[2013] light modulation of volatile organic compounds from petunia flowers and select fruits

Upload: le-minh-toan-svd

Post on 03-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 [2013] Light Modulation of Volatile Organic Compounds From Petunia Flowers and Select Fruits

    1/8

    Postharvest Biology andTechnology 86 (2013) 3744

    Contents lists available at SciVerse ScienceDirect

    Postharvest Biology and Technology

    j ournal homepage: www.elsevier .com/ locate /postharvbio

    Light modulation ofvolatile organic compounds from petunia flowers

    and select fruits

    Thomas A. Colquhouna,c, Michael L. Schwietermanc, Jessica L. Gilbertb,d,Elizabeth A.Jaworskia, Kelly M. Langera, Correy R.Jonesa, Gabrielle V. Rushinga,TiaM. Huntera,James Olmsteadb,d, David G. Clarka,c,d, Kevin M. Foltab,c,d,

    a Department of Environmental Horticulture, University of Florida, Gainesville, FL 32611, USAb Horticultural Sciences Department,University of Florida, Gainesville, FL 32611, USAc Graduate Program for PlantMolecular andCellular Biology, Gainesville, FL 32611, USAd Graduate Program for thePlant Molecular Breeding Initiative, Gainesville, FL 32611,USA

    a r t i c l e i n f o

    Article history:

    Received19November2012

    Accepted10 June 2013

    Keywords:

    Flavor

    Flowers

    Fruits

    Light

    Smell

    Volatiles

    a b s t r a c t

    Light intensity, duration, direction, and wavelength are informative to plants. The biochemical circuits

    that connect specific light wavelengths to expression ofspecific genes and the metabolic networks they

    govern have been well defined. However, little emphasis has been placed on how discrete wavelengths

    oflight, alone or in combination,may be applied to manipulatepostharvestqualities ofhigh-valuehorti-

    cultural crops. Using narrow-bandwidthLED lightwe test the hypothesis that discrete lightwavelengths

    can affect the accumulation ofvolatile compounds known to affect aroma or taste in select flower and

    fruit products. Volatile benzenoid/phenylpropanoidemission frompetuniaflowers could bealteredwith

    light application. Levels ofa key floral volatile, 2-phenylethanol, increased with a red and far-red light

    treatment. Similar experimentsdemonstrated that fruit volatile profiles oftomato, strawberry, and blue-

    berry canbe manipulatedwith specific light treatments. These results suggest that compounds affecting

    sensory qualities offlowers and fruits can be modified by adjustment ofambient light conditions. These

    findings open new areas of inquiry about how the fragrance and flavor of flowers and fruits may be

    improvedwith simple changes in postharvest light conditions.

    2013 Published by Elsevier B.V.

    1. Introduction

    Plant growth and development is a product of the genetic

    potential of the plant and how it responds to stimuli from the

    ambient environment. An element of this interaction is facilitated

    by a suite of plant photosensoryreceptor proteins, each adapted to

    sense and relay information about the incident light spectrum. In

    thecase of horticultural crops, light quantity, quality, andduration

    inform the plant of current conditions that ultimately contribute

    to plant productivity and product quality.

    Light signaling pathways are well understood in the model

    system Arabidopsis thaliana. Light signals are transduced through

    well-described pathways that influence many aspects of plant

    growth and development (Chen et al., 2004b). These pathways

    have been translated to a large number of crop species, where

    genetic and photophysiological analyses demonstrate the effects

    Corresponding author at: Horticultural Sciences Department, University of

    Florida, Gainesville, FL 32611, USA. Tel.: +1 352 273 4812.

    E-mail address: [email protected](K.M. Folta).

    of various wavelengths of light on plant productivity (Barrero

    et al., 2012; Frantzet al., 2004; Li andMa, 2012;Preusset al., 2012;

    Reynolds et al., 2012; Singh et al., 2011). Although yield is often

    affected,qualitiessuch as ripening, color andnutraceutical content

    are also affected by the light environment. In practice, light is

    a passive entity, driving plant processes based on light quantity

    and quality from a natural or artificial environment. However,

    light may also be used to control growth and development by

    manipulating the light spectrum itself. A change in the ambient

    spectrum can alter plant behavior or potentially affect quality of

    plant products (Folta andChilders, 2008).

    There is great interest in understanding planthuman interac-

    tion with regard to plant produced volatile organic compounds

    (Du et al., 2011; Dudareva and Pichersky, 2008; Miyazaki et al.,

    2012; Tieman et al., 2012). Specific combinations and concentra-

    tions of volatile organic compounds can impart distinct fragrances

    and flavors to flowers and fruits (Klee, 2010; Tieman et al., 2012;

    Underwoodet al., 2005;Vogel et al., 2010) during gustation(retro-

    nasal), and fragrance during inhalation (ortho-nasal), adding value

    forproductqualityandultimatelya consumerssensoryexperience

    (Goff and Klee, 2006; Small et al., 2004).

    0925-5214/$ seefrontmatter 2013 Publishedby Elsevier B.V.

    http://dx.doi.org/10.1016/j.postharvbio.2013.06.013

    http://localhost/var/www/apps/conversion/tmp/scratch_9/dx.doi.org/10.1016/j.postharvbio.2013.06.013http://www.sciencedirect.com/science/journal/09255214http://www.elsevier.com/locate/postharvbiomailto:[email protected]://localhost/var/www/apps/conversion/tmp/scratch_9/dx.doi.org/10.1016/j.postharvbio.2013.06.013http://localhost/var/www/apps/conversion/tmp/scratch_9/dx.doi.org/10.1016/j.postharvbio.2013.06.013mailto:[email protected]://crossmark.dyndns.org/dialog/?doi=10.1016/j.postharvbio.2013.06.013&domain=pdfhttp://www.elsevier.com/locate/postharvbiohttp://www.sciencedirect.com/science/journal/09255214http://localhost/var/www/apps/conversion/tmp/scratch_9/dx.doi.org/10.1016/j.postharvbio.2013.06.013
  • 8/12/2019 [2013] Light Modulation of Volatile Organic Compounds From Petunia Flowers and Select Fruits

    2/8

    38 T.A. Colquhoun et al. / Postharvest Biology and Technology 86 (2013) 3744

    The literature shows evidence of environmental factors influ-

    encing the production of these volatile molecules in planta

    (Oyama-Okuboetal., 2005;Watsonet al., 2002). Numerousaspects

    ofplantorganic compoundmetabolismareinfluenced by light con-

    ditions, e.g. the cellular redox state, cyclic nucleotide metabolism

    in bean, phenylpropanoid production inArabidopsis (Brown et al.,

    1989;Dietz andPfannschmidt, 2011; Jin et al., 2000). Additionally,

    plant volatile production can be influenced by light quantity over

    thecourse of fruitdevelopment in strawberry (Watsonetal., 2002).

    Terpenoids have been showntobemodulatedby thephytochrome

    photosensors (Peer and Langenheim, 1998; Tanaka et al., 1998). It

    wasdemonstratedthatwhensweetbasilplantsweregrownon col-

    ored mulches, the volatile compounds emitted from fresh leaves

    varied with the color of mulch used (Loughrin and Kasperbauer,

    2003).

    The central hypothesis of this work is that plant volatile emis-

    sion could be reproducibly manipulated by variation in light

    quality. To directly test this hypothesis, we exploited the capac-

    ity to control discrete spectral quality using a narrow-bandwidth

    LEDbased light platform (Zhang et al., 2011) to exposeflowersand

    fruits to specificwavelengthsof light.Five lighting conditionswere

    employed: white, blue, red, far-red, and dark (Fig. 1).

    Harvested petunia flowers, tomato, strawberry, and blueberry

    fruits were analyzed for the emission of key volatile compounds

    subsequent to treatments with different wavelengths of light.

    Results show that the emissions of discrete volatiles important to

    plant product quality are influenced by light quality. These results

    have created a foundation for future identification of light regimes

    that mayalter plant product post-harvest quality for consumers.

    2. Materials and methods

    2.1. Narrow-bandwidth LED light platform

    Thelighttreatmentsweregeneratedusinga lightemittingdiode

    (LED) platform (Zhang et al., 2011). A dark treatmentand four light

    treatments were tested: white, blue, red, and far-red (Fig. 1). In all

    cases, light treatments were 50molm2 s1 in separate illumina-tion chambers within an environmentally controlled and actively

    ventilated area (221.5 C). The control treatment (white light)

    wasgeneratedbycoolwhitefluorescentbulbs,whilethe darktreat-

    ments were performed in an identical light-tight enclosure under

    the same ambient conditions. The light treatments were gener-

    ated using the Flora Lamp LED arrays (Light Emitting Computers,

    Victoria, BC). The spectra used in these experiments are shown in

    Fig. 1. Spectroradiometer readings of the light qualities used in this study. All

    treatments representthewaveformgeneratedat a fluence rate of 50molm2 s1.

    B=blue, R= red, FR= far-red, HBW=half-bandwidth.

    Fig. 1. Fruits and flowerswere treated without photoperiod. Spec-

    troradiometer readingswere obtainedwith a StellarNet deviceand

    visualized on SpectraWiz software (Stellar Net, Tampa, FL).

    2.2. Petunia

    In all cases of petunia experimentation, Petuniahybrida cv.

    Mitchell Diploid (MD) plants (Mitchell et al., 1980) were grown

    in a glass greenhouse to reproductive maturity, from seed. Devel-

    oping MD flowers were tagged at stage 6 and allowed to grow to

    stage 8 (Colquhoun et al., 2010). The morning of what would be

    a stage 8 open flower; tagged flowerswere excised at the petiole,

    and placedin a 4mLglass vialwith 2mLof tap water.

    In the initial experiment (Fig. 2), thepreparedMDflowers were

    placed in each of five light environments: white, blue, red, far-

    red, and dark. Six flowers were exposed to each light condition

    for 8h and removed at 18:00h. The corollas were then removed

    from the receptacle and two corollas were each inserted into a

    single glass tube for volatile collection, totaling three biological

    replicatesper experiment.Multiple replications of thisexperiment

    were performedwith similar results observed.

    To determine the length of time required to obtain a light-

    induced volatile response, a time course was conducted. Samples

    of eight flowers were exposed to a far-red light environment for

    0, 2, 4, 6, or 8h. Flowers were kept under white light (control)

    conditions until entering the far-red light treatment (Fig. S1). A

    dark environment control wasalso included.At 18:00h, allflowers

    were removed from their respective light treatments. The recepta-

    cle was detached, and two flowerswere each inserted into a single

    glass tube for volatile collection, totaling four biological replicates

    perexperiment.Multiple replicationsof this experimentwere per-

    formedwith similar results observed.

    2.3. Tomato

    Field-grown tomatoes (Solanum lycopersicum, M82) were har-

    vested at breaker stage and allowed to ripen under five different

    light conditions:white,blue, red, far-red, anddark. After 10d, mul-tiple fruits per treatment were diced, pooled, and 100g samples

    were loaded into glass tubes in triplicate per experiment (n=3) for

    volatile collection (Schmelz et al., 2001; Tieman et al., 2006). Mul-

    tiple replications of this experiment were performedwith similar

    results observed.

    2.4. Strawberry

    Field-grown mature Fragariaananassa Strawberry Festival

    fruit wereharvested in themorning and chilled at4 C overnight in

    dark conditions. Seven berries were selected based on uniformity

    of appearance per treatment, and were placed into clear plastic

    containers thenext morning, followedby thetreatmentconditions

    for 8h. Light environments tested were white, blue, red, far-red,anddark. After 8h, light-treated fruit samples from each treatment

    were pooled, homogenized in a blender, and 20g of homogenate

    was loaded in triplicate (n=3) into glass tubes for volatile collec-

    tion.Multiple replicationsof this experimentwere performedwith

    similar results observed.

    2.5. Blueberry

    Field-grown Vaccinium corymbosum Scintilla fruit were har-

    vested 1d prior to light treatments. Mature blueberry fruits

    were harvested in the morning and chilled at 4 C overnight

    in dark conditions. The next morning selected uniform fruit

    were spread in a single layer and placed in white, blue, red,

    far-red, and dark conditions for a 8h treatment. After the

  • 8/12/2019 [2013] Light Modulation of Volatile Organic Compounds From Petunia Flowers and Select Fruits

    3/8

    T.A. Colquhoun et al. / Postharvest Biology and Technology 86 (2013) 3744 39

    Fig. 2. Histograms showing the detected emission levels of floral volatile benzenoids/phenylpropanoids (FVBPs) from Petuniahybrida cv. Mitchell Diploid after 8h light

    treatments (50molm2 s1). The Y-axis is in molkg1 s1 , andthe X-axis is general white light (W), blue light (Bl), red (R), far-red F-R), and dark (D) lighting conditions

    (meanse; n=3). Identified FVBPs include: phenylacetaldehyde, 2-phenylethanol, benzyl benzoate, methyl benzoate, methyl salicylate, benzyl alcohol, benzaldehyde,

    isoeugenol, and eugenol. Lower case letters above the standarderror bars indicate significant differences at P

  • 8/12/2019 [2013] Light Modulation of Volatile Organic Compounds From Petunia Flowers and Select Fruits

    4/8

    40 T.A. Colquhoun et al. / Postharvest Biology and Technology 86 (2013) 3744

    3. Results

    3.1. Petunia floral volatile emission after varying spectral light quality treatments

    A model plant systemexamined was Petuniahybrida Mitchell Diploid (MD)

    for floral volatile benzenoid/phenylpropanoid(FVBP) emission.MD floral fragrance

    production isawell characterizedbiologicalprocessconsistingofa relativelysimple,

    but concentrated fragrance profile (Colquhoun and Clark, 2011; Colquhoun et al.,

    2010; Schuurink et al., 2006; Verdonk et al., 2003). Flowers from MD plants were

    excised at stage 8 (Colquhoun et al., 2010), placed in tap water, and moved from

    greenhouse conditions to specified lighting conditions. Detected amounts of FVBPsunder lighttreatmentswerecomparable towhathasbeencommonlyreportedin the

    literature (Boatright et al., 2004; Colquhoun et al., 2010; Underwood et al., 2005;

    Verdonk et al., 2005), suggesting the treatment conditions were acceptable. Dark

    treatment of MD flowers resulted in the significant reduction of most of the FVBP

    compounds like:methyl benzoate, benzaldehyde,phenylacetaldehyde, isoeugenol,

    and eugenol (Fig. 2). No light treatments significantly affected the emission of MD

    floral volatile phenylpropanoids, isoeugenol and eugenol. The blue light treatment

    only resulted in a significant changeof benzaldehyde emission,whichwas slightly

    reduced compared to white light treated flowers.

    The most obvious changein FVBP emissionwas observedwith thered and far-

    red lighttreatments,whichincreasedphenylacetaldehydeemission by2.7-fold(red)

    and 2.3-fold (far-red), and increased 2-phenylethanol emission by 9.9-fold (red)

    and5.8-fold(far-red). These treatments alsoresulted in an increasedbenzylalcohol

    andbenzylbenzoate emission.Methyl salicylate emissionwassignificantlyreduced

    after the far-red light treatment(Fig.2).

    3.2. Petunia floral volatile emission after treatment with far-red light over a time

    course

    Because far-red light treatments produced thehighest number of significantly

    affected FVBPs (phenylacetaldehyde, 2-phenylethanol, benzyl benzoate, benzyl

    Fig. 3. Histograms showing the detected emission levels of floral volatile benzenoids/phenylpropanoids (FVBPs) from Petuniahybrida cv. Mitchell Diploid after an 8h

    treatmentof white or varied durationsof far-red light (50molm2 s1). The Y-axis is inmolkg1 s1, and theX-axis is general white light for 8h (0), 6h under white light

    and 2h under far-red treatment (2), 4h under white light and 4h under far-red treatment (4), 2h under white light and 6h (6) under far-red treatment, and 8h (8) under

    far-red treatment (mean se; n=3). Identified FVBPs include: phenylacetaldehyde, 2-phenylethanol, benzyl benzoate, methyl benzoate, methyl salicylate, benzyl alcohol,

    benzaldehyde, isoeugenol, and eugenol. Refer to supplemental Fig. 1 for a detailed description of the experimental design. Lower case letters above the standard error bars

    indicate significant differences at P

  • 8/12/2019 [2013] Light Modulation of Volatile Organic Compounds From Petunia Flowers and Select Fruits

    5/8

    T.A. Colquhoun et al. / Postharvest Biology and Technology 86 (2013) 3744 41

    alcohol, and methyl salicylate), we chose to further examine the time course of

    their accumulation in response to this treatment. Flowers placedunderwhite light

    to far-red light treatment for8 h maintained FVBP levelsthatwere similar to those

    shownin Fig.2 (Fig. 3).

    Far-red light treatment elevated phenylacetaldehyde emission after 2h, and

    4h, then remained constant for the duration of the experiment, while emission of

    2-phenylethanol increased over time with a similar profile as emission of pheny-

    lacetaldehyde (Fig.3). Benzyl alcoholwaselevated by 2h of far-red light treatment

    and reached a maximum level after 8h of treatment. Benzyl benzoate andbenzal-

    dehydewere elevated by thefar-red light treatmentand both reached a maximum

    level after4 h of treatment(Fig.3). Methyl salicylate emissionwasreducedafter 2hoffar-redlight treatment, andremained consistent afterward.Nosignificant change

    was detected formethyl benzoate or isoeugenol emission through any time-point

    offar-red treatment compared thewhite light treatment.

    The time course of the far-red light affectwas tested bymonitoring phenylac-

    etaldehyde and2-phenylethanol emission. MDflowerswereexposedto the far-red

    light conditions for 8h, removed from the far-red light conditions, andplaced into

    white light conditions. Volatileswere collected every 4h for a total of five volatile

    collections (Fig. S2). Emission of phenylacetaldehyde and 2-phenylethanol from

    MD flowers was similar to previous results after the 8h far-red light treatment

    (Figs. 2 and 3). MD volatile emission increased after subjective nightfall, and the

    far-red light effect diminished comparedto thecontrols (Fig. S2).

    3.3. Tomato fruit volatile emission after varying spectral light quality treatments

    Fruits from tomato (Solanum lycopersicum) cv. M82 were tested for volatile

    emission. Tomato fruit volatile compound production is well characterized, but

    unlikepetuniafragrance,tomatofruitvolatileprofilescan consistof a largeandcom-

    plexnumberofchemicalspecies(Butteryet al.,1987;Tiemanetal., 2012). Therefore,

    we focused on a simple set of volatile compounds that have demonstrated impor-

    tancein tomatoflavor.Cis-3-hexen-1-ol,2-methyl butanal,and 3-methyl-1-butanol

    have been shown to contribute to overall tomato flavor intensity (Tieman et al.,

    2012). Tomato fruits were harvested at breaker stage and allowed to ripen under

    white light, blue, red, far-red, anddark conditions. Compared to white light treat-

    ments, thebluelight treatment resulted in no significant differences in tomato fruit

    volatile emission of these four compounds (Fig. 4). In contrast, the dark treatment

    resulted in a 5-fold increase of 3-methyl-1-butanol, 2.6-fold increase in 2-methyl

    butanal,and a significant increaseof cis-3-hexen-1-ol comparedto white lightcon-

    ditions.Red lighttreatmentresulted in significant increasesof 2-methylbutanal and

    3-methyl-1-butanol, along with a reduction of cis-3-hexenal (Fig. 4). Far-red light

    treatments resulted in significant increases of all four volatile compounds with a

    notable 2.2-fold increase of cis-3-hexenal.

    3.4. Strawberry fruit volatile emission after varying spectral light quality

    treatments

    Volatile emissions from strawberry (Fragariaananassa) fruits contain a large

    array of compounds (Du et al., 2011; Maarse, 1991). We focused on a subset of

    volatile compounds that likely contribute to strawberry sensory perception and

    could be analyzedconsistently. These include cis-3-hexen-1-ol,whichwas present

    in large amounts as well as ethyl caproate and methyl butyrate, two compounds

    well represented in the strawberry literature (Hakala et al., 2002; Jetti et al., 2007;

    Olbricht et al., 2008), along with hexyl butyrate, a five carbon extension of methyl

    butyrate, known tobea volatilewith fruity aroma.Maturestrawberry fruitwashar-

    vested in the morning and chilled at 4 C overnight in dark conditions. Compared

    to white light treatments strawberry cis-3-hexen-1-ol emission was not signifi-

    cantlyalteredin any ofthe otherlighttreatments(Fig. 5). In contrast,ethyl caproate

    emissionwasdramatically reduced in all light treatments comparedto white light.

    Methyl butyrateemissionwas significantly increasedafter far-red lighttreatments,

    whilehexylbutyrateemissionwasdetectedat significantly reducedamountsunder

    blue light treatments (Fig. 5).

    3.5. Blueberry fruit volatile emission after varying spectral light qualitytreatments

    Blueberry (V. corymbosum) fruit was tested for volatile emission under various

    light conditions. Blueberry fruits produce a relatively large array of volatile com-

    pounds much like tomato and strawberry. Therefore, we analyzed a simple set

    of volatile compounds with putative importance in blueberry, i.e. hexenal, trans-

    2-hexenal, 1-hexanol, trans-2-hexen-1-ol (Parliment and Kolor, 1975; Horvat and

    Senter,1985;Hirvi andHonkanen,1983). Comparedtowhitelighttreatments,blue-

    berries exposed to far-red light conditions emitted higher levels of hexenal, while

    1-hexanol and trans-2-hexen-1-ol emissions were considerably reduced (Fig. 6).

    The blue light treatment also resulted in significant reduction of 1-hexanol and

    trans-2-hexen-1-ol emissionscomparedto white light controls.

    4. Discussion

    Theexperiments in this report test thehypothesis that narrow-bandwidth light treatments can affect the metabolite qualities of

    common flowers and fruits that produce diverse aromatic prod-

    ucts. This hypothesis is based on significant data that indicate

    light-driven gene expression of enzymes influence steps in these

    pathways, likely affecting metabolite levels. The results of these

    experiments indicate that in a post-harvest setting, it is possible

    to affect theflux of substrates through discrete biochemical nodes

    thatultimatelyaffectsvolatilecompoundproduction inflowersand

    fruits, simplyby applying specific light treatments. It is exciting to

    speculate that it may be possible to use light treatments to shape

    the flavor or aroma qualities of a given genotype of plant, creat-

    ing a range of phenotypes from a common genetic background.

    More likely, these conceptsmay beemployed to stabilizeor induce

    desirable flavors and aromasof fruits andflowers post-harvest.

    4.1. Petunia

    Petuniahybrida MitchellDiploid (MD) is an established floral

    volatilemodel systemwith a relatively lowmetabolic background

    Fig. 4. Histograms showing the detected emission levels of specific volatile organic compounds from Solanum lycopersicum cv. M82 fruit after 8h light treatments

    (50molm2 s1). The Y-axis is in molkg1 s1, and the X-axis is general white light (W), blue (Bl), red (R), far-red (F-R), and dark (D) lighting conditions (meanse;

    n=3). Identified tomato fruit volatile compounds include: cis-3-hexenal, 3-methyl-1-butanol, and cis-3-hexen-1-ol, and 2-methyl butanal. Lower case letters above the

    standarderror bars indicate significant differences at P

  • 8/12/2019 [2013] Light Modulation of Volatile Organic Compounds From Petunia Flowers and Select Fruits

    6/8

    42 T.A. Colquhoun et al. / Postharvest Biology and Technology 86 (2013) 3744

    Fig.5. Histogramsshowingthedetectedemissionlevelsof specificvolatileorganiccompoundsfrom Fragariaananassacv.StrawberryFestivalfruitafter8 h light treatments

    (50molm2 s1). The Y-axis is inmolkg1 s1 , and theX-axis is general white light (W), blue (Bl), red (R), far-red (F-R), and dark (D)lighting conditions (mean se; n=3).

    Identified strawberry fruit volatile compounds include: cis-3-hexen-1-ol, ethyl caproate, methyl butyrate, and hexyl butyrate. Lower case letters above the standard error

    bars indicate significant differences at P

  • 8/12/2019 [2013] Light Modulation of Volatile Organic Compounds From Petunia Flowers and Select Fruits

    7/8

    T.A. Colquhoun et al. / Postharvest Biology and Technology 86 (2013) 3744 43

    2006;Tiemanet al., 2012). There area numberof reports regarding

    the role of light in fruit phytonutrient content (Azari et al., 2010).

    Forexample, someofthesereports testhowlightaffectsthestorage

    of juices (Hashizume et al., 2007), or the effect of light treatments

    on lycopene accumulationduring fruit ripening (Alba et al., 2000).

    Theanalyses herein focused on a subsetof volatiles that contribute

    significantlyto tomatoflavor (Tiemanet al., 2012). The compounds

    cis-3-hexenal (grassy), cis-3-hexen-1-ol (green, leafy), 2-methyl

    butanal (cocoa, coffee-like), and 3-methyl-1-butanol (amyl alco-

    hol) have important roles in shaping the flavor of tomato, with

    the latter two providing a perception of sweetness (Tieman et al.,

    2012).

    Someofthemostsignificant increasesin volatileemission,com-

    pared to white light treatments, are when fruits ripen in far-red

    light ordarkness.This resultsuggests that light is driving a process,

    either dependentonphotosynthesis,metabolism, or development,

    which actually decreases the accumulation of these compounds.

    This findingis consistentwith reports that show howgenes known

    toparticipate in light-driven responsesaffect tomatopigmentation

    and nutritional quality. Liu et al. (2004) identified high pigmenta-

    tion mutants as HY5 and a COP-like genes. HY5 is known for its

    role in phytochrome and cryptochrome signaling. COP1 and COP-

    like genes have defined roles in light signaling as well. Although

    flavors were not assessed in the hp1 and hp2 mutants, it may be

    proposed that the increased carotenoids may give rise to changes

    in keyvolatiles (like beta-ionone) that canaffectflavor (Chen et al.,

    2004a; Tieman et al., 2012; Vogel et al., 2010).

    Red light treatmentof the tomatoes led to a significant increase

    in 2-methyl butanal and 3-methyl-1-butanol, while levels of cis-

    3-hexenal were reduced, all compared to white light treatments

    (Fig. 4). The experiments performedhere illustrate that significant

    change in tomato flavor volatiles can be attained by altering the

    ripening light environment. These findings are important because

    two volatiles that contribute to sweet flavor perception (without

    the contribution of sugars) are present at higher levels after red

    light treatment than inwhite light, suggesting that the likability of

    tomato may be increased due to a perceived sweeter flavor. Such

    outcomes present an opportunity to manipulate flavors of thesefruits without changing the genetics, adding transgenes, treating

    with hormones or affecting plant nutrition. By changing red and

    farredmixtures or thedailyduration of redandfar-red treatments

    post-harvest, it may be possible to significantly remodel theflavor

    of tomato fruits.

    4.3. Strawberry

    The various light conditions did not significantly affect the

    accumulation of cis-3-hexen-1-ol in strawberry fruits used here.

    However, the fruits exhibited a range of responses to the other

    treatments. Methyl butyrate increased significantly in response to

    far-red light, and to a lesser extent to red light and dark treat-

    ment (Fig. 5). Ethyl caproatewasmost abundant underwhite lightconditions. Exposure to narrow-bandwidth light drove levels of

    this volatile down 450-fold, a magnitude of change even greater

    than moving the fruits to complete darkness. These data suggest

    that the pathways leading to production of ethyl caproate contain

    regulatory nodes that require active participation of blue and red

    (and possibly far-red) signaling systems. Conversely the indepen-

    dent steps may depend on blue, then red light cues (or vice versa)

    to produce the enzymes necessary for synthesis of this volatile.

    The final compound assayed, hexyl butyrate, was unaffected in all

    lightconditionsexcept for bluelight.Narrow-bandwidth bluelight

    decreasedhexylbutyrateaccumulation approximately 5-fold, sug-

    gesting that activation of cryptochromes (or possibly other blue

    lightsensors) regulatesexpression,stability,or activityof enzymes

    required for its synthesis.

    When strawberry is compared to tomatofor light control of cis-

    3-hexen-1-ol accumulation thedataindicatethatlight hasaneffect

    in tomato, butnot instrawberry fruit tissue. Intomatothe levelsare

    clearly affected by far-red light (Fig. 4), in a manner suggestive of

    phytochrome control. This same pattern is not observed in straw-

    berry where the compound is present in similar quantities across

    treatments (Fig. 5). In these cases the enzymes that underlie pro-

    duction are not regulated in the same way or that substrates are

    not comparably available. One simple explanation is that straw-

    berry and tomato are remarkably different botanically, and reside

    in distant plant families. It may be expected that the response to

    the light environment would be different.

    4.4. Blueberry

    Like strawberry and tomato fruits, blueberry fruits present a

    complex profileofflavor volatiles. However, unlikestrawberry and

    tomato, blueberryfruit volatileshave notbeen as extensively char-

    acterized. In response to light, the levels of hexenal emission are

    highest after far-red treatment but are not significantly affected

    by other treatments or darkness. This result indicates that rever-

    sion of phytochrome to an inactive state may increase the levels

    of this compound. Trans-2-hexanal is not significantly changed

    by light treatment, while 1-hexanol and trans-2-hexen-1-ol lev-

    els are decreased by blue and far-red treatment. When considered

    against petunia, tomato, and strawberry; blueberry exhibited the

    leastchangein response tonarrow-bandwidth lightenvironments.

    Of course, different compounds were assayed, yet the sets tested

    were those most likely to contribute to favorable consumer flavor

    qualities. The results suggest that blueberrymay be the least likely

    to be easily altered by application of narrow-bandwidth light.

    5. Conclusion

    It has been demonstrated for several decades that discrete

    qualities of light can generate profound changes in plant gene

    transcription, growth, anddevelopment. It is thereforenot surpris-

    ing that the abundance of secondary metabolites would also be

    affected by light cues. Here we show that a group of compounds

    central to flavors and aromas of fruits and flowers are affected by

    monochromatic light in a post-harvest system. Looking forward,

    such technologies could have applications in post-harvest treat-

    ments or retail-level storage of fresh fruits and vegetables. It may

    bepossible to enhance flavor in plant produce bydesigningsimple,

    safe,and inexpensivelight treatmentprograms thatmanipulatethe

    quality of compounds that affect consumer liking.

    Acknowledgments

    Thisworkwassupportedby funding fromtheofficeof theSenior

    Vice President forAgriculture andNatural Resources and the Insti-

    tute forPlant Innovation; allat theUniversity of Florida. Additionalsupport was provided by the USDA Floral and Nursery Research

    Initiative and theAmerican Floral Endowment.

    Appendix A. Supplementary data

    Supplementary data associated with this article can be

    found, in the online version, at http://dx.doi.org/10.1016/j.

    postharvbio.2013.06.013.

    References

    Alba, R.,Cordonnier-Pratt,M.M., Pratt, L.H., 2000.Fruit-localizedphytochromes reg-ulate lycopene accumulation independently of ethylene production in tomato.Plant Physiol. 123, 363370.

    http://dx.doi.org/10.1016/j.postharvbio.2013.06.013http://dx.doi.org/10.1016/j.postharvbio.2013.06.013http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0005http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0005http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0005http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0005http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0005http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0005http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0005http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0005http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0005http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0005http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0005http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0005http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0005http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0005http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0005http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0005http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0005http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0005http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0005http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0005http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0005http://dx.doi.org/10.1016/j.postharvbio.2013.06.013http://dx.doi.org/10.1016/j.postharvbio.2013.06.013
  • 8/12/2019 [2013] Light Modulation of Volatile Organic Compounds From Petunia Flowers and Select Fruits

    8/8

    http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0265http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0265http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0265http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0265http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0265http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0265http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0265http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0265http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0265http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0265http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0265http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0260http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0260http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0260http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0260http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0260http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0260http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0260http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0260http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0260http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0260http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0260http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0260http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0260http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0260http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0260http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0260http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0260http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0260http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0260http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0260http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0255http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0255http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0255http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0255http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0255http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0255http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0255http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0255http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0255http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0255http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0255http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0255http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0255http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0255http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0255http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0255http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0255http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0255http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0255http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0255http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0250http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0250http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0250http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0250http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0250http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0250http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0250http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0250http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0250http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0250http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0250http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0250http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0250http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0250http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0250http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0250http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0245http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0245http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0245http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0245http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0245http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0245http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0245http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0245http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0245http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0245http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0245http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0245http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0245http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0240http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0240http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0240http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0240http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0240http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0240http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0240http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0240http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0240http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0240http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0240http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0240http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0235http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0235http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0235http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0235http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0235http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0235http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0235http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0235http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0235http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0235http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0235http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0235http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0235http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0235http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0235http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0235http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0235http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0230http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0230http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0230http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0230http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0230http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0230http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0230http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0230http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0230http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0230http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0230http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0230http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0230http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0225http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0225http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0225http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0225http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0225http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0225http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0225http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0225http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0225http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0225http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0225http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0225http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0225http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0225http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0225http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0225http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0225http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0225http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0225http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0225http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0225http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0225http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0220http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0220http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0220http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0220http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0220http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0220http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0220http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0220http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0220http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0220http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0220http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0220http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0220http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0220http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0220http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0220http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0215http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0215http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0215http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0215http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0215http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0215http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0215http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0215http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0215http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0215http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0215http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0215http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0215http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0215http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0215http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0215http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0215http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0215http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0215http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0215http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0215http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0215http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0215http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0210http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0210http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0210http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0210http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0210http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0210http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0210http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0210http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0210http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0210http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0210http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0210http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0210http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0210http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0210http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0205http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0205http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0205http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0205http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0205http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0205http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0205http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0205http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0205http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0205http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0205http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0205http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0205http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0205http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0205http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0205http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0205http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0205http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0205http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0205http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0200http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0195http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0195http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0195http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0195http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0195http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0195http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0195http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0195http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0195http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0195http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0195http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0195http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0190http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0190http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0190http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0190http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0190http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0190http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0190http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0190http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0190http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0190http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0190http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0190http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0190http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0190http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0190http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0190http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0185http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0185http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0185http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0185http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0185http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0185http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0185http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0185http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0185http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0185http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0185http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0185http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0185http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0185http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0185http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0185http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0185http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0185http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0180http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0180http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0180http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0180http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0180http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0180http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0180http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0180http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0180http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0180http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0180http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0180http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0180http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0180http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0175http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0175http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0175http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0175http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0175http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0175http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0175http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0175http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0175http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0175http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0175http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0175http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0175http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0175http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0175http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0165http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0165http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0165http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0165http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0165http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0165http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0165http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0165http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0165http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0165http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0165http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0165http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0165http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0165http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0165http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0165http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0165http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0165http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0165http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0160http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0160http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0160http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0160http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0160http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0160http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0160http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0160http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0160http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0160http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0160http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0160http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0160http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0160http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0160http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0160http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0160http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0160http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0160http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0155http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0155http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0155http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0155http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0155http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0155http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0155http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0155http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0155http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0155http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0155http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0155http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0155http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0155http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0155http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0155http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0155http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0155http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0155http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0155http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0150http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0150http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0150http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0150http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0150http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0150http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0150http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0150http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0150http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0150http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0150http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0150http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0150http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0145http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0140http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0140http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0140http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0140http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0140http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0140http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0140http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0140http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0140http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0140http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0140http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0140http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0140http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0140http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0135http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0130http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0125http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0125http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0125http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0125http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0125http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0125http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0125http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0125http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0125http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0125http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0125http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0125http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0125http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0125http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0125http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0125http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0120http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0120http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0120http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0120http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0120http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0120http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0120http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0120http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0120http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0120http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0120http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0120http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0120http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0120http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0120http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0120http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0115http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0110http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0110http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0110http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0110http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0110http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0110http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0110http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0110http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0110http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0110http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0110http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0110http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0110http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0110http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0110http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0110http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0110http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0105http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0105http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0105http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0105http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0105http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0105http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0105http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0105http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0105http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0105http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0105http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0105http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0105http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0105http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0105http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0105http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0105http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0100http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0100http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0100http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0100http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0100http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0100http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0100http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0100http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0100http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0100http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0100http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0100http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0095http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0095http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0095http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0095http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0095http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0095http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0095http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0095http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0095http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0095http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0095http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0095http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0095http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0095http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0095http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0090http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0090http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0090http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0090http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0090http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0090http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0090http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0090http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0090http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0090http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0090http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0090http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0090http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0090http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0090http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0090http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0090http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0090http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0090http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0085http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0085http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0085http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0085http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0085http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0085http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0085http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0085http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0085http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0085http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0085http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0085http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0085http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0085http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0085http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0080http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0080http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0080http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0080http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0080http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0080http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0080http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0080http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0080http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0080http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0080http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0080http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0080http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0080http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0080http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0080http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0080http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0080http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0080http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0080http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0080http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0080http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0075http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0075http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0075http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0075http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0075http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0075http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0075http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0075http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0075http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0075http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0075http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0075http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0075http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0075http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0075http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0075http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0075http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0075http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0070http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0070http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0070http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0070http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0070http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0070http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0070http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0070http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0070http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0070http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0070http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0065http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0060http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0060http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0060http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0060http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0060http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0060http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0060http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0060http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0060http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0060http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0060http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0060http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0060http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0060http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0060http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0060http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0060http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0060http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0055http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0055http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0055http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0055http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0055http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0055http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0055http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0055http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0055http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0055http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0055http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0055http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0055http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0055http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0055http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0055http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0055http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0050http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0050http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0050http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0050http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0050http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0050http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0050http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0050http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0050http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0050http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0050http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0050http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0050http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0050http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0045http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0045http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0045http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0045http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0045http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0045http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0045http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0045http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0045http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0045http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0045http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0045http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0045http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0040http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0040http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0040http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0040http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0040http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0040http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0040http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0040http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0040http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0040http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0040http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0040http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0040http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0040http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0040http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0040http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0040http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0040http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0040http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0040http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0040http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0040http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0040http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0035http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0035http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0035http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0035http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0035http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0035http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0035http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0035http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0035http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0035http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0035http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0035http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0035http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0035http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0035http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0030http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0030http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0030http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0030http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0030http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0030http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0030http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0030http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0030http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0030http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0030http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0030http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0030http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0030http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0030http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0030http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0030http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0030http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0030http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0030http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0030http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0025http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0025http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0025http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0025http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0025http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0025http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0025http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0025http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0025http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0025http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0025http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0025http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0025http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0025http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0025http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0020http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0020http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0020http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0020http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0020http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0020http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0020http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0020http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0020http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0020http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0020http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0020http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0020http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0020http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0020http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0020http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0020http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0020http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0020http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0020http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0020http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0010http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0010http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0010http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0010http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0010http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0010http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0010http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0010http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0010http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0010http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0010http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0010http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0010http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0010http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0010http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0010http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0010http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0010http://refhub.elsevier.com/S0925-5214(13)00169-5/sbref0010