2-factorisations of the complete...

74
2-Factorisations of the Complete Graph Peter Danziger 1 Joint work with Darryn Bryant and various others Department of Mathematics, Ryerson University, Toronto, Canada Monash University, March 2013 1 Supported by NSERC Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 1 / 61

Upload: others

Post on 14-Jul-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

2-Factorisations of the Complete Graph

Peter Danziger 1

Joint work with Darryn Bryant and various others

Department of Mathematics,Ryerson University,

Toronto, Canada

Monash University, March 2013

1Supported by NSERCPeter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 1 / 61

Page 2: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

The Problem

The Oberwolfach problem

The Oberwolfach problem was posed by Ringel in the 1960s.At the Conference center in Oberwolfach, Germany

The Oberwolfach problem was originally motivated as a seatingproblem:

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 2 / 61

Page 3: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

The Problem

The Oberwolfach problem

Given n attendees at a conference with t circular tableseach of which which seat ai , i = 1, . . . , t people

(∑ti=1 ai = n

).

Find a seating arrangement so that every person sits next to eachother person around a table exactly once over the r days of theconference.

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 3 / 61

Page 4: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

The Problem

Factors

DefinitionA k-factor of a graph G is a k -regular spanning subgraph of G.

DefinitionGiven a factor F , an F−Factorisation of a graph G is a decompositionof the edges of G into copies of F .

DefinitionGiven a set of factors F , an F−Factorisation of a graph G is adecomposition of the edges of G into copies of factors F ∈ F .

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 4 / 61

Page 5: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

The Problem

Example n = 5

HHHH

HHHHHH

����������

AAAAAAAAAA�����

���

��t

t t

t tA 2−Factor of K5

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 5 / 61

Page 6: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

The Problem

Example n = 5

BBBBBBBBBBBBBBBBQ

QQQ

QQQ

QQQ

QQQ

QQ

���������������

����������������t

t t

t tA 2−Factor of K5

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 5 / 61

Page 7: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

The Problem

Example n = 5

HHHH

HHHHHH

����������

AAAAAAAAAA�����

���

��BBBBBBBBBBBBBBBBQ

QQQ

QQQ

QQQ

QQQ

QQ

���������������

����������������t

t t

t tA 2−Factorisation of K5

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 5 / 61

Page 8: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

The Problem

The Oberwolfach problem

When n is odd, the Oberwolfach problem OP(F ) asks for a factorisationof Kn into a specified 2−factor F of order n.(

r = n−12

)When n is even, the Oberwolfach problem OP(F ) asks for afactorisation of Kn − I into a specified 2−factor F of order n.Where Kn − I is the complete graph on n vertices with the edges of a1-factor removed.(

r = n−22

)We will use the notation [m1,m2, . . . ,mt ] to denote the 2-regular graphconsisting of t (vertex-disjoint) cycles of lengths m1,m2, . . . ,mt .

The Oberwolfach problem can be thought of as a generalisation ofKirkman Triple Systems, which are the case F = [3,3, . . . ,3].

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 6 / 61

Page 9: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

The Problem

Example n = 8, F = [4,4]

s ss s

s ss s

An F−Factor of K8

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 7 / 61

Page 10: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

The Problem

Example n = 8, F = [4,4]

����

����

����

����

����

����

BBBBBBBBBBBB

BBBBBBBBBBBB

PPPPPPPPPPPP

PPPPPPPPPPPP

������������

������������

������������

������������

@@

@@

@@

@@

@@@@@@@@@@@@

@@@@@@@@@@@@

����

����

���������������

AAAAAAAAAAAAAAA

����

���

���

���

��H

HHHHHH

HHHHHH

HH

s ss s

s ss s

A F−Factorisation of K8 with a 1−factor remaining

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 7 / 61

Page 11: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

The Problem

Hamilton - Waterloo: Include the Pub

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 8 / 61

Page 12: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

The Problem

Hamilton-Waterloo

In the Hamilton-Waterloo variant of the problem the conference hastwo venues

The first venue (Hamilton) has circular tables corresponding to a2−factor F1 of order n.

The second venue (Waterloo) circular tables each corresponding to a2−factor F2 of order n.

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 9 / 61

Page 13: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

The Problem

Hamilton-Waterloo

The Hamilton-Waterloo problem thus requires a factorisation of Kn orKn − I if n is even into two 2-factors, with α1 classes of the form F1 andα2 classes of the form F2. Here the number of days is

r = α1 + α2 =

{n−1

2 n oddn−2

2 n even.

When n is even

If n ≡ 2 mod 4 then n−22 is even and α1 and α2 have the same parity.

i.e. Either both α1, α2 are even or both are odd.

If n ≡ 0 mod 4 thenthen n−22 is odd and so α1 and α2 have opposite

parity. i.e. one of α1, α2 is even and the other is odd.

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 10 / 61

Page 14: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

The Problem

Example n = 8, F1 = [8], α1 = 2, F2 = [4,4], α2 = 1

@@

@@

@@@@

����

����

s ss s

s ss s

An F1−Factor of K8

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 11 / 61

Page 15: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

The Problem

Example n = 8, F1 = [8], α1 = 2, F2 = [4,4], α2 = 1

������������

������������

@@@@@@@@@@@@

@@@@@@@@@@@@

s ss s

s ss s

An F1−Factor of K8

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 11 / 61

Page 16: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

The Problem

Example n = 8, F1 = [8], α1 = 2, F2 = [4,4], α2 = 1

����

����

����

����

����

����

BBBBBBBBBBBB

BBBBBBBBBBBB

PPPPPPPPPPPP

PPPPPPPPPPPP

������������

������������

s ss s

s ss s

An F2−Factor of K8

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 11 / 61

Page 17: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

The Problem

Example n = 8, F1 = [8], α1 = 2, F2 = [4,4], α2 = 1

@@

@@

@@@@

����

����

����

����

����

����

����

����

BBBBBBBBBBBB

BBBBBBBBBBBB

PPPPPPPPPPPP

PPPPPPPPPPPP

������������

������������

������������

������������

@@@@@@@@@@@@

@@@@@@@@@@@@

���������������

AAAAAAAAAAAAAAA

�����

���

���

���

�HHHHHH

HHHHHH

HHH

s ss s

s ss s

A Solution to the given Hamilton-Waterloo Problem

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 11 / 61

Page 18: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

The Problem

Hamilton? - Waterloo?

Hamilton?

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 12 / 61

Page 19: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

The Problem

Hamilton? - Waterloo?

Hamilton?

Hamiltonian?

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 12 / 61

Page 20: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

The Problem

Hamilton? - Waterloo?

Hamilton?

Hamiltonian? Waterloo?

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 12 / 61

Page 21: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

The Problem

Hamilton - Waterloo

3rd Ontario Combinatorics WorkshopMcMaster University, Hamilton, Ontario, Feb. 1988.University of Waterloo, Waterloo, Ontario, Oct. 1987;

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 13 / 61

Page 22: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

The Problem

Hamilton - Waterloo?

3rd Ontario Combinatorics WorkshopMcMaster University, Hamilton, Ontario, Feb. 1988.

University of Waterloo, Waterloo, Ontario, Oct. 1987;

Organizers

Alex RosaMcMaster UniversityHamilton, Ontario

Charlie ColbournUniversity of Waterloo

Waterloo, Ontario

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 14 / 61

Page 23: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

The Problem

Generalise to OP(F1, . . . ,Ft)

Given 2−factors F1,F2, . . . ,Ft order n andnon-negative integers α1, α2, . . . , αt such that

α1 + α2 + · · ·+ αt =

{ n−12 n odd

n−22 n even

Find a 2-factorisation of Kn, or Kn − I if un is even, in which there areexactly αi 2-factors isomorphic to Fi for i = 1,2, . . . , t .

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 15 / 61

Page 24: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

The Problem

Generalise to other Graphs G, OP(G;F1, . . . ,Ft)

We can also consider Factorisations of other graphs G.

Of particular interest is the case when G = Knr , the multipartitecomplete graph with r parts of size n.

In order for G = Knr to have a factorisation into 2−factors F1, . . . ,Ft isthat every vertex is of even degree (n(r − 1) is even).

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 16 / 61

Page 25: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Results

What is known about OP(F )

It is known that there is no solution to OP(F ) for

F ∈ {[3,3], [4,5], [3,3,5], [3,3,3,3]},

A solution is known for all other instances with n ≤ 40.Deza, Franek, Hua, Meszka, Rosa (2010), Adams & Bryant (2006),Franek & Rosa (2000), Bolstad (1990), Huang, Kotzig & A. Rosa(1979).

The case where all the cycles in F are of the same length has beensolved.Govzdjak (1997), Alspach & Häggkvist (1985), Alspach, Schellenberg,Stinson & D. Wagner (1989), Hoffman & Schellenberg (1991), Huang,Kotzig & A. Rosa (1979), Ray-Chaudhuri & Wilson (1971).

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 17 / 61

Page 26: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Results

What is known about Hamilton - Waterloo

It is known that the following instances of the Hamilton-WaterlooProblem have no solution.

HW([3,4], [7];2,1) HW([3,5], [42];2,1) HW([3,5], [42];1,2)HW([33], [4,5];2,2)

HW([33],F ;3,1) for F ∈ {[4,5], [3,6], [9]} and

HW([35],F ;6,1) for F ∈ {[32,4,5], [3,5,7], [53], [42,7], [7,8]}.

Every other instance of the Hamilton-Waterloo Problem has a solutionwhen n ≤ 17 and odd and when n ≤ 10 and even Adams, Bryant(2006), Franek, Rosa (2000, 2004).

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 18 / 61

Page 27: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Results

What is known about Hamilton - Waterloo

Theorem (Danziger, Quottrocchi, Stevens (2009))

If F1 is a collection of 3−cycles and F2 is a collection of 4−cycles thenOP(F1,F2) exists if and only if n ≡ 0 mod 12, with 14 possibleexceptions.

Theorem (Horak, Nedela, Rosa (2004), Dinitz, Ling (2009))

If F1 is a collection of 3−cycles and F2 is a Hamiltonan cycle andn 6≡ 0 mod 6 then OP(F1,F2) exists, except when n = 9, α2 = 1, with13 possible exceptions. (The case n ≡ 0 mod 6 is still open.)

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 19 / 61

Page 28: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Results

Generalised OP and Häggkvist

Theorem (Häggkvist (1985))

Let n ≡ 2 mod 4, and F1, . . . ,Ft be bipartite 2−factors of order n thenOP(F1, . . . ,Ft) has solution, with an even number of factors isomorphicto each Fi .

Corollary (t = 1)

Let n ≡ 2 mod 4, and F be a bipartite 2−factor of order n then OP(F )has solution.

Corollary (t = 2)Let n ≡ 2 mod 4, and F1,F2 be bipartite 2−factors of order n thenOP(F1,F2) (Hamilton-Waterloo) has solution where there are an evennumber of each of the factors. (Both α1 and α2 are even)

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 20 / 61

Page 29: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Results

Doubling

For any given graph G, the graph G(2) is defined byV (G(2)) = V (G)× Z2,E(G(2)) = {{(x ,a), (y ,b)} : {x , y} ∈ E(G), a,b ∈ Z2}.

C t t t t t t

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 21 / 61

Page 30: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Results

Doubling

For any given graph G, the graph G(2) is defined byV (G(2)) = V (G)× Z2,E(G(2)) = {{(x ,a), (y ,b)} : {x , y} ∈ E(G), a,b ∈ Z2}.

C(2)

@@@@@

@@@@@

@@@@@

@@@@@

@@@@@

��

��

���

��

���

��

��

���

��

���

`````````````````````````

t t t t t tt t t t t t

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 21 / 61

Page 31: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Results

Factoring C(2)n

Lemma (Häggkvist (1985))

For any m > 1 and for each bipartite 2-regular graph F of order 2m,there exists a 2-factorisation of C(2)

m in which each 2-factor isisomorphic to F .

C(2)m

@@@@@

@@@@@

@@@@@

@@@@@

@@@@@

���

��

��

���

��

��

���

��

���

��

`````````````````````````

t t t t t tt t t t t t

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 22 / 61

Page 32: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Results

Factoring C(2)n

@@@@@

@@@@@

@@@@@

@@@@@

@@@@@

��

���

���

��

���

��

��

���

��

��

`````````````````````````

t t t t t tt t t t t t

t t t t t tt t t t t t

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 22 / 61

Page 33: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Results

Häggkvist and Doubling

Let m be odd, and n = 2m ≡ 2 mod 4.

Given bipartite 2−factors F1, . . . ,F m−12

, of order 2m(not necessarily distinct).

Since m is odd, Km has a factorisation into Hamiltonian cycles Hi ,1 ≤ i ≤ m−1

2 .

Now doubling, we have a H(2) factorisation of K (2)m

We can factor the square of the i th Hamiltonian cycle H(2)i into 2 copies

of Fi by Häggkvist doubling as above.

Result is a factorisation of K (2)m∼= K2m into pairs of factors each

isomorphic to Fi , i = 1, . . . m−12 .

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 23 / 61

Page 34: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Results

Results

Theorem (Bryant, Danziger (2011))

If n ≡ 0 mod 4 and F1,F2, . . . ,Ft are bipartite 2-regular graphs oforder n and α1, α2, . . . , αt are non-negative integers such that

α1 + α2 + · · ·+ αt =n−2

2 ,

αi is even for i = 2,3, . . . , t ,α1 ≥ 3 is odd,

then OP(F1, . . . ,Ft) has a solution with αi 2-factors isomorphic to Fi fori = 1,2, . . . , t .

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 24 / 61

Page 35: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Results

Results ...and so...

Corollary (t = 1)

Let n be even and F be a bipartite 2−factor of order n then OP(F ) hassolution.

Corollary (t = 2)Let n be even and F1,F2 be bipartite 2−factors of order n thenOP(F1,F2) (Hamilton-Waterloo) has solution, except possibly in thecase where all but one of the 2-factors are isomorphic (α1 = 1 orα2 = 1).

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 25 / 61

Page 36: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Factoring Kn

To Show:

Theorem (Bryant, Danziger (2011))

If n ≡ 0 mod 4 and F1,F2, . . . ,Ft are bipartite 2-regular graphs oforder n and α1, α2, . . . , αt are non-negative integers such that

α1 + α2 + · · ·+ αt =n−2

2 ,

αi is even for i = 2,3, . . . , t ,α1 ≥ 3 is odd,

then OP(F1, . . . ,Ft) has a solution with αi 2-factors isomorphic to Fi fori = 1,2, . . . , t .

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 26 / 61

Page 37: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Factoring Kn

The Plan

When n ≡ 0 mod 4 we don’t have the Hamiltonian Factorisation of K n2

for Häggkvist doubling.

Idea is to decompose K n2

into Hamiltonian Cycles, H1, . . . ,H n−42

, and aknown 3-regular Graph G.

Use the factorisation above to factor K (2)n2

as follows:

Factor the Doubled Hamiltonian Cycles, H(2)1 , . . . ,H(2)

n−42

, into pairs

isomorphic to F2, . . . ,Ft by Häggkvist doubling.

Factor the 7-regular graph G(2) ∪ {(x0, x1)} into copies of F1 and a1-factor I.

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 27 / 61

Page 38: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Factoring Kn

Notation

A Cayley graph on a cyclic group is called a circulant graph.We will always use vertex set Zn.

The length of an edge {x , y} in a graph is defined to be either x − y ory − x , whichever is in {1,2, . . . , bn

2c}

We denote by 〈S〉n the graph with vertex set Zn and edge set theedges of length s for each s ∈ S.

We call {{x , x + s} : x = 0,2, . . . ,n − 2} the even edges of length s.We call {{x , x + s} : x = 1,3, . . . ,n − 1} the odd edges of length s.

If we wish to include in our graph only the even edges of length s thenwe give s the superscript e.If we wish to include only the odd edges of length s then we give s thesuperscript o.

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 28 / 61

Page 39: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Factoring Kn

Example 〈{1,2o,5e}〉12 on Z12

HHHH

HHHH

AAAA

AAAA

����

����

����

����

@@@@@@

@@@@@@

���������

���������

TTTTTTTTTTTTTT

TTTTTTTTTTTTTT

��������������

��������������

s s

s s

s s

s s

s ss s

0 1

2

3

4

5

67

8

9

10

11

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 29 / 61

Page 40: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Factoring Kn

Factoring Circulants

Lemma

For each even m ≥ 8 there is a factorisation of Km into m−42 Hamilton

cycles and a copy of G = 〈{1,3e}〉m.

We can create factors from the Hamiltonian cycles using the Häggkvistdoubling construction.

It remains to factor G2m = G(2) ∪ I = (〈{1,3e}〉m)(2) ∪ I.

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 30 / 61

Page 41: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Factorisations of the graph J2m

The Graph J2r

For each even r ≥ 2 we define the graph J2r by

V (J2r ) = {u1,u2, . . . ,ur+2} ∪ {v1, v2, . . . , vr+2}

E(J2r ) = {{ui , vi} : i = 3,4, . . . , r + 2} ∪{{ui ,ui+1}, {vi , vi+1}, {ui , vi+1}, {vi ,ui+1} : i = 2,3, . . . , r + 1} ∪{{ui ,ui+3}, {vi , vi+3}{ui , vi+3}, {vi ,ui+3} : i = 1,3, . . . , r − 1}.

����

����

����@

@@@

@@@@

@@@@�

���

����

����

����

����

����@

@@@

@@@@

@@@@�

���

����

����@@

@@��

��

����

������

��PPPPPPPPPPPP ����

����

����PPPPPPPPPPPP

��PP

PP��

PPPPPPPPP����

����

�������

PPPP

PPs s s s ss s s s s q q q s s s s

s s s su3 u4 u5 ur−1 ur

v3 v4 v5 vr−1 vr

u1 u2 ur+1 ur+2

v1 v2 vr+1 vr+2

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 31 / 61

Page 42: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Factorisations of the graph J2m

If we identify vertices u1 with ur+1, u2 with ur+2, v1 with vr+1, and v2with vr+2, then the resulting graph is isomorphic to G2r .

����

����

����@

@@@

@@@@

@@@@�

���

����

����

����

����

����@

@@@

@@@@

@@@@�

���

����

����@@

@@��

��

����

����

����PPPPPPPPPPPP ��

����

������PPPPPPPPPPPP

��PP

PP��

PPPPPPPPP����

����

�������

PPPP

PPs s s s ss s s s s q q q s s s s

s s s su3 u4 u5 ur−1 ur

v3 v4 v5 vr−1 vr

����

����

����@

@@@

@@@@

@@@@�

���

����

����

����

����

����@

@@@

@@@@

@@@@�

���

����

����@@

@@��

��

����

����

����PPPPPPPPPPPP ��

����

����

��PPPPPPPPPPPP

��PP

PP��

PPPPPPPPP��

����

���

������

PPPP

PPs s s s ss s s s s q q q s s s s

s s s su3 u4 u5 ur−1 ur

v3 v4 v5 vr−1 vr

u1ur+1

v1vr+1

u2

v2

ur+2

vr+2

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 32 / 61

Page 43: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Factorisations of the graph J2m

If we identify vertices u1 with ur+1, u2 with ur+2, v1 with vr+1, and v2with vr+2, then the resulting graph is isomorphic to G2r .

����

����

����@

@@@

@@@@

@@@@�

���

����

����

����

����

����@

@@@

@@@@

@@@@�

���

����

����@@

@@��

��

��������

����PPPPPPPPPPPP ��

����

����

��PPPPPPPPPPPP

��PP

PP��

PPPPPPPPP��

������

�������

PPPP

PPs s s s ss s s s s q q q s s s s

s s s s����

����

����@

@@@

@@@@

@@@@�

���

����

����

����

����

����@

@@@

@@@@

@@@@�

���

����

����@@

@@��

��

����

����

����PPPPPPPPPPPP ��

����

����

��PPPPPPPPPPPP

��PP

PP��

PPPPPPPPP��

����

���

������

PPPP

PPs s s s ss s s s s q q q s s s s

s s s su3 u4 u5 ur−1 ur

v3 v4 v5 vr−1 vr

u1

ur+1

v1

vr+1

u2

v2

ur+2

vr+2

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 32 / 61

Page 44: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Factorisations of the graph J2m

The⊕

Operation on J

Similarly, by J2r ⊕ J2s we mean adjoining J2r to a copy of J2s which hasbeen shifted by r , to obtain J2(r+s).

J2r J2s (+r)

����

����

����@

@@@

@@@@

@@@@�

���

����

����

����

����

����@

@@@

@@@@

@@@@�

���

����

����@@

@@��

��

����

����

���PPPPPPPPPPP ����

����

���PPPPPPPPPPP

��PP

PP��

PPPPPPPPP��

�������

�����

PPPP

Pr r r r rr r r r r p p p r r r r

r r r ru3 u4 u5 ur−1 ur

v3 v4 v5 vr−1 vr

����

����

����@

@@@

@@@@

@@@@�

���

����

����

����

����

����@

@@@

@@@@

@@@@�

���

����

����@@

@@��

��

������

�����PPPPPPPPPPP ��

����

�����PPPPPPPPPPP

��PP

PP��

PPPPPPPPP��

����

��������

PPPP

Pr r r r rr r r r r p p p r r r r

r r r rur+3 ur+4 ur+5 ur+s−1 ur+s ur+s+1ur+s+2

vr+3 vr+4 vr+5 vr+s−1 vr+s vr+s+1vr+s+2

ur+1ur+1

vr+1vr+1

ur+2

vr+2

ur+2

vr+2

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 33 / 61

Page 45: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Factorisations of the graph J2m

The⊕

Operation on J

Similarly, by J2r ⊕ J2s we mean adjoining J2r to a copy of J2s which hasbeen shifted by r , to obtain J2(r+s).

J2(r+s)

����

����

����@

@@@

@@@@

@@@@�

���

����

����

����

����

����@

@@@

@@@@

@@@@�

���

����

����@@

@@��

��

����

����

���PPPPPPPPPPP ������

�����PPPPPPPPPPP

��PP

PP��

PPPPPPPPP��

����

��������

PPPP

Pr r r r rr r r r r p p p r r r r

r r r ru3 u4 u5 ur−1 ur

v3 v4 v5 vr−1 vr

����

����

����@

@@@

@@@@

@@@@�

���

����

����

����

����

����@

@@@

@@@@

@@@@�

���

����

����@@

@@��

��

����

�������PPPPPPPPPPP ��

����

�����PPPPPPPPPPP

��PP

PP��

PPPPPPPPP����

�����

�����

PPPP

Pr r r r rr r r r r p p p r r r r

r r r rur+3 ur+4 ur+5 ur+s−1 ur+s ur+s+1ur+s+2

vr+3 vr+4 vr+5 vr+s−1 vr+s vr+s+1vr+s+2

ur+1

vr+1

ur+2

vr+2

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 33 / 61

Page 46: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Factorisations of the graph J2m

Decompositions J 7→ F

Given a factor F the idea is to divide it into smaller factors Fi of order2mi and to divide G2n into edge disjoint Jmi , so that

⊕i Jmi

∼= Gn, withthe identification above at the ends.

We then factor each of the Jmi into Fi and join up the results.

Since G2m is 7−regular we require a factorisation of each Jmi (k) intothree partial cycle factors, Hj , j ∈ {0,1,2} and a 1−factor, H3.

Index j Missed points in Jm(k)0 ui , vi , i ∈ {1,2}1 {v1, v2,ur+1,ur+2}2 {u1,u2, vr+1, vr+2}

1−factor ui , vi , i ∈ {1,2}

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 34 / 61

Page 47: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Factorisations of the graph J2m

Decomposition of J 7→ [16] + [16] + [16]

����

����

����PPPPPPPPPPPP��

��������

��

����

����

PPPPPPPPPPPP

@@@@

@@@@�

���@

@@@�

���@

@@@����

����

����PPPPPPPPPPPP�

���@

@@@����

����

����PPPPPPPPPPPP

@@@@�

���

����@

@@@

��

�� @@

@@

s s s s s s s s s ss s s s s s s s s s

Index j Missed points in Jm(k)0 ui , vi , i ∈ {1,2}1 {v1, v2,ur+1,ur+2}2 {u1,u2, vr+1, vr+2}

1−factor ui , vi , i ∈ {1,2}

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 35 / 61

Page 48: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Factorisations of the graph J2m

Joining Decompositions

Lemma

If F and F ′ are 2-regular graphs such that J 7→ F and J 7→ F ′, thenJ 7→ F ′′ where F ′′ is the union of vertex-disjoint copies of F and F ′.

�������PPPPPPP��

�����

������

PPPPPPP@@@@@@�

��@@@�

��@@@����

���PPPPPPP���@@@

���@@@q q q q q q q q

q q q q q q q q ⊕��

�����PPPPPPP��

�����

������

PPPPPPP@@@@@@�

��@@@�

��@@@����

���PPPPPPP���@@@

���@@@q q q q q q q q

q q q q q q q q[12] + [12] + [12] [12] + [12] + [12]⊕

�������PPPPPPP��

�����

������

PPPPPPP@@@@@@�

��@@@�

��@@@����

���PPPPPPP���@@@

���@@@q q q q q q q q

q q q q q q q q��

�����PPPPPPP��

�����

������

PPPPPPP@@@@@@�

��@@@�

��@@@����

���PPPPPPP���@@@

���@@@q q q q q q q q

q q q q q q q q= [12,12] + [12,12] + [12,12]

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 36 / 61

Page 49: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Factorisations of the graph J2m

Lemma 10 - Ingredient Decompositions J 7→ F

Lemma (10)

For each graph F in the following list we have J 7→ F.[m] for each m ∈ {8,12,16, . . .}[4,m] for each m ∈ {4,8,12, . . .}[m,m′] for each m,m′ ∈ {6,10,14, . . .}[4,m,m′] for each m,m′ ∈ {6,10,14, . . .}[4,4,4]

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 37 / 61

Page 50: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Factorisations of the graph J2m

Factoring G2m

Lemma

If F is a bipartite 2-regular graph of order 2m where m ≥ 8 is even,then there is a factorisation of G2m into three 2-factors eachisomorphic to F , and a 1-factor.

Proof We show that there is a decomposition of F into bipartite2-regular subgraphs F1,F2, . . . ,Fs such that Lemma 10 covers J 7→ Fifor i = 1,2, . . . , s.

We then use⊕

to join these Factorisations into J 7→ F .

Finally we identify endpoints to obtain the required factorisation of G2m.

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 38 / 61

Page 51: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Factorisations of the graph J2m

Main Theorem

TheoremIf F1,F2, . . . ,Ft are bipartite 2-regular graphs of order n andα1, α2, . . . , αt are non-negative integers such thatα1 + α2 + · · ·+ αt =

n−22 , α1 ≥ 3 is odd, and αi is even for

i = 2,3, . . . , t , then there exists a 2-factorisation of Kn − I in whichthere are exactly αi 2-factors isomorphic to Fi for i = 1,2, . . . , t .

Proof The conditions guarantee that n ≡ 0 mod 4.

Factor K n2

into Hamiltonian factors and 〈{1,3e}〉 n2.

Factor C(2)n2

into pairs of Fi , i = 1, . . . , t .

Remaining edges of K (2)n2

are isomorphic to Gn, which we can factorinto 3 copies of F1.

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 39 / 61

Page 52: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Lemma 10

Lemma 10 - Ingredient Decompositions J 7→ F

We now want to prove

Lemma (10)

For each graph F in the following list we have J 7→ F.[m] for each m ∈ {8,12,16, . . .}[4,m] for each m ∈ {4,8,12, . . .}[m,m′] for each m,m′ ∈ {6,10,14, . . .}[4,m,m′] for each m,m′ ∈ {6,10,14, . . .}[4,4,4]

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 40 / 61

Page 53: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Lemma 10

Cycle Length m ≡ 0 mod 4, m > 4

We describe the three cycle factors in three parts.

A left hand end [`, consisting of an `−path

A continuing part c that consist of two paths whose total length is c.

The continuing part is designed so that it can be repeated.

And a right hand end r ], consisting of an r−path.

We use ⊕ to adjoin these parts:

[`⊕ c ⊕ c ⊕ r ] = [(`+ c + c + r)]

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 41 / 61

Page 54: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Lemma 10

Blue Factor

Left Continuation Right[5 4 3]

����

������PPPPPPPPPPr r r r

r r r r����@

@@@����

����

��PPPPPPPPPPr r r rr r r r

����@

@@@r r

r r

����

����

��PPPPPPPPPP����@@@@����

����

��PPPPPPPPPP����@

@@@����

����

��PPPPPPPPPP����@@@@

[5 ⊕ 4 ⊕ 4 ⊕ 3] = [16]

r r r r r r r r r rr r r r r r r r r r

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 42 / 61

Page 55: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Lemma 10

Green Factor

Left Continuation Right[5 4 3]

������

����

����

����r r r r

r r r rr r r rr r r r

��

��r r r rr r r r

����������

����

���� �

���

[5 ⊕ 4 ⊕ 4 ⊕ 3] = [16]

r r r r r r r r r rr r r r r r r r r r

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 43 / 61

Page 56: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Lemma 10

Red Factor

Left Continuation Right[8 4 4]

PPPPPP@@@@q q q q q qq q q q q q

@@��q q q qq q q q

@@q q q qq q q q

PPPPPPPPPP

@@@@

@@@@

@@@@�

���

@@

@@

[8 ⊕ 4 ⊕ 4] = [16]

r r r r r r r r r rr r r r r r r r r r

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 44 / 61

Page 57: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Lemma 10

Putting it Together

([5+[5+[8)⊕ ((4⊕ 4)+(4⊕ 4)+4)⊕ (3]+3]+4]) = [16]+ [16]+ [16]

����

����

���PPPPPPPPPPP��������

���

����

����

PPPPPPPPPPP

@@@@

@@@@�

���@

@@@�

���@

@@@����

����

���PPPPPPPPPPP����@@@@����

����

���PPPPPPPPPPP

@@@@����

����@@@@

��

�� @@

@@r r r r r r r r r rr r r r r r r r r r

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 45 / 61

Page 58: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Lemma 10

[m,m′], m ≡ m′ ≡ 2 mod 4

5,7��

����

����PPPPPPPPPP ��

����

����PPPPPPPPPP

@@@@�

���r r r r r r r r r r

r r r r r r r r r r

5,7 r r r r r r r r r rr r r r r r r r r r

@@@@

@@@@

@@@@��

����

����

r r r r r r r r r rr r r r r r r r r r

2,6����

����

PPPPPPPPPP����r r r r r r r r r r

r r r r r r r r r r

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 46 / 61

Page 59: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Lemma 10

The Join

([5+[5+[8)⊕ (4+4+4)⊕ (5,7+5,7+2,6)⊕ (0+0+0)⊕ (3]+3]+4])

= [14,10] + [14,10] + [14,10]

����

����PPPPPPPP��

����

��

���

���

PPPPPPPP

@@@

@@@�

��@@@���@@@����

����PPPPPPPP

@@@���

����

����PPPPPPPP ��

����

��PPPPPPPP

@@@���@

@@

@@@

@@@��

����

��

���

���

PPPPPPPP���

���@@@ �

��@@@

��� @@@r r r r r r r r r r r r r r

r r r r r r r r r r r r r r

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 47 / 61

Page 60: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Lemma 10

Remaining Cases

The cases [4,m] are dealt with using a special left end.

The following are dealt with as special cases:[8], [12], [4,8], [4,12], [4,4], [4,4,4]

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 48 / 61

Page 61: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Hamilton-Waterloo

Hamilton-Waterloo (Two Factors F1 and F2)

When n is even

If n ≡ 2 mod 4 then n−22 is even and α1 and α2 have the same parity.

i.e. Either both α1, α2 are even or both are odd.

If n ≡ 0 mod 4 thenthen n−22 is odd and so α1 and α2 have opposite

parity. i.e. one of α1, α2 is even and the other is odd.

Corollary (t = 2)Let n be even and F1,F2 be bipartite 2−factors of order n thenOP(F1,F2) (Hamilton-Waterloo) has solution, except possibly in thecase where all but one of the 2-factors are isomorphic (α1 = 1 orα2 = 1).

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 49 / 61

Page 62: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Hamilton-Waterloo

Refinement

DefinitionGiven two 2-regular graphs F1 and F2,F1 is called a refinement of F2 if F1 can be obtained from by replacingeach cycle of F2 with a 2-regular graph on the same vertex set

Example

[4,4] is a refinement of [8][4,83,102,12] is a refinement of [4,16,18,22],[4,182,20] is not a refinement of [4,16,18,22].Every 2-regular graph of order n is a refinement of an n-cycle.

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 50 / 61

Page 63: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Hamilton-Waterloo

General result, n ≡ 2 mod 4

Theorem (Bryant, Danziger, Dean (2012))

If F1,F2, . . . ,Ft are bipartite 2-regular graphs of order n ≡ 2 mod 4,and α1, α2, . . . , αt are positive integers such that

F1 is a refinement of F2;αi even for i = 3,4 . . . , t ;α1 + α2 + · · ·+ αt =

n−22 ;

then Kn has a factorisation into αi copies of Fi for i = 1,2, . . . , t and a1-factor.

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 51 / 61

Page 64: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Hamilton-Waterloo

General result, n ≡ 0 mod 4

Theorem (Bryant, Danziger, Dean (2012))

If t ≥ 3, F1,F2, . . . ,Ft are bipartite 2-regular graphs of order n, andα1, α2, . . . , αt are positive integers such that

F1 is a refinement of F2;α1, α2, α3 are odd with α3 ≥ 3;αi is even for i = 4,5, . . . , t ;α1 + α2 + · · ·+ αt =

n−22 ;

F2 /∈ {[4,4,4], [4,8], [12], [4,6,6], [6,10]}; andF3 /∈ {[6r ], [4,6r ] : r ≡ 2 mod 4};

then Kn has a factorisation into αi copies of Fi for i = 1,2, . . . , t and a1-factor.

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 52 / 61

Page 65: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Hamilton-Waterloo

Hamilton Waterloo

Theorem (Bryant, Danziger, Dean (2012))

If F2 is a bipartite 2-regular graph of order n and F1 is a bipartiterefinement of F2, then for all non-negative α1, α2 satisfyingα1 + α2 = n−2

2 there is a factorisation of Kn into α1 copies of F1, α2copies of F2, and a 1-factor.

CorollaryLet F1,F2 be bipartite 2−factors of order n such that F1 a refinementof F2 then OP(F1,F2) (Hamilton-Waterloo) has solution.

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 53 / 61

Page 66: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Multipartite Graphs - One Factor F

Multipartite Graphs - One Factor F

We wish to consider factorisations of the complete multipartite graphKnr into a single biparite 2−factor F .

Ths is the multipartite case of the original Oberwolfach problem.

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 54 / 61

Page 67: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Multipartite Graphs - One Factor F

Necessary Conditions

Recall In order for the complete multipartite graph Knr to have afactorisation into 2−factors F1, . . . ,Ft we require that every vertex is ofeven degree, i.e. n(r − 1) is even.

Now we only have one bipartite factor F , of even order nr ,

But n(r − 1) is also even,so:

TheoremIn order for the complete multipartite graph Knr , r ≥ 2, to have afactorisation into a single bipartite 2−factor, n must be even.

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 55 / 61

Page 68: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Multipartite Graphs - One Factor F

What is known

Theorem (Auerbach and Laskar (1976))A complete multipartite graph has a Hamilton decomposition if andonly if it is regular of even degree.

Theorem (Piotrowski (1991))If F is a bipartite 2−regular graph of order 2n, then the completebipartite graph, Kn,n has a 2−factorisation into F except when n = 6and F = [6,6].

Theorem (Liu (2003))The complete multipartite graph Knr , r ≥ 2, has a 2−factorisation into2−factors composed of k−cycles if and only if k | rn, (r − 1)n is even,further k is even when r = 2, and(k , r ,n) 6∈ {(3,3,2), (3,6,2), (3,3,6), (6,2,6)}.

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 56 / 61

Page 69: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Multipartite Graphs - One Factor F

What is known

It is known that there is no 2-factorisation of K6,6 into [6,6].

Corollary ((Bryant, Danziger (2010), t = 1)

If F is a bipartite 2−regular graph of order 2r , then the completemultipartite graph K2r has a 2−factorisation into F .

Corollary (Bryant, Danziger, Dean (2012))

Let n ≡ 0 mod 4 with n ≥ 12. For each bipartite 2-regular graph F oforder n, there is a factorisation of 〈{1,3e}〉(2)n/2 into three copies of F ;except possibly when F ∈ {[6r ], [4,6r ] : r ≡ 2 mod 4}.

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 57 / 61

Page 70: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Multipartite Graphs - One Factor F

Setting up

Note that when n = 2mKnr ∼= K (2)

mr

AlsoKmr ∼= 〈{1,2, . . . ,

rm2} \ {r ,2r , . . . ,

m − 12

r}〉rm.

LemmaFor each even r ≥ 4 and each odd m ≥ 1, except (r ,m) = (4,1), thereis a factorisation of Kmr into (r−1)m−3

2 Hamilton cycles and a copy of〈{1,3e}〉rm.

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 58 / 61

Page 71: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Multipartite Graphs - One Factor F

Necessary Conditions are Sufficient

Theorem (Bryant, Danziger, Pettersson (2013))

If F is a bipartite 2-regular graph of order rn, then there exists a2-factorisation of Knr , r ≥ 2, into F if and only if n is even; except thatthere is no 2-factorisation of K6,6 into [6,6].

If m is even or r is odd, then Kmr has even degree, and hence has aHamilton decomposition by Auerbach and Laskar’s result. If n = 2mthen Knr ∼= K (2)

mr and we can complete the proof using Häggkvist’sdoubling.

n = 2 and r = 2 are done above.

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 59 / 61

Page 72: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Multipartite Graphs - One Factor F

Necessary Conditions are Sufficient

Theorem (Bryant, Danziger, Pettersson (2013))

If F is a bipartite 2-regular graph of order rn, then there exists a2-factorisation of Knr , r ≥ 2, into F if and only if n is even; except thatthere is no 2-factorisation of K6,6 into [6,6].

If m is even or r is odd, then Kmr has even degree, and hence has aHamilton decomposition by Auerbach and Laskar’s result. If n = 2mthen Knr ∼= K (2)

mr and we can complete the proof using Häggkvist’sdoubling.

n = 2 and r = 2 are done above.

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 59 / 61

Page 73: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Multipartite Graphs - One Factor F

Proof - Sketch

Assume m ≥ 3 is odd and r ≥ 4 is even.

By the Lemma there is a factorisation of Kmr into (r−1)m−32 Hamilton

cycles and a copy of 〈{1,3e}〉rm.

Double, use Häggkvist doubling on the Hamiltonian cycles C(2)rm and

the second corollary on 〈{1,3e}〉(2)rm .

This leaves the case r ≥ 4 is even, m = n2 ≥ 3 is odd, and

F = [4,64x+2] for some x ≥ 1, which is done as a special case.

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 60 / 61

Page 74: 2-Factorisations of the Complete Graphusers.monash.edu/~gfarr/research/slides/Danziger-obertalk.pdf · The Problem Hamilton-Waterloo TheHamilton-Waterlooproblem thus requires afactorisationof

Multipartite Graphs - One Factor F

The End

Thank You

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 61 / 61