2008.10.09-ece612-l12

62
Lundstrom EE-612 F08 1 EE-612: Lecture 12: 2D Electrostatics Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette, IN USA Fall 2008 www.nanohub.org NCN

Upload: joekurina3194

Post on 08-Feb-2016

3 views

Category:

Documents


0 download

DESCRIPTION

lectures

TRANSCRIPT

Page 1: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 1

EE-612:Lecture 12:

2D Electrostatics

Mark LundstromElectrical and Computer Engineering

Purdue UniversityWest Lafayette, IN USA

Fall 2008

www.nanohub.orgNCN

Page 2: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 2

outline

1) Consequences of 2D electrostatics

2) 2D Poisson equation

3) Charge sharing model

4) Barrier lowering

5) 2D capacitor model

6) Geometric screening length

7) Discussion

8) Summary

Page 3: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 3

ID vs. VDS (long channel)

VGS

ID

VDS

ID =W2L

μeff Cox

VGS −VT( )2m

1) square law

2) low output conductance

gd =∂ID

∂VDS VGS

Page 4: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 4

ID vs. VDS (short channel)

VGS

ID

VDS

ID = WυsatCox VGS −VT( )

1) linear with VGS

2) high output conductance

gd =∂ID

∂VDS

see Taur and Ning, pp. 154-158

VGS

Page 5: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 5

channel length modulation

VG VD0

xy

V x( )= VGS −VT( )

ID = μeff CoxW2 ′L

VGS −VT( )2

VGS > VT

VDS > VGS −VT

′L = L − ΔL < Lpinch-off region:

1) high lateral electric field Ey >>Ex2) small carrier density3) under control of drain, not gate (GCA does not apply)

Page 6: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 6

VT roll-off

VT

LVT = VFB + 2ψ B + 2qεSiNA (2ψ B ) Cox

VT roll-off

‘reverse’ short channel effect

Page 7: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 7

DIBL

log ID

VGS

VGS −VT( )α

e VGS −VT( )/mkBT

VDS = 1.1VVDS = 0.05V

“Drain-Induced Barrier Lowering”(DIBL) mV/V

Page 8: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 8

stronger short channel effects

log ID

VGS

VGS −VT( )α

e VGS −VT( )/mkBT

VDS = 1.1VVDS = 0.05V

S(VDS = 1.1V) > S(VDS = 0.05V)

Page 9: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 9

severe short channel effects

log ID

e VGS −VT( )/mkBT

VGS

VDS = 0.05V

current weakly dependent on VGS‘punch through’

VDS = 1.1V

Page 10: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 10

E

x

EC x( )

≈WD

“punched through”

punchthrough

NA min( ): punch throughWS +WD < L

WD

WS

VD0L

Page 11: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 11

short channel effects

1) ID linear not quadratic with gate voltage

2) high output conductance

3) threshold voltage roll-off

4) increased DIBL

5) increased S

6) punchthrough

Page 12: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 12

outline

1) Consequences of 2D electrostatics

2) 2D Poisson equation

3) Charge sharing model

4) Barrier lowering

5) 2D capacitor model

6) Geometric screening length

7) Discussion

8) Summary

Page 13: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 13

2D Poisson equation

∂2ψ∂x2 = −

ρεSi

=qNA

εSi

(belowVT )

p-Si

n+ n+

x

y1) MOS Capacitor:

2) MOSFET:

∂2ψ∂x2 +

∂2ψ∂y2 =

qNA

εSi

(belowVT )

Page 14: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 14

2D Poisson equation (ii)

1) Long channel MOSFET below threshold:

∂2ψ∂x2 >>

∂2ψ∂y2

gradual channel approximation (GCA):

QI (y) = −CG VG −VT − mV (y)[ ]

Page 15: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 15

2D Poisson equation (iii)

1) Short channel MOSFET below threshold:

∂2ψ∂x2 =

qNA

εSi

−∂2ψ∂y2 Increasing VDS

y (nm) --->

ε 1(e

V)

--->

∂2EC

∂y2 < 0

∂2ψ∂x2 =

q NA eff

εSi

NA eff< NA

VT <VT (long channel)

explains VT roll-off

Page 16: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 16

2D potential contours

p-Si

x

x

EEC

EV

EFψ S = 1V

ψ = 1.0

ψ = 0.2

ψ = 0.3

ψ = 0.4

ψ = 0.1

ψ = 0

ψ = 0.5

ψ = 0V

E(x)

Page 17: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 17

2D potential contours

p-Si

n+ψ = Vbi

ψ = 0

Page 18: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 18

2D potential contours (long channel)

p-Si

n+ n+

x

ylike 1D MOS capacitor

Page 19: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 19

2D potential contours (short channel)

p-Si

n+ n+ψ = Vbi

ψ = Vbi

ψ = 0

(See Fig. 3.18 of Taur and Ning)

Page 20: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 20

field lines

p-Si

n+ n+ψ = Vbi

ψ = Vbi

ψ = 0

Page 21: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 21

field lines (bulk)

p-Si

n+ n+

Page 22: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 22

field lines (SOI)

p-Si

n+ n+

Page 23: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 23

field lines (SOI)

n+ n+

‘gate all around’

FINFET

tri-gate

Page 24: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 24

outline

1) Consequences of 2D electrostatics

2) 2D Poisson equation

3) Charge sharing model

4) Barrier lowering

5) 2D capacitor model

6) Geometric screening length

7) Discussion

8) Summary

Page 25: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 25

charge sharing model

p-Si

n+ n+

x

y

+ + + + + +

QD = W LWDM( )qNA

Page 26: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 26

charge sharing model (ii)

p-Si

n+ n+

x

y

+ + + + + +

Page 27: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 27

charge sharing model (ii)

p-Si

n+ n+

x

y

+ + + + + +

′QD =WL + ′L

2⎛⎝⎜

⎞⎠⎟WDM qNA

L

′L

Page 28: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 28

S/D extensions

charge sharing model (iii)

VT = VFB + 2ψ B − γQD

COX

<VT long channel( )

γ =L + ′L

2L= 1−

xj

L1+

2WDM

xj

−1⎛

⎝⎜

⎠⎟

xj << L

WDM << xj

for γ ~ 1, need:

p-Si

n+ n+(prob. 3.6, Taur and Ning)

increase channel doping

Page 29: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 29

outline

1) Consequences of 2D electrostatics

2) 2D Poisson equation

3) Charge sharing model

4) Barrier lowering

5) 2D capacitor model

6) Geometric screening length

7) Discussion

8) Summary

Page 30: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 30

barrier lowering

EC (y)

y

low VDS

high VDS

q Vbi −ψ S( )

drain depletion layer expands

gate controls barrier height ID ~ e−EB /kbT

current does not change

Page 31: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 31

barrier lowering (ii)

log ID

VGS

e VGS −VT( )/mkBT

VDS = 1.1VVDS = 0.05V

no DIBL

Page 32: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 32

barrier lowering (iii)

EC (y)

y

low VDS

high VDS

q Vbi −ψ S( )ΔEB

ID ~ e−EB /kbT

ΔID = eΔEB /kbT

drain-induced barrier lowering

Page 33: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 33

barrier lowering (iv)

log ID

VGS

VDS = 1.1VVDS = 0.05V

ΔID = eΔEB /kbT

Page 34: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 34

punchthrough

EC (y)

y

low VDS

high VDS

q Vbi −ψ S( )

ID ~ e−EB /kbT

decreasing NA

Page 35: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 35

punchthrough (ii)

EC (y)

y

low VDS

q Vbi −ψ S( )

ID ~ e−EB /kbT

increasing VDS

Page 36: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 36

punchthrough (iii)

p-Si

n+ n+

surface punchthrough bulk punchthrough

p-Si

n+ n+

Page 37: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 37

punchthrough (iv)

log ID

e VGS −VT( )/mkBT

VGS

VDS = 0.05V

VDS = 1.1V

ID

VDS

Page 38: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 38

outline

1) Consequences of 2D electrostatics

2) 2D Poisson equation

3) Charge sharing model

4) Barrier lowering

5) 2D capacitor model

6) Geometric screening length

7) Discussion

8) Summary

Page 39: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 39

2D capacitor model

y

ψ SCDBCSB

CGBEC

CD

Page 40: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 40

2D capacitor model (V = 0)

ψ S CDBCSB

CD +CGB

Q

ψ S =QCΣ

CΣ = CGB +CSB +CDB +CD

Page 41: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 41

2D capacitor model (Q = 0)

ψ SCDBCSB

CD

ψ S =CGB

VG

VS = VD = 0

CGB

VG

VDVS

ψ S

CSB +CDB +CD

VG

CGB

Page 42: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 42

2D capacitor model (general solution)

ψ S =CGB

VG +CSB

VS +CDB

VD +QCΣ

recall:

VG =ψ S −Q

Cox

CΣ = CGB + CSB + CDB + CD

CGB = CoxWL CD = depletion layer capacitance

Page 43: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 43

2D capacitor model (VS = Q = 0)

ψ S =CGB

VG +CDB

VD

∂ψ S

∂VG

=CGB

∂ψ S

∂VD

=CDB

∂ψ S

∂VG

>>∂ψ S

∂VD

⇒ CGB >> CDB

need tox << L

Page 44: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 44

2D capacitor model

ID ∝ eqψ S /kBT = eqVGS mkBT

m = CΣ CGB

m = CGB +CDB + CD( ) CGB

= 1+ CDB +CD( )/ CGB⎡⎣ ⎤⎦

2D electrostatics: CDB not negligible S increases.

ψ S =CGB

VG +CDB

VD VS = Q = 0 CΣ = CDB + CD( )

DIBL = CDB CGB

S = 2.3m kBT q( )

Page 45: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 45

outline

1) Consequences of 2D electrostatics

2) 2D Poisson equation

3) Charge sharing model

4) Barrier lowering

5) 2D capacitor model

6) Geometric screening length

7) Discussion

8) Summary

Page 46: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 46

screening by free carriers

+

- --

-- -

-

---

-

-

-

-

r

ψ (r)

ψ (r) =q

4π εSi re−r /LD

LD =εSikBTq2ND

Page 47: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 47

geometric screening

p-Si

n+ n+

x

y∂2ψ∂x2 +

∂2ψ∂y2 =

qNA

εSi

(belowVT )

‘convert’ this to a 1D equation

Page 48: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 48

recall 1D

EC

EV

x

E

x

ψ

ψ S

VG

∂2ψ∂x2 =

qNA

εSi

∂2ψ∂x2 ≈

VG −ψ S( )Λ2

Λ = ?

Page 49: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 49

geometric screening length

∂2ψ∂x2 =

qNA

εSi

we will write this as:

in 1D:

(1)

∂2ψ∂x2 ≈

VG −ψ S( )Λ2 =

qNA

εSi

(2)

the solution to the 1D Poisson equation gives:

VG =ψ S −QS Cox =ψ S + qNAWDM Cox (3)

use (3) in (2) to find Λ

Page 50: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 50

geometric screening length (ii)

Λ =εSi

εOX

WDMtOX

∂2ψ∂y2 +

VG −ψ S( )Λ2 =

qNA

εSi

∂2ψ∂y2 <<

∂2ψ∂y2when

we get the correct 1D result

How do we interpret Λ?

Page 51: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 51

geometric screening length (iii)

∂2ψ∂y2 +

VG −ψ S( )Λ2 =

qNA

εSi

d2φdy2 −

φΛ2 = 0

φ =ψ S −VG +qNA

εSi

Λ2

φ = φ 0( ) φ = φ L( )source drain

Page 52: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 52

geometric screening length (iv)

φ(0)

φ(L)

φ(y) = Acosh(y / Λ)+ Bsinh(y / Λ)

Λ1

Λ2 > Λ1

L >> Λ (long channel)

L ≈ 1.5 − 2( )Λ (typical)

Page 53: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 53

analytical solutions

ΔVT ≈ 8 m −1( ) Vbi Vbi +VDS( )e−L /λ

λ = 2mWDM π

xj ≥WDM

S ≈2.3mkBT

q1+

11tox

WDM

e−L /λ⎛

⎝⎜⎞

⎠⎟

See Taur and Ning, Appendix 6

Page 54: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 54

geometric screeing length vs. device geometry

ΛBULK ≈εSi

εOX

WDMtOX

ΛSOI ≈εSi

εOX

tSitOX < ΛBULK

ΛDG SOI ≈εSi

2εOX

tSitOX < ΛSOI

ΛCYL < ΛDG SOI

see:D.J. Frank, Y. Taur, and H.S.P. Wong, ‘Generalized scale length for 2D Effects in MOSFETs,” IEEE EDL, 19, p. 385, 1998.

L ≈ 1.5 − 2( )Λ (typical)

The objective in MOSFET design is

to make L > Λ

Page 55: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 55

outline

1) Consequences of 2D electrostatics

2) 2D Poisson equation

3) Charge sharing model

4) Barrier lowering

5) 2D capacitor model

6) Geometric screening length

7) Discussion

8) Summary

Page 56: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 56

controlling 2D electrostatics

‘halos’

p-Si

n+ n+1) tox << L

2) shallow xj

3) thin WDM

4) non-uniform doping

Page 57: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 57

reverse short channel effect

VT

L

VT roll-off

‘reverse’ short channel effect

‘halos’

p-Si

n+ n+

Page 58: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 58

double gate transistors

ΛDG SOI < ΛBULK

channel length scaling

L >> Λ

geometric screening length

Λ

Λ << L

nanoMOS simulations by HimadriPal and Raseong Kim (Purdue)

Page 59: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 59

nonplanar MOSFETS

J. Kavalieros, B. Doyle, S. Datta, G. Dewey, M. Doczy, B. Jin, D. Lionberger, M. Metz, W. Rachmady, M. Radosavljevic, U. Shah, N. Zelick, and R. Chau. “Tri-Gate Transistor Architecture with High-k Gate Dielectrics, Metal Gates, and Strain Engineering,” VLSI Technology Digest, June 2006, pp. 62-63.

Intel Tri-Gate

Page 60: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 60

nanowire transistors

coaxial gate

n+ n+p

tins

LΛCYL

twire

< ΛDG SOI < ΛBULK

C. P. Auth and J.D. Plummer, “Scaling Theory for Cylindrical, Full-Depleted, Surrounding Gate MOSFET’s,” IEEE EDL, 18, p. 74, 1997.

channel length scaling

L >> Λdrainsource

geometric screening length

Λ

Page 61: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 61

outline

1) Consequences of 2D electrostatics

2) 2D Poisson equation

3) Charge sharing model

4) Barrier lowering

5) 2D capacitor model

6) Geometric screening length

7) Discussion

8) Summary

Page 62: 2008.10.09-ece612-l12

Lundstrom EE-612 F08 62

summary

1) 2D electrostatics is a critical issue in device scaling

2) Understanding 2D electrostatics is essential for transistor designers