Element 7: K7 = Energy loss hL7 =

Element 8: K8 = Energy loss hL8 =

Total energy loss hLtot =

Page 2: 2013_Case_II_A_B

TIPO Le/D MAT RugosidadV-Globo Abierta por completo 340 Vidrio LisoV-Ángulo Abierta por completo 150 Plastico 3.00E-07V-Compuerta Abierta por completo 8 Tubo Extruido 1.50E-06

3/4 abierta 35 Acero comercial 4.60E-051/2 abierta 160 Hierro Galvan 1.50E-04

1/4 abierta 900 Hierro Ductil R 1.20E-04V-Verificacion Tipo Giratorio 100 Hierro Ductil NR 2.40E-04

V-Verificacion Tipo Bola 150 Concreto BnFab 1.20E-04V-Mariposa AbComp 2 a 8 pulg 45 Acero Remachado 1.80E-03

10 a 14 pulg 3516 a 24 pulg 25

V-Pie Tipo Disco de Vástago 420

V-Pie Tipo Disco de Bisagra 75 INTERPCodo Estandar 90 30Codo 90 Radio Largo 20 Rela Diamteros Ka Kb

Codo Roscado 90 50 1.8 0.43 0.42

Codo Estandar 45 16 0 -0.29 -0.3

Codo Roscado 45 26 2 0.51 0.5Vuelta Cerrado En Retono 50

Te Estandar Flujo Directo 20 Vel KCon en el Flujo Ramal 60 4.5 -0.29

0.00 -0.266 -0.3

Tam Nominal de la Tuberia Ft

1/2 0.027

3/4 0.025

1 0.023

1 1/4 0.022

1 1/2 0.021

2 0.019

2 1/2 ,3 0.018

3 1/2 ,4 0.017

5 0.0166 0.015

08 a 10 0.01412 a 16 0.01318 a 24 0.012

Page 3: 2013_Case_II_A_B

APPLIED FLUID MECHANICSObjective: Volume flow rate Method II-A: No minor lossesProblem 11.10 Uses Equation 11-3 to find maximum allowable volume flow rate

to maintain desired pressure at point 2 for a given pressure at point 1System Data: US Customary Units

Pressure at point 1 = 125 psig Elevation at point 1 = 18 ftPressure at point 2 = 40 psig Elevation at point 2 = 38 ft

229.74 ftFluid Properties:

Specific weight = 49.01 Kinematic viscosity = 1.37E-05Pipe data: 4-in Sch 40 steel pipe Visco Dinamica

Diameter: D = 0.1723 ft Densidad1.50E-04 ft

Length: L = 110 ft Results: Maximum values

0.02333 Volume flow rate: Q = 0.79811148.667 Velocity: v = 34.21 ft/s

CLASS II SERIES SYSTEMS Volume flow rate: Q = 0.7292

125 psig

Include minor losses; 40.00 psigthen pressure at Point 2 is computed NOTE: Should be > 40 psig

Additional Pipe Data:638 is equal or greater than desired.

Flow Velocity = 31.25 ft/s Velocity at point 1 = 0.00 ft/s |--> If velocity is in pipe:Velocity head = 15.168 ft Velocity at point 2 = 31.25 ft/s |--> Enter "=B24"Reynolds No. = 3.93E+05 Vel. head at point 1 = 0.00 ft

0.0199 Vel. head at point 2 = 15.17 ftEnergy losses in Pipe: K Qty.

12.73 1 193.16 ft Friction

0.38 2 11.53 ft

0.50 1 7.58 ft

0.15 1 2.31 ft

0.00 0.00 ft

0.00 0.00 ft

0.00 0.00 ft

0.00 0.00 ft

214.58 ft

II-A & II-B US: CLASS II SERIES SYSTEMS

Energy loss: hL =May need to compute: n = h/r

lb/ft3 ft2/s

Wall roughness: e =

Area: A = ft2 ft3/s Using Eq. 11-3D/e =

ft3/s

Method II-B: Use results of Method IIA; Given: Pressure p1 =

Pressure p2 =

Adjust estimate for Q until p2

L/D =

Friction factor: f =

Pipe: K1 = f(L/D) = Energy loss hL1 =

Element 2: K2 = Energy loss hL2 =

Element 3: K3 = Energy loss hL3 =

Element 4: K4 = Energy loss hL4 =

Element 5: K5 = Energy loss hL5 =

Element 6: K6 = Energy loss hL6 =

Element 7: K7 = Energy loss hL7 =

Element 8: K8 = Energy loss hL8 =

Total energy loss hLtot =

Page 4: 2013_Case_II_A_B

TIPO Le/D MAT Rugo pieV-Globo Abierta por completo 340 Vidrio LisoV-Ángulo Abierta por completo 150 Plastico 1.00E-06V-Compuerta Abierta por completo 8 Tubo Extruido 5.00E-06

3/4 abierta 35 Acero comercial 1.50E-041/2 abierta 160 Hierro Galvan 5.00E-04

1/4 abierta 900 Hierro Ductil R 4.00E-04V-Verificacion Tipo Giratorio 100 Hierro Ductil NR 8.00E-04

V-Verificacion Tipo Bola 150 Concreto BnFab 4.00E-04V-Mariposa AbComp 2 a 8 pulg 45 Acero Remachado 6.00E-03

10 a 14 pulg 3516 a 24 pulg 25

V-Pie Tipo Disco de Vástago 420

V-Pie Tipo Disco de Bisagra 75 INTERPCodo Estandar 90 30Codo 90 Radio Largo 20 Rela Diamteros Ka

Codo Roscado 90 50 1.8 0.43

Codo Estandar 45 16 0 -0.29

Codo Roscado 45 26 2 0.51Vuelta Cerrado En Retono 50

Te Estandar Flujo Directo 20 Vel KCon en el Flujo Ramal 60 4.5 -0.29

0.00 -0.266 -0.3

Tam Nominal de la Tuberia Ft

1/2 0.027

3/4 0.025

1 0.023

1 1/4 0.022

1 1/2 0.021

2 0.019

2 1/2 ,3 0.018

3 1/2 ,4 0.017

5 0.0166 0.015

08 a 10 0.01412 a 16 0.01318 a 24 0.012

Page 5: 2013_Case_II_A_B

Kb

0.42

-0.3

0.5

Page 6: 2013_Case_II_A_B

APPLIED FLUID MECHANICSObjective: Volume flow rate Method II-A: No minor lossesExample Problem 11.3 Uses Equation 11-3 to estimate the allowable volume flow rateFigure 11.7 to maintain desired pressure at point 2 for a given pressure at point 1System Data: SI Metric Units

Pressure at point 1 = 0 kPa Elevation at point 1 =Pressure at point 2 = 0 kPa Elevation at point 2 =

10.00 mFluid Properties:

Specific weight = 9.73 Kinematic viscosity =Pipe data: 6-in Schedule 40 steel pipe Visco Dinamica

Diameter: D = 0.0843 m Densidad1.20E-04 m

Length: L = 55 m Results: Maximum values

5.59E-03702.50

CLASS II SERIES SYSTEMS Volume flow rate: Q =

Include minor losses; then pressure at Point 2 is computed NOTE: Should be >

Additional Pipe Data 1:652 is greater than desired pressure.

Flow Velocity = 3.70 m/s Velocity at point 1 =Velocity head = 0.697 m Velocity at point 2 =Reynolds No. = 4.75E+05 Vel. head at point 1 =

0.0221 Vel. head at point 2 =Energy losses in Pipe 1 : K Qty.

14.39

1.00 1

0.66 2

0.45 1

Additional Pipe Data 2: Pipe data: 6-in Schedule 40 steel pipe192 Diameter: D =

Flow Velocity = 1.081 m/sVelocity head = 0.060 m Length: L =

Reynolds No. = 2.57E+050.0199

Energy losses in Pipe 2: Qty.

3.8269

0.57 1

1.00 1

0.86 1

II-A & II-B SI: CLASS II SERIES SYSTEMS

Energy loss: hL =May need to compute: n = h/r

kN/m3

Wall roughness: e =

Area: A = m2 Volume flow rate: Q =D/e = Velocity: v =

Method II-B: Use results of Method IIA; Given: Pressure p1 =

Pressure p2 =

Adjust estimate for Q until p2

L/D =

Friction factor: f =

Pipe: K1 = f(L/D) = Energy loss hL1 =

Elemento 2: K2 = Energy loss hL2 =

Elemento 3: K3 = Energy loss hL3 =

Element 4: K4 = Energy loss hL4 =

Element 5: K5 = Energy loss hL5 =

Element 6: K6 = Energy loss hL6 =

Element 7: K7 = Energy loss hL7 =

Element 8: K8 = Energy loss hL8 =

L/D =Wall roughness: e =

Area: A = Friction factor: f = D/e =

Pipe: K1 = f(L/D) = Energy loss hL1 =

Elemento 2: K2 = Energy loss hL2 =

Elemento 3: K3 = Energy loss hL3 =

Element 4: K4 = Energy loss hL4 =

Element 5: K5 = Energy loss hL5 =

Element 6: K6 = Energy loss hL6 =

Element 7: K7 = Energy loss hL7 =

Element 8: K8 = Energy loss hL8 =

Page 7: 2013_Case_II_A_B

Hl

Page 8: 2013_Case_II_A_B

TIPOUses Equation 11-3 to estimate the allowable volume flow rate V-Globo Abierta por completoto maintain desired pressure at point 2 for a given pressure at point 1 V-Ángulo Abierta por completo

V-Compuerta Abierta por completo10 m 3/4 abierta

0 m 1/2 abierta

1/4 abiertaV-Verificacion Tipo Giratorio

6.56E-07 V-Verificacion Tipo Bola9.50E-03 V-Mariposa AbComp 2 a 8 pulg

930 10 a 14 pulg16 a 24 pulg

Results: Maximum values V-Pie Tipo Disco de Vástago

0.0207 V-Pie Tipo Disco de Bisagra3.70 m/s Codo Estandar 90

Codo 90 Radio Largo

0.0207 Codo Roscado 90

0 kPa Codo Estandar 45

-22.70 kPa Codo Roscado 450 kPa Vuelta Cerrado En Retono

Te Estandar Flujo Directois greater than desired pressure. Con en el Flujo Ramal

0.00 m/s |--> If velocity is in pipe:0.00 m/s |--> Enter "=B24" Densidad

0.000 m Viscosidad Dinamica0.000 m

Tam Nominal de la Tuberia

10.03 m Friction 1/2

0.70 m 3/4

0.92 m 1

0.32 m 1 1/4

0.00 m 1 1/2

0.00 m 2

0.00 m 2 1/2 ,3

0.00 m 3 1/2 ,4Pipe data: 6-in Schedule 40 steel pipe 5

0.156 m 61.20E-04 m 08 a 10

30 m 12 a 16

1.91E-02 18 a 241300.00

0.23 m Friction

0.03 m

0.06 m

0.05 m

0.00 m

0.00 m

0.00 m

0.00 m

II-A & II-B SI: CLASS II SERIES SYSTEMS

May need to compute: n = h/rm2/s

m3/s Using Eq. 11-3

m3/s

Adjust estimate for Q until p2

m2

Page 9: 2013_Case_II_A_B

12.33

Page 10: 2013_Case_II_A_B

Le/D MAT Rugo m Rugo pie340 Vidrio Liso Liso150 Plastico 3.00E-07 1.00E-06

8 Tubo Extrui 1.50E-06 5.00E-0635 Acero comer 4.60E-05 1.50E-04

160 Hierro Galva 1.50E-04 5.00E-04

900 Hierro Ductil 1.20E-04 4.00E-04100 Hierro Ducti 2.40E-04 8.00E-04

150 Concreto Bn 1.20E-04 4.00E-0445 Acero Rema 1.80E-03 6.00E-033525

420

75 INTERP3020 Rela DiamterKa Kb

50 1.8 0.45 0.43

16 1.85053381 0.46768683 0.45021352

26 2 0.52 0.5150

20 Vel K60 3 0.46768683

4.31 0.452426814.5 0.45021352

Ft

0.027

0.025

0.023

0.022

0.021

0.019

0.018

0.0170.0160.0150.0140.013

0.012

Page 11: 2013_Case_II_A_B

APPLIED FLUID MECHANObjective: Volume flow r Method II-A: No minor losses TIPOExample Problem 11.3 Uses Equation 11-3 to estimate the allowable volume flow rate V-Globo AbieFigure 11.7 to maintain desired pressure at point 2 for a given pressure at pointV-Ángulo AbiSystem DataSI Metric Units V-Compuerta at point 1 = 0 kPa n at point 1 = 10 m 3/4 abierta at point 2 = 0 kPa n at point 2 = 0 m 1/2 abierta

10.00 m 1/4 abiertaFluid Properties: V-Verificacio

ific weight = 9.73 c viscosity = 6.56E-07 V-VerificaciPipe data: 6-in Schedule 40 steel pipeVisco Dinami 9.50E-03 V-Mariposa

Diameter: D = 0.0843 m Densidad 930 10 a 14 pulg1.20E-04 m 16 a 24 pulg

Length: L = 55 m Results: Maximum values V-Pie Tipo D

5.59E-03 0.0207 V-Pie Tipo D702.50 3.70 m/s Codo Estand

Codo 90 Rad

CLASS II SERIES SYSTEMS low rate: Q = 0.0207 Codo Roscad

0 kPa Codo Estand

Include minor losses; -22.70 kPa Codo Roscadthen pressure at Point 2 is computedNOTE: Should be > 0 kPa Vuelta Cerra

Additional Pipe Data 1: Te Estandar 652 is greater than desired pressure. Con en el Flujo Ramal

ow Velocity = 3.70 m/s y at point 1 = 0.00 m/s |--> If velocity is in pipe:locity head = 0.697 m y at point 2 = 0.00 m/s |--> Enter "=B24" Densidadynolds No. = 4.75E+05 Vel. head at point 1 = 0.000 m Viscosidad Dinamica

0.0221 Vel. head at point 2 = 0.000 mEnergy losses K Qty. Tam Nominal de la Tuberia

14.39 10.03 m Friction 1/2

1.00 1 0.70 m 3/4

0.66 2 0.92 m 1

0.45 1 0.32 m 1 1/4

0.00 m 1 1/2

0.00 m 2

0.00 m 2 1/2 ,3

0.00 m 3 1/2 ,4Additional Pipe Data 2: Pipe data: 6-in Schedule 40 steel pipe 5

192 Diameter: D = 0.156 m 6ow Velocity = 1.081 m/s 1.20E-04 m 08 a 10locity head = 0.060 m Length: L = 30 m 12 a 16

ynolds No. = 2.57E+05 1.91E-02 18 a 240.0199 1300.00

Energy losses in Pipe 2: Qty.

3.8269 0.23 m Friction

0.57 1 0.03 m

1.00 1 0.06 m

0.86 1 0.05 m

0.00 m

0.00 m

0.00 m

0.00 m

II-A & II-B SI: CLASS II SERIES SYSTEMS

Energy loss: hL =May need to compute: n = h/r

kN/m3 m2/s

Wall roughness: e =

Area: A = m2 Volume flow rate: Q = m3/s Using Eq. 11-3D/e = Velocity: v =

m3/s

Method II-B: Use results of Method IIA;Given: Pressure p1 =

Pressure p2 =

Adjust estimate for Q until p2

L/D =

Friction factor: f =

Pipe: K1 = f(L/D) = Energy loss hL1 =

Elemento 2: K2 = Energy loss hL2 =

Elemento 3: K3 = Energy loss hL3 =

Element 4: K4 = Energy loss hL4 =

Element 5: K5 = Energy loss hL5 =

Element 6: K6 = Energy loss hL6 =

Element 7: K7 = Energy loss hL7 =

Element 8: K8 = Energy loss hL8 =

L/D =Wall roughness: e =

Area: A = m2

Friction factor: f = D/e =

Pipe: K1 = f(L/D) = Energy loss hL1 =

Elemento 2: K2 = Energy loss hL2 =

Elemento 3: K3 = Energy loss hL3 =

Element 4: K4 = Energy loss hL4 =

Element 5: K5 = Energy loss hL5 =

Element 6: K6 = Energy loss hL6 =

Element 7: K7 = Energy loss hL7 =

Element 8: K8 = Energy loss hL8 =

Page 12: 2013_Case_II_A_B

Hl 12.33

Page 13: 2013_Case_II_A_B

Le/D MAT Rugo m Rugo pie340 Vidrio Liso Liso150 Plastico 3.00E-07 1.00E-06

8 Tubo Extrui 1.50E-06 5.00E-0635 Acero comer 4.60E-05 1.50E-04

160 Hierro Galva 1.50E-04 5.00E-04

900 Hierro Ductil 1.20E-04 4.00E-04100 Hierro Ducti 2.40E-04 8.00E-04

150 Concreto Bn 1.20E-04 4.00E-0445 Acero Rema 1.80E-03 6.00E-033525

420

75 INTERP3020 Rela DiamterKa Kb

50 1.8 0.45 0.43

16 1.85053381 0.46768683 0.45021352

26 2 0.52 0.5150

20 Vel K60 3 0.46768683

4.31 0.452426814.5 0.45021352

Viscosidad Dinamica

Ft

0.027

0.025

0.023

0.022

0.021

0.019

0.018

0.0170.0160.0150.0140.013

0.012