copyrightpsasir.upm.edu.my/id/eprint/20009/1/fbsb_2011_17_ir.pdf · 2013. 5. 27. · alhamdulillah,...

17
© COPYRIGHT UPM UNIVERSITI PUTRA MALAYSIA BIOSYNTHESIS OF POLY(3-HYDROXYBUTYRATE-co-3- HYDROXYVALERATE) COPOLYER FROM ORGANIC ACIDS USING Comamonas sp. EB172 MOHD RAFEIN BIN ZAKARIA @ MAMAT FBSB 2011 17

Upload: others

Post on 05-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • © CO

    PYRI

    GHT U

    PM

    UNIVERSITI PUTRA MALAYSIA

    BIOSYNTHESIS OF POLY(3-HYDROXYBUTYRATE-co-3- HYDROXYVALERATE) COPOLYER FROM ORGANIC ACIDS USING

    Comamonas sp. EB172

    MOHD RAFEIN BIN ZAKARIA @ MAMAT

    FBSB 2011 17

  • © CO

    PYRI

    GHT U

    PM

    i

    BIOSYNTHESIS OF POLY(3-HYDROXYBUTYRATE-co-3-

    HYDROXYVALERATE) COPOLYER FROM ORGANIC ACIDS USING

    Comamonas sp. EB172

    By

    MOHD RAFEIN BIN ZAKARIA @ MAMAT

    Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia,

    in Fulfilment of the Requirements for the Doctor of Philosophy

    August 2011

  • © CO

    PYRI

    GHT U

    PM

    ii

    DEDICATION

    This work is dedicated to my lovely family, who has always been at my side and

    given me the encouragement and support that carries me through my study.

    Thanks for their unending love and care to me.

  • © CO

    PYRI

    GHT U

    PM

    iii

    Abstract of thesis presented to Senate of Universiti Putra Malaysia in fulfilment of

    the requirement for the Doctor of Philosophy

    BIOSYNTHESIS OF POLY(3-HYDROXYBUTYRATE-co-3-

    HYDROXYVALERATE) COPOLYMER FROM ORGANIC ACIDS USING

    Comamonas sp. EB172

    By

    MOHD RAFEIN BIN ZAKARIA @ MAMAT

    August 2011

    Chairman: Professor Mohd Ali Hassan, PhD

    Faculty: Faculty of Biotechnology and Biomolecular Sciences

    Petroleum-based plastics like polypropylene (PP) and polyethylene (PE) are common

    plastics used in our daily life. Despite having good thermal and mechanical

    properties which make these plastics suitable for wide range applications, they are

    non-biodegradable and their accumulation has resulted in environmental concern by

    consumers all round the world. Polyhydroxyalkanoates (PHAs) have been

    recognized as suitable candidates in replacing partially or completely petroleum-

    based plastics since they share similar thermal and mechanical properties. Moreover,

    the biodegradability aspect of PHA makes these polymers to be more desirable and

    environmental friendly. Nevertheless, the total PHAs production cost is more

    expensive in comparison to conventional plastics, a factor that limits the production

    of these materials in large scale. The use of a locally- isolated bacterial species that

    can convert organic acids derived from anaerobically treated palm oil mill effluent

    (POME) with an efficient fermentation process will help to reduce the total PHA

  • © CO

    PYRI

    GHT U

    PM

    iv

    production cost. In this study, isolation and screening of PHA producing bacterium

    was performed by using Nile Blue A staining method. The stained colonies

    containing PHA exhibited pink fluorescent colour when exposed under ultra violet

    (UV) light.

    The PHA producing bacterium obtained from digester- treated POME was

    characterized by polyphasic taxonomic approach. The cells were rod-shaped, Gram-

    negative, non-pigmented, non-spore-forming and non-fermentative. Phylogenetic

    analyses using the 16S rRNA gene sequence showed that the isolate was clustered in

    the genus of Comamonas. Thus Comamonas sp. EB172 is designated for the locally

    isolated bacterial species. Its closest neighbours are the type strains Comamonas

    terrigena (96.8%), Comamonas koreensis (93.4%), Comamonas composti (92.9%)

    and Comamonas kerstersii (91.1%). Comamonas sp. EB172 was clearly

    distinguished from all of the existing Comamonas species using phylogenetic

    analysis, fatty acid composition and a range of physiological and biochemical

    characteristics. The G+C content of the genomic DNA was 59.1 mol%. It is evident

    from the genotypic, phenotypic data and ability to produce PHA that Comamonas sp.

    EB172 represents a new species in the genus Comamonas (GeneBank accession no.

    EU847238).

    Based on the types of carbon sources tested in shake flasks experiments, poly(3-

    hydroxybutyrate) [P(3HB)] homopolymer and poly(3-hydroxybutyrate-co-3-

    hydroxyvalerate) [P(3HB-co-3HV)] copolymer were produced by Comamonas sp.

    EB172 using single and mixed carbon sources. Poly(3-hydroxyvalerate) P(3HV)

  • © CO

    PYRI

    GHT U

    PM

    v

    incorporation in the copolymer was obtained when propionic and valeric acid were

    used as precursors. Incorporation of 3HV fractions in the copolymer varied from 45

    to 86 mol% when initial pH of the medium was regulated. In fed-batch cultivation,

    organic acids derived from anaerobically treated POME which consist mainly acetic,

    propionic and butyric acids are shown to be suitable carbon sources for

    polyhydroxyalkanoate (PHA) production by Comamonas sp. EB172. The number

    average molecular weight (Mn) of P(3HB-co-3HV) copolymer produced by the strain

    was in the range of 153 to 412 kDa with polydispersity index (Mw/Mn) in the range of

    2.2 to 2.6. Incorporation of higher 3HV units improved the thermal stability of

    P(3HB-co-3HV) copolymer. The CDW (14.6 g/L) and the Mn (838 x 103 Da) of

    P(3HB-co-3HV) copolymer reached the highest when supplemented with yeast

    extract during the fermentation period. Tensile strength, elongation to break and

    Young`s modulus of the copolymer containing 6-8 mol% P(3HV) were recorded at

    12-15 MPa, 160-710% and 0.19-0.34 GPa respectively. Thus the newly isolated

    bacterium Comamonas sp. EB172 is shown to be a suitable candidate for PHA

    production using organic acids from POME as a renewable and alternative raw

    material.

  • © CO

    PYRI

    GHT U

    PM

    vi

    Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

    memenuhi keperluan untuk Ijazah Doktor Falsafah

    BIOSINTESIS POLI(3-HIDROKSIBUTIRAT-co-3-HIDROKSIVALERAT)

    KOPOLIMER DARI ASID ORGANIK OLEH Comamonas sp. EB172

    Oleh

    MOHD RAFEIN BIN ZAKARIA @ MAMAT

    Ogos 2011

    Pengerusi: Profesor Mohd Ali Hassan, PhD

    Fakulti: Fakulti Bioteknologi dan Sains Biomolekul

    Plastik berasaskan petrolium seperti polipropilena (PP) dan politetilena (PE) ialah

    plastik biasa digunakan dalam kehidupan harian kita. Walaupun mempunyai sifat-

    sifat mekanikal dan terma yang baik membuatkan plastik ini sesuai dalam pelbagai

    aplikasi, bagaimanapun plastik ini tidak terbiodegradasi dan pengumpulannya telah

    menimbulkan keprihatinan terhadap alam sekitar oleh pengguna plastik di seluruh

    dunia. Polihidroksialkanoat (PHA) telah di kenal pasti sebagai calon yang sesuai

    dalam menggantikan sebahagiannya atau sepenuhnya plastik berasaskan petrolium

    kerana ia berkongsi sifat-sifat mekanikal dan terma yang sama. Tambahan pula,

    keterbiodegredan PHA membuat polimer ini lebih diperlukan dan mesra alam. Walau

    bagaimanapun, jumlah kos pengeluaran PHA lebih mahal berbanding dengan plastik

    konvensional yang menghadkan pengeluaran bahan-bahan ini dalam skala besar.

    Penggunaan pencilan bakteria baru yang boleh menukar asid-asid organik berasal

    daripada POME yang terawat serta proses penapaian yang cekap akan dapat

    membantu mengurangkan jumlah kos pengeluaran PHA. Dalam kajian ini, pencilan

  • © CO

    PYRI

    GHT U

    PM

    vii

    dan saringan bakteria yang menghasilkan PHA telah diusahakan dengan

    menggunakan kaedah pewarnaan Nile Blue A. Koloni-koloni yang mengandungi

    PHA dan diwarnakan akan mempamerkan warna pendarfluor merah jambu apabila

    didedahkan di bawah cahaya ultra ungu (UV).

    Bakteria yang menghasilkan PHA disaring dari loji rawatan POME, telah dikaji

    melalui pendekatan taksonomi. Sel-sel yang diperolehi adalah berbentuk rod, Gram-

    negatif, tidak berpigmen, tidak berspora dan tidak terfermentasi. Analisis filogenetik

    menggunakan jujukan gen RNA ribosom 16S menunjukkan bahawa bakteria yang

    disaring ditempatkan dalam kelompok genera Comamonas. Dengan itu bakteria

    terpencil di namakan sebagai Comamonas sp. EB172. Tetangganya yang terdekat

    adalah dari jenis Comamonas terrigena (96.8%), Comamonas koreensis (93.4%),

    Comamonas composti (92.9%), dan Comamonas kerstersii (91.1%). Comamonas.

    Bakteria terpencil Comamonas sp. EB172 jelas dibezakan dari semua jenis

    Comamonas yang ada dengan menggunakan analisis filogenetik, komposisi asid

    lemak dan pelbagai ciri-ciri fisiologi dan biokimia. Kandungan G+C dari genom

    DNA adalah 59.1 mol%. Dari data genotipik, fenotipik dan kemampuan untuk

    menghasilkan polihidroksialkanoat membuktikan Comamonas sp. EB172 merupakan

    bakteria baru dalam genera Comamonas (GeneBank akses no.EU847238).

    Berdasarkan jenis sumber karbon yang diuji dalam eksperimen kelalang goncang,

    homopolimer poli(3-hidroksibutirat) [P(3HB)] dan kopolimer poli(3-hidroksibutirat-

    co-3-hidroksivalerat) [P(3HB-co-3HV)] dihasilkan oleh Comamonas sp. EB172

    menggunakan sumber karbon tunggal dan campuran. Penggabungan poli(3-

    hidroksivalerat) P(3HV) pada kopolimer diperolehi apabila asid propionik dan asid

  • © CO

    PYRI

    GHT U

    PM

    viii

    valerik digunakan sebagai prekursor. Penggabungan unit 3HV pada kopolimer

    berbeza-beza dari 45 hingga 86 mol% apabila pH awal media itu dikawal. Dalam

    fermentasi suapan-sesekelompok menggunakan asid organik dari rawatan loji

    rawatan POME yang terdiri daripada asid asetik, propionik dan butirik membuktikan

    ia adalah sumber karbon yang sesuai bagi penghasilan polihidroksialkanoat (PHA)

    oleh Comamonas sp. EB172. Jumlah purata berat molekul (Mn) kopolimer P(3HB-

    co-3HV) yang dihasilkan oleh Comamonas sp. EB172 masing-masing berada di

    lingkungan 153-412 kDa dengan indeks polidispersiti (Mw/Mn) di lingkungan 2.2-2.6.

    Penggabungan unit 3HV lebih tinggi dalam kopolimer (3HB-co-3HV) meningkatkan

    kestabilan terma poliester. Berat sel kering (14.6 g/L) dan berat molekul (838 x 103

    Da) kopolimer P(3HB-co-3HV) mencapai tahap tertinggi apabila dibekalkan dengan

    ekstrak ragi (YE) semasa proses fermentasi. Kekuatan ketegangan, pemanjangan

    pada tahap putus dan Young`s modulus kopolimer yang mengandungi (3HV) dari

    lingkungan 6-8 mol% yang diperolehi dicatat masing-masing sekitar 12-15 MPa,

    160-710% dan 0.19-0.34 GPa. Dengan itu pencilan bakteria baru Comamonas sp.

    EB172 adalah bakteria yang sesuai untuk penghasilan PHA menggunakan POME

    sebagai sumber karbon alternatif baru dan diperbaharui.

  • © CO

    PYRI

    GHT U

    PM

    ix

    ACKNOWLEDGEMENTS

    Alhamdulillah, great thanks to Allah for His mercy and guidance, I have completed

    my thesis as required. I would like to express my gratitude to my main supervisor,

    Prof. Dr. Mohd Ali Hassan, co-supervisors, Assoc. Prof. Dr. Suraini Abd-Aziz, Dr.

    Farinazleen Mohamad Ghazali and Prof. Dr. Yoshihito Shirai from Kyushu Institute

    of Technology, Japan, for their dedicated effort, guidance and encouragement

    throughout the research. Their experiences are valuable as guidance to my successful

    research.

    To my parent, I would like to say that without your sacrifice, encouragement and

    understandings I may not be able to complete this study. To my wife, Ros, your

    support and undying love taught me about life, discipline and working hard towards

    our goal. To my daughter Siti Aisyah, you presence in my life is so meaningful and

    taught me to be an ambitious man. Not forgetting to all my friends, I would like

    specially say thank you to Dr. Hidayah, Dr. Phang, Dr. Nor `Aini, Dr. Helmi, Dr.

    Azhari, Dr. Alawi, Mior Ahmad Khushairi, Noor Azman, and Zulkhairi, for their

    sharing a joyful moment with me. Words could not express my gratitude to all of

    you.

    Last but not least, special thanks to our collaborator from FELDA Serting Hilir palm

    oil mill, Mr. Omar Bin Atan for his assistance and guidance during my study period.

    My seniors, juniors and lab assistants, Shamzi, Dr. Meisam, Nor Asma, Dr. Mumtaz,

    Yee, Nadia and Matun for their support, co-operation, sharing ideas and guidance to

  • © CO

    PYRI

    GHT U

    PM

    x

    me. Million thanks to lab officer Mr. Rosli for his technical assistance in the

    Microbiology and Bioprocess Laboratory.

  • © CO

    PYRI

    GHT U

    PM

    xi

    I certify that an Examination Committee has met on 24th

    August 2011 to conduct the

    final examination of Mohd Rafein Bin Zakaria @ Mamat on his Doctor of

    Philosophy thesis entitle “Biosynthesis of Poly(3-Hydroxybuyrate-co-3-

    Hydroxyvalerate) Copolymer from Organic Acids by Locally Isolated Bacterium

    Isolate EB172” in accordance with the Universities and University Colleges Act

    1971 and the Constitution of the Universiti Putra Malaysia [P. U. (A) 106] 15 March

    1998. The Committee recommends that the student be awarded the Doctor of

    Philosophy.

    Members of the Examination Committee were as follows:

    Arbakariya Ariff, PhD

    Professor

    Faculty of Biotechnology and Biomolecular Sciences

    Universiti Putra Malaysia

    (Chairman)

    Norhani Abdullah, PhD

    Professor

    Faculty of Biotechnology and Biomolecular Sciences

    Universiti Putra Malaysia

    (Internal Examiner)

    Siti Mazlina Mustapa Kamal, PhD

    Associate Professor

    Faculty of Engineering

    Universiti Putra Malaysia

    (Internal Examiner)

    Virendra Swarup Bisaria, PhD

    Professor

    Department of Biochemical Engineering and Biotechnology

    Indian Institute of Technology, Delhi

    (External Examiner)

    _______________________________

    BUJANG KIM HUAT, PhD

    Professor and Deputy Dean

    School of Graduate Studies

    Universiti Putra Malaysia

    Date:

  • © CO

    PYRI

    GHT U

    PM

    xii

    Thesis was submitted to the Senate of Universiti Putra Malaysia and has been

    accepted as fulfilment of the requirement for the Doctor of Philosophy. The members

    of the Supervisory Committee were as follows:

    Mohd Ali Hassan, PhD

    Professor

    Faculty of Biotechnology and Biomolecular Sciences

    Universiti Putra Malaysia

    (Chairman)

    Suraini Abd-Aziz, PhD

    Associate Professor

    Faculty of Biotechnology and Biomolecular Sciences

    Universiti Putra Malaysia

    (Member)

    Farinazleen Mohamad Ghazali, PhD

    Faculty of Food Science and Technology

    Universiti Putra Malaysia

    (Member)

    Yoshihito Shirai, PhD

    Professor

    Graduate School of Life Science and Systems Engineering

    Kyushu Institute of Technology, Japan

    (Member)

    _______________________________

    BUJANG KIM HUAT, PhD Professor and Dean

    School of Graduate Studies

    Universiti Putra Malaysia

    Date:

  • © CO

    PYRI

    GHT U

    PM

    xiii

    DECLARATION

    I declare that the thesis is my original work except for quotations and citations which

    have been duly acknowledge. I also declare that it has been not previously, and is not

    concurrently, submitted for any other degree at Universiti Putra Malaysia or at any

    other institution.

    ___________________________________

    MOHD RAFEIN ZAKARIA @ MAMAT

    Date: 24th

    August 2011

  • © CO

    PYRI

    GHT U

    PM

    xiv

    TABLE OF CONTENTS

    Page

    DEDICATION ii

    ABSTRACT iii

    ABSTRAK v

    ACKNOWLEDGEMENTS vii

    APPROVAL ix

    DECLARATION Xi

    LIST OF TABLES Xv

    LIST OF FIGURES xvii

    LIST OF ABBREVIATIONS xix

    CHAPTER

    1.0 INTRODUCTION 1

    1.1 Objectives 4

    2.0 LITERATURE REVIEW

    2.0 Polyhydroxyalkanoate (PHA) 5

    2.1 Biosynthesis of P(3HB-co-3HV) Copolymer 9

    2.1.1 P(3HB-co-3HV) Copolymer Biosynthethic Pathway 10

    2.2 Factors Affecting P(3HB-co-3HV) Copolymer Production 16

    2.2.1 Microorganism 17

    2.2.2 Carbon sources 18

    2.2.3 pH 21

    2.2.4 Nitrogen Sources 22

    2.2.5 Oxygen Requirement 24

    2.3 Recovery od Polyhydroxyalkanoates 25

    2.4 Thermal and Mechanical Properties of P(3HB-co-3HV)

    Copolymer

    27

    2.5 General Applications of Polyhydroxyalkanoates 30

    3.0 MATERIALS AND METHODS

    3.1 Source of Sludge 32

    3.2 Growth and Production Medium 32

    3.3 Shake Flask Experiment 36

    3.4 Analytical Procedures 37

  • © CO

    PYRI

    GHT U

    PM

    xv

    4.0 ISOLATION AND SCREENING OF

    POLYHYDROXYALKANOATE ACCUMULATING

    BACTERIUM

    4.1 Introduction 48

    4.2 Materials and Methods 50

    4.3 Results and Discussion 55

    4.3.1 Isolation and Screening of PHA Accumulating

    Bacterium

    55

    4.3.2 Pre-identification of Isolated Strain by BIOLOG

    System

    56

    4.3.3 Shake Flask Experiments 57

    4.4 Conclusion 61

    5.0 IDENTIFICATION OF ISOLATED BACTERIUM

    USING POLYPHASIC TAXONOMIC APPROACHES

    5.1 Introduction 62

    5.2 Materials and Methods 64

    5.3 Results and Discussion 68

    5.3.1 Morphological and Biochemical tests 68

    5.3.2 16S rRNA Sequence 71

    5.3.3 DNA-DNA relatedness, G+C content and Cellular

    Fatty Acids Analyses

    73

    5.3.4 Growth and Production of Isolate EB172 76

    5.3.5 Effect of C/N Ratio on the Growth and PHA

    Accumulation

    78

    5.3.6 Fed-batch Cultivation Using pH-stat Continuous

    Feeding of Mixed Acids Derived from POME

    79

    5.4 Conclusion 82

    6.0 CHARACTERIZATION OF GROWTH AND

    POLYHYDROXYALKANOATE ACCUMULATION

    6.1 Introduction 83

    6.2 Materials and Methods 86

    6.3 Results and Discussion 89

    6.3.1 Effect of Propionic and Valeric Acid Concentration 89

    6.3.2 Effect of Inorganic and Organic Nitrogen Sources 92

    6.3.3 Effect of Initial Medium pH 95

    6.3.4 Effect of Aeration 97

    6.3.5 Effect of C/N and Organic Nitrogen on the P(3HB-

    co-HV) copolymer production

    100

    6.3.5.1 Cell Biomass and PHA Production 100

    6.3.5.2 PHA Composition and Tm 104

    6.3.5.3 Molecular Weight and Mechanical Properties 105

    6.4 Conclusion 108

  • © CO

    PYRI

    GHT U

    PM

    xvi

    7.0 CHARACTERIZATION OF POLY(3-

    HYDROXYBUTYRATE-co-3-HYDROXYVALERATE)

    COPOLYMER

    7.1 Introduction 109

    7.2 Materials and Methods 111

    7.3 Results and Discussion 114

    7.3.1 Biosynthesis of PHA Through One Step Cultivation 114

    7.3.2 Fed-batch Cultivation of Isolate EB172 120

    7.3.3 Gel permeation chromatography (GPC) analysis 122

    7.3.4 Thermal Properties of P(3HB-co-3HV) Copolymer

    Produced by Isolate EB172

    123

    7.4 Conclusion 126

    8.0 CONCLUSION AND SUGGESTIONS FOR FUTURE

    RESEARCH

    127

    REFERENCES

    132

    APPENDICES 143

    BIODATA OF STUDENT 166

    BIOSYNTHESIS OF POLY(3-HYDROXYBUTYRATE-co-3-HYDROXYVALERATE) COPOLYER FROM ORGANIC ACIDS USINGComamonas sp. EB172ABSTRACTTABLE OF CONTENTSCHAPTER 1CHAPTER 2CHAPTER 3CHAPTER 4 CHAPTER 5CHAPTER 6CHAPTER 7CHAPTER 8REFERENCESAPPENDICESAPPENDIX 1 COPY OF ACEPTANCE LETTERAPPENDIX 1 PUBLICATIONAPPENDIX 2 COPY OF ACCEPTANCE LETTERAPPENDIX 2 PUBLICATIONPolyhydroxyalkanoate production from anaerobically treated palm oil mill effluent by new bacterial strain Comamonas sp. EB172AbstractIntroductionMaterials and methodsBacterial strain and cultivationMorphology and taxonomical studiesIdentification and 16S rRNA gene sequencingPhylogenetic analysis of 16S rRNA gene sequenceAnalytical procedures

    Results and discussionMorphological and taxonomical identificationGrowth and polyhydroxyalkanoates production by Comamonas sp. EB172Effect of C/N ratio on the cell growth and PHA accumulationFed-batch cultivation using pH-stat continuous feeding of mixed organic acids derived from POME

    ConclusionAcknowledgmentsReferences

    APPENDIX 3 COPY OF ACCEPTANCE LETTERAPPENDIX 3 PUBLICATIONBiosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer from wild-type Comamonas sp. EB172IntroductionMaterials and methodsBacterial strainPHA biosynthesis by one-step cultivationFed-batch cultivation of Comamonas sp. EB172 using organic acids from POMEAnalysis of polymer propertiesGas chromatographyPHA extraction film preparationGel permeation chromatography (GPC)Thermogravimetry analysis (TGA)Differential scanning calorimetry (DSC)

    Results and discussionBiosynthesis of PHA during one-step cultivationFed-batch cultivation of Comamonas sp. EB172Gel permeation chromatography (GPC)Thermal properties of P(3HB-co-3HV) copolymer from Comamonas sp. EB172

    ConclusionsAcknowledgmentReferences

    BIODATA OF STUDENT

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 150 /GrayImageDepth -1 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 600 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org?) /PDFXTrapped /False

    /Description >>> setdistillerparams> setpagedevice