20 kelvin cold high gradient rf gun - university of oxfordjaiweb/slides/2013_vogel.pdf · 20 kelvin...

29
20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties of pure metals in low temperature region Cold RF-photo GUN design

Upload: others

Post on 02-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

20 Kelvin cold High gradient RF gun

Vladimir Vogel,

Materials and gradient

Some properties of pure metals in low temperature region

Cold RF-photo GUN design

Page 2: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Vladimir Vogel | DESY | Oxford JAI, September 2013

Super conductive Linac

Normal temperature RF Gun

RFcavityTRGP **~

#

2

Low emittance -> high gradient

Dissipated power -> low temperature ( DESY RF GUN #5, Tiris = 72°C + 46°C pulse heating)

Gradient –> new materials, (we have only one RF GUN !!!)

Dark current –> new geometry + new materials

Motivation

2

Page 4: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Vladimir Vogel | DESY | Oxford JAI, September 2013

Breakdown study, pulse DC

4

Page 5: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Vladimir Vogel | DESY | Oxford JAI, September 2013

Some property of pure metals in normal temperature

C Al Cu W Ta Nb Mo Cr Co V Ti SS Ir

0

100

200

300

400

500

Thermal conduct. (W/m*K): --

C Al Cu W Ta Nb M o Cr Co V T i SS Ir

0

10

20

30

40

50

60

Yonngs m odule (10-10

* N /m ^2): --

C A l Cu W Ta Nb M o Cr Co V T i SS Ir

0

20

40

60

80

Resistivity (108

*O Hm *m ): --

C A l Cu W Ta Nb M o Cr Co V T i SS Ir

0

5

10

15

20

25

expansion (106 *1/K): --

5

Page 6: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Vladimir Vogel | DESY | Oxford JAI, September 2013

Ranking materials: RF, high gradient

Temperature ~ 300 K

C Al Cu W Ta Nb Mo Cr Co V Ti SS Ir

10-1

9 (

A/m

)*(N

/m2)

0

20

40

60

80

100

120

140

Ey*(l/ar)0.5

6

Page 7: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Vladimir Vogel | DESY | Oxford JAI, September 2013

Gradient in the pressurized cavity.

Young m odulus (10-10

*N /m2)

10 20 30 40 50 60

E (

MV

/m)

40

50

60

70

80

90

100

110

C u

W

M o

B e

Ir

Maximum stable gradient as a function of the Young's modulus for different materials.

RF frequency 805 MHz, Hydrogen pressure ~ 100 bar. (data from (#), for Iridium the approximation)

# ) R. Sah, A. Dudas and al., “RF Breakdown Studies Using Pressurized Cavities”

PAC 2011, MOP046, NY, USA (2011)

7

Page 8: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Vladimir Vogel | DESY | Oxford JAI, September 2013

DC dark current

DC, 1 nA dark current

SS Cu Ti Mo

Fie

ld g

radie

nt

(Mv/m

)

0

20

40

60

80

100

120

gap 1 mm, F. Le Pimpec and al., NIM A 574

gap 0.5 mm, F. Furuta and al. NIM A 538

8

Page 9: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Vladimir Vogel | DESY | Oxford JAI, September 2013

Temperature (K)

0 20 40 60 80 100

cp

J/g

*K

0.0001

0.001

0.01

0.1

1

Cu

Mo

Thermal expansion

Temperature (K)

0 20 40 60 80 100

*10

6 (

1/K

)

0

2

4

6

8

10

12

Mo

Nb

Cu

Thermal conductivity

Temperature (K)

0 20 40 60 80 100

(W

/m*K

)

0

100

200

300

400

500

Mo

Nb

Cu 0.1*(W/m*K)

L.A. Novickiy, I G. Kozhevnikov

“Thermo physical properties of

materials in the low temperature region”

Moscow 1975. In Russian

(Au, Ag, Ir, W, Pt…)

Helium 4.22 K

Hydrogen 20.3 K

Neon 27 K

Some properties of pure metals in low temperature

9

Page 10: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Vladimir Vogel | DESY | Oxford JAI, September 2013

Some properties of pure Cu, W, Mo and Ir in low temperature

10

t = 1 mSec

Page 11: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Vladimir Vogel | DESY | Oxford JAI, September 2013

Cupper, thermal conductivity

11

Page 12: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Vladimir Vogel | DESY | Oxford JAI, September 2013

Electrical resistivity of Copper and Molybdenum

12

Page 13: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Vladimir Vogel | DESY | Oxford JAI, September 2013

T

(K)

r

(Ohm*m)

Cp

(J/kg*K)

l

(W/m*K)

d

(m)

Lt

(m) DTs ( K)

60 MV/m

P (W/m2)

60 MV/m

Cu

300 1.72*10-8 385 384 1.83*10-6 3.3*10-4 46.2 4.7*107

20

~ 5*10-11

RRR~400 ~ 7 ~6000 9.8*10-8 9.8*10-3 4.6 2.5*106

Mo 20

~ 8*10-11

RRR~600 ~ 3.5 ~360 29.2*10-8 3.2*10-3 32 3.2*106

W 20

~ 1.2*10-10

RRR~450 ~ 2 ~ 1600 15.2*10-8 6.5*10-3 18 3.9*106

Ir 20

~ 1.0*10-10

RRR~450 ~ 3 ~ 1900 13.9*10-8 5.3*10-3 11.3 3.5*106

DESY RF GUN5 (V. Paramonov, K. Floettmann,..)

f =1300 MHz, Trf = 1 mS, Hpmax= ~ 100kA/m Lt=(l*t/(g*Cp))1/2

DTs=(t*r*f*m/g*l*Cp)1/2*(Hp)2

- FreyIr, Haefar “Tieftemperatur technologie” 1981, p. 5.1.1-1(11/74)

- Л.А. Новицкий, И.Г.Кожевников “Теплофизические свойства

материалов при низких температурах”, Moscow 1975.

Thermophysical properties of matter, IFI/PLENUM, NEW YORK-Washington 1970

Not included anomalous skin effect !!!

13

Thermal losses in the Gun for different materials

Page 14: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Vladimir Vogel | DESY | Oxford JAI, September 2013

Anomalous skin effect

f*0m

rd

3/13/22

3/1

)8(

3

r ***

*

ne

h

d/L, T=300 K

1.3 GHz

d/L, T=20 K

1.3 GHz

d/L

T=300 K

11.4 GHz

d/L

T=20 K

11.4 GHz

Q20/Q300

11.4GHz

Q20/Q300

1.3GHz

Cu 27 2.4*10-3 16 0.81*10-3 4.4 (exp) ~ 6.2

(estim)

Mo 47 2.3*10-3 ~ 6

DESY GUN 5

60 MV/m ~ 6.18 MW

Cold GUN

60 MV/m - ~ 1 MW

)()()(~3/1

2

NgRff

cR

an

r

R ~ reflection factor for electrons

N ~ RRR

d 300

L300

L20

d 20

14

Page 15: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Vladimir Vogel | DESY | Oxford JAI, September 2013

Conditioning of pure metals in pulse DC mode

15

Page 16: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Vladimir Vogel | DESY | Oxford JAI, September 2013

Mo, Ir, W , T = 20 K

0

3

20

30020

dT

dl

ll

0

1.0

20

30020

dT

dc

cc

p

pp

0

6

1

04.0

20

30020

30020

dT

dRs

RsRs

No reason for the breakdown in

the standard BD model !!!

Cold GUN, regimes for conditions and for the normal operation

16

Temperature (K)

0 20 40 60 80 100

(W

/m*K

)

0

100

200

300

400

500

~0.3 MHz Cu

~0.15 MHz Nb

~0.1 MHz Mo

1 2

1

2

20 Kelvin ,working point, feedback “ON”

77 Kelvin , point for condition , feedback “OFF”

Page 17: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Vladimir Vogel | DESY | Oxford JAI, September 2013

Problem: must be a possibility to change photocathodes in the RF GUN !!

17

1. From W, Ir and Mo we can easy make only very simple shapes like a disks.

2. At the moment we can only get from the industry very pure thin sheets of W, Ir and Mo

with maximal sizes just about 100 mm.

Solution #1

To make the first half cell of cavity as an oversized,

operated on TM 020 mode at the working frequency.

+ * a removable connection can be done without

problems for TM020 mode in cavity, because

there is a circumference where we don’t have

any of radial current,

* the oversize cavity has a higher Q factor and

can be cooled better due to larger surface.

- * this type of cavity can only be done for a

frequency more than 2.9 GHz because of

the limitation on max size of available metals.

Page 18: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Vladimir Vogel | DESY | Oxford JAI, September 2013

Oversize cavity:

1. No tangential current for

TM020, slot for cathode

changing, damping of HOMs

Example:

TM020 in first half cell

TM010 in second cell

2. More space for input

couplers.

3. No cathode holder,

direct Cs2Te film on the

replaceable part of cavity.

4.Cathode part of cavity can

be made from very hard

material

RF GUN cavity design

18

Page 19: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Vladimir Vogel | DESY | Oxford JAI, September 2013

Problem: must be a possibility to change photocathodes in the RF GUN !!

19

1. From W, Ir and Mo we can easy make only very simple shapes like a disks.

2. At the moment we can only get from the industry very pure thin sheets of W, Ir and Mo

with maximal sizes just about 100 mm.

Solution #2

For removable connection, we can use a fact that a

factor of thermal expansion for Cu for one side and W,

Ir and Mo for the other have a big difference.

+ * 1.3 GHz cavity can be produced using existing

100 mm sheets from the industry

* over electrical fields that arise due to

inaccuracies of fabrication in the contact area

could be shielded by inner angle in the cavity.

* easy to test on the existing DESY cryostats

- * limitation of working cycles because of a peening.

Page 20: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Vladimir Vogel | DESY | Oxford JAI, September 2013

Removable connection of two kinds of metals (Cu + W, Ir or Mo) in one cavity

20

Temperature (K)

0 50 100 150 200 250 300 350 400

dL/L

(%

)

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

T (K) vs Cu dL/L (%)

T (K) vs Ir dL/L (%)

T (K) vs W dL/L (%)

T (K) vs Mo dL/L (%)

T (K) vs Cu - W

GUN #5 Spring (Be bronze)

Cathode holder (Mo)

Cs2Te film

Cu

W

~ 100

0.1 – 0.2

Cold GUN

Page 21: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Vladimir Vogel | DESY | Oxford JAI, September 2013

Over fields through of removable connection.

21

GUN #5

Cold GUN

Page 22: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Vladimir Vogel | DESY | Oxford JAI, September 2013

22

“COLD GUN” team in DESY

Klaus Flöttmann, Siegfried Schreiber, Dirk Lipka, Xenia Singer

and Sven Lederer

Page 23: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Vladimir Vogel | DESY | Oxford JAI, September 2013

Heating and thermal expansion in the normal conductivity RF-photo electron

gun are the main limitations to achieve high accelerating gradient and

consequently a low emittance beam. Some pure materials show a significant

increase in thermal conductivity with a small coefficient of temperature

expansion at temperatures around 20 degrees Kelvin. Possible materials are

Molybdenum, Iridium or Tungsten. However, machining of these materials is

very difficult. Therefore we propose a simplified shape for RF gun. We expect

to achieve a significant increase in gradient for similar RF powers as used in

the present DESY RF-gun. On the other hand, it would also be possible to

increase the duty cycle keeping a moderate gradient and to decrease heat

losses, frequency shift and dark current.

Conclusion

Thank you for attention!

23

Page 24: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Backup

ON POSSIBILITY OF DEVELOPMENT OF HIGH-PERFORMANCE HIGH-FREQUENCY

CRYOGENIC RESONANCE SYSTEM FROM YTTRIUM DOPED COPPER V.А. Kutovoy, А.I. Komir, ISSN 1562-6016. ВАНТ. 2012. №4(80)

Национальный научный центр «Харьковский физико-технический институт»,

Харьков, Украина E-mail: [email protected]

F = 5.25GHz

d/L, T=300 K

1.3 GHz

d/L, T=20

K

1.3 GHz

d/L

T=300 K

11.4

GHz

d/L

T=20 K

11.4 GHz

Q20/Q300

11.4GHz

Q20/Q30

5.25GHz

Cu+0.02 Y

Q20/Q300

1.3GHz

Cu 27 2.4*10-3 16 0.81*10-3 4.4

(exp)

6.1(exp)

?

~ 6.2

(estim)

Mo 47 2.3*10-3 ~ 6

Page 25: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Vladimir Vogel | DESY | Oxford JAI, September 2013

Backup

25

Liquid Hydrogen

T boiling = 20.3 K

Cp = 8000 ÷ 12000 J/kg*K

Θ evaporation ~ 454 kJ/kg

r = 71 kg/m3

Liquid Neon

T boiling = 27 K

Cp = 1880 J/kg*K

Θ evaporation ~ 84-89 kJ/kg

r = 1207 kg/m3

H2 : For 1 kW

evaporative cooling:

8 kg/hour

liquid cooling (ΔT = 2 K):

180 kg/hour (2.5 m3 /hour)

Ne : For 1 kW

evaporative cooling:

42 kg/hour

liquid cooling (ΔT = 2 K)

862 kg/hour (0.7 m3 /hour)

Page 26: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Backup

Page 27: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Breakdown for copper at 77 K and 293K

Backup

Page 28: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Breakdown voltage for Aluminum Copper and Gold

Backup

Page 29: 20 Kelvin cold High gradient RF gun - University of Oxfordjaiweb/slides/2013_Vogel.pdf · 20 Kelvin cold High gradient RF gun Vladimir Vogel, Materials and gradient Some properties

Surface temperature rise as a

function of the initial gun temperature.

Backup

1 ms RF pulse

Gradient 60 MV/m,

f =1.3 GHz,

material copper, RRR = 100.