+2 · 2014. 1. 22. · page 2six marks march 2006 june 2006 october 2006 p represents the variable...

17
+2 MATHEMATICS Page 1 PREPARED BY :S.MANIKANDAN ., VICE PRINCIPAL ., JOTHI VIDHYALAYA MHSS., ELAMPILLAI., SALEM ., 9047039080 www.Padasalai.Net www.TrbTnpsc.com

Upload: others

Post on 31-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • +2 MATHEMATICS

    Page 1 PREPARED BY :S.MANIKANDAN ., VICE PRINCIPAL ., JOTHI VIDHYALAYA MHSS., ELAMPILLAI., SALEM ., 9047039080 www.Padasalai.Net

    www.TrbTnpsc.com

  • SIX MARKS

    MARCH 2006 JUNE 2006 OCTOBER 2006 P represents the variable complex number z.

    Find the locus of P if 2 1 2z z .

    Solve 4 4 0x , if 1+I is one of the roots. It is

    given that 1+I is a root

    Solve 2( 2 2) 2 5D D y Sin x

    Let z x iy

    2 ( ) 1 2x iy x iy

    (2 1) (2 ) ( 2)x i y x iy

    2 2 2 2(2 1) (2 ) ( 2)x y x y

    2 2 2 2(2 1) (2 ) ( 2)x y x y

    2 2 2 24 4 1 4 4 4x x y x x y

    2 23 3 3x y

    2 2 1x y

    Which is a circle whose centre is origin and radius is 1 unit.

    1 – i is also a root

    Sum of the roots = 1 + i+1-i = 2

    Product of the roots = (1+i) (1+i) =

    2 21 ( ) 1 ( 1) 1 1 2i

    The corresponding factor is

    2x x (sum of roots) + product of roots

    2 2 2x x

    2 2 24 ( 2 2) ( 2)x x x x px

    Equating x term we get

    2 4O p 2p = 4 p = 2

    Other factor is 2 2 2 0x x

    To find the roots of 2 2 2 0x x

    a =1, b=2, c = 2

    2 4

    2

    b b acx

    a

    22 (2) 4 (1) (2)

    2 (1)x

    2 4 ( 1) 2 1 2

    2 2 2

    ix x x

    1x i Other roots are -1 + i and -1 –i

    Characteristic equation is 2 2 2 0p p

    a =1, b = -2, c = 2

    2( 2) ( 2) 4(1) (2)

    2 (1)p

    4 4 1

    2 2p p

    1p i

    1, 1

    Complementary function

    [ ]xy e ACos x B Sin x

    [ ]xy e ACos x B Sin x

    1 2 2

    1 12 2

    2 2 2 2 2PI Sin x Sin x

    D D D

    1 12 2

    4 2 2 2 2Sin x Sin x

    D D

    12

    1Sin x

    D

    2

    12

    1

    DSin x

    D

    [ 2 2 sin 2 ]Cos x x

    25

    2 2D D

    General solution y = C.F + P.I1 + P.I2

    [ ] [2 2 2 ]xy e ACos x B Sin x Cos x Sin x

    Page 2 PREPARED BY :S.MANIKANDAN ., VICE PRINCIPAL ., JOTHI VIDHYALAYA MHSS., ELAMPILLAI., SALEM ., 9047039080 www.Padasalai.Net

    www.TrbTnpsc.com

  • MARCH 2007 JUNE 2007 OCTOBER 2007 Find , ,k the normal distribution

    whose probability distribution function

    is given by 22 4 2( ) x xf x k e

    Solve the equation 3 24 6 4 0 1x x x if i is a root

    The given equation has three roots.

    2( ) 1dy

    x ydx

    22 4 2( ) x xf x k e

    22( 4 2 1)x x xk e

    22( 1)xk e

    2( 1)124 1

    4

    x

    ke

    2

    ( 1)124 1

    4 ............... (1)

    x

    ke

    We have

    1

    21( ) ............ (2)2

    x

    f x e

    From (1) and (2)

    11,2

    1 1 2

    12 22

    k

    Ans :

    2 112

    k

    It is given that 1-i is a root

    Its Conjugate 1+i also is a root

    Sum of these roots = 1-i + 1+i

    = 2

    Product of these roots = (1-i)(1+i)

    = 1-i2

    = 1-(-1)

    = 1+1 = 2

    The factor corresponding to these roots is

    x2 – x (sum) + product ⇒i.e, 2 (2) 2x x

    i.e, 2 2 2x x

    The corresponding factor is 2 (2) 2x x

    32 2

    2

    44 6 4 2 2) ( 2) 2

    2

    xx x x x x x

    x

    The other factor is x-2

    The root is x = 2

    The roots are 1+i, 1-i and 2.

    2( ) 1 (1)dy

    x ydx

    Let Z = x+ y

    (2)

    Differentiate w.r, t x

    1dz dy

    dx dx ⇒ 1 (3)

    dy dz

    dx dx

    Put (2), (3) in (1) 2(1) 1 1dz

    zdx

    2

    2 2 2

    1 1 11 1

    dz dz dz z

    dx z dx z dx z

    2

    21

    zdz dx

    z

    ⇒2

    2

    (1 ) 1

    1

    zdz dx

    z

    2

    11

    1dz dx

    z

    2 1

    dzdz dx C

    z

    1tanz z x c

    1tan ( )x y x y x c

    1tan ( )x y x y x c

    Page 3 PREPARED BY :S.MANIKANDAN ., VICE PRINCIPAL ., JOTHI VIDHYALAYA MHSS., ELAMPILLAI., SALEM ., 9047039080 www.Padasalai.Net

    www.TrbTnpsc.com

  • MARCH 2008 JUNE 2008 OCTOBER 2008 P represents the variable Z

    Find the locus of P if Re1

    01

    z

    z

    Find the order of all the elements 0t the group (Z6,+6)

    Show that , , 0a b b c c a

    Let z = x+iy

    1 1

    1

    z x i y

    z x i y i

    1)

    ( )

    x iy

    x i y i

    1) ( 1)x

    ( 1) ( 1)

    x i y x i y

    x i y x i y

    =

    2 2

    2 2

    ( 1 ( 1) ( 1)( 1)

    ( 1)

    1 ( 1) ( 1)Re

    1 ( 1)

    x x y y i xy x y

    x y

    z x x y y

    z x y

    It is given that Re 1

    01

    z

    z

    2 2

    ( 1) ( 1) 0

    1( 1) 1

    x x y y

    x y

    ie ( 1) ( 1) 0x x y y

    ie 2 2 0x x y y

    2 2 0Locus of x y x y

    Z6={[0],[1],[2],[3],[4],[5]} O[0]=1 O[1]=6 ∴[1]+[1]+[1]+[1]+[1]+[1]=0 O[2]=3 ∴[2]+[2]+[2]=0 O[3]=2 ∴[3]+[3]=0 O[4]=3 ∴[4]+[4]+[4] O[5]=6 ∴[5]+[5]+[5]+[5]+[5]+[5]=0

    , ,LHS a b b c c a

    .a b b c c a

    .a b b c a c c a

    .a b b c b a c c c a

    .a b b c a b c a

    . .a b c a b c a b b c a b c a

    . . . . . .a b c a a b a c a b b c b a b b c a

    0 0 0 0a b c b c a

    a b c c b a

    0a b c a b c RHS

    Page 4 PREPARED BY :S.MANIKANDAN ., VICE PRINCIPAL ., JOTHI VIDHYALAYA MHSS., ELAMPILLAI., SALEM ., 9047039080 www.Padasalai.Net

    www.TrbTnpsc.com

  • MARCH 2009 JUNE 2009 OCTOBER 2009 P presents the variable complex number z.

    Find the locus of p, if 3 3z i z i .

    Solve the following system of linear

    equations by determinant method

    2x-3y=7; 4x-6y=14.

    Show that the points A (1,2,3), B (3, -1, 2), C (-2, 3,

    1) and D (-6, -4, 2) are laying on the same plane.

    Let z x iy

    3 3z i z i

    3 3x iy i x iy i

    ( 3) ( 3)x i y x i y

    2 2 2 2( 3) ( 3)x y x y

    Squaring both sides

    2 26 9 6 9y y y y

    12 0y

    0y

    The locus of P is x – axis.

    2 312 12 0

    4 6

    7 32 42 0

    14 6x

    2 728 0

    4 14y

    Since 0 and 0x y . But atleast one

    aij is not equal to zero.

    The system is consistent and has

    infinitely many solutions.

    Put y = k

    (1) 2 3 7x k

    3 7 3x k

    7 3 7 3,

    2 2

    k kx The solution is x y k

    where k R

    2 3OA i j k

    3OB i j k

    2 3OC i j k

    6 4 2OD i j k

    2 3AB OB OA i j k

    3AC OC OA i j k

    5AD OD OA i j k

    2 3 1

    , , 3 1 2

    5 6 1

    AB AC AD

    = 2(-1-12) – (-3) (3-10) – 1 (18-5)

    = 2 (-13) + 3 (13) – 1 (13)

    = -26 + 39 – 13 = -39 + 39 = 0

    , ,AB AC AD

    are Co – planar Hence the points

    A,B,C,D are coplanar.

    Page 5 PREPARED BY :S.MANIKANDAN ., VICE PRINCIPAL ., JOTHI VIDHYALAYA MHSS., ELAMPILLAI., SALEM ., 9047039080 www.Padasalai.Net

    www.TrbTnpsc.com

  • MARCH 2010 JUNE 2010 OCTOBER 2010

    Verify that 1

    1T

    TA A

    for the matrix

    2 3

    5 6A

    .

    With usual symbol, prove that 5 5( {0}, )Z

    is a group Let G = { [1], [2]. [3],[4]}

    Find the rank

    2 1 4

    0 1 2

    1 3 7

    1 adjAA

    1 12 15 27A

    6 3( )

    5 2Adj A

    16 31

    5 227A

    16 31

    ... (1)5 227

    T

    A

    2 5

    3 6

    TA

    1( )TTT

    Adj AA

    A

    12 15 27TA

    6 5

    3 2

    Tadj A

    1 6 51

    ... (2)3 227

    TA

    From (1) and (2) 1 1

    T TA A

    5 [1] [2] [3] [4]

    [1] [1] [2] [3] [4]

    [2] [2] [4] [1] [3]

    [3] [3] [1] [4] [2]

    [4] [4] [3] [2] [1]

    From the table

    i. All the elements of the composition

    table are the elements of G.

    The closure axiom is true.

    ii. Multiplication modulo 5 is always

    associative.

    iii. The identity elements [1] G and it

    satisfies the identity axiom.

    iv. Inverse of [1] is [1]

    Inverse of [2] is [3] ; Inverse of [3] is [2]

    Inverse of [4] is [4] and it satisfies the

    inverse axiom. The given set forms a

    group under multiplication modulo 5.

    1 3

    1 3 7

    ~ 0 1 2

    2 1 4

    R R

    ⇒3 3 2

    1 3 7

    ~ 0 1 2

    2 1 4

    R R R

    1 1 3

    1 3 7

    ~ 0 1 2

    2 1 4

    R R R

    3 3

    1 3 7

    ~ 0 1 2 2

    2 1 4

    R R

    1 1

    51 1

    3

    ~ 0 1 2 3

    1 0 1

    R R

    3 1 3

    51 1

    3

    ~ 0 1 2

    5 81 0

    3 3

    R R R

    51 1

    3

    ~ 0 1 2 3

    21 0

    3

    Rank of the matrix is

    Page 6 PREPARED BY :S.MANIKANDAN ., VICE PRINCIPAL ., JOTHI VIDHYALAYA MHSS., ELAMPILLAI., SALEM ., 9047039080 www.Padasalai.Net

    www.TrbTnpsc.com

  • MARCH 2011 JUNE 2011 OCTOBER 2011 Evaluate

    0lim cosxx

    x

    P represents the variable complex number z.

    Find the locus of P it 3 5 3 1z z

    Solve 2( 5 4) sin 5D D y x

    Given 0

    lim cosxx

    x

    0lim cos cosx xx

    x

    = 10

    = 0

    Let z = x+iy

    3 5 3( ) 5z x iy

    5) 3x yi

    2 23 5 5) (3 )z x y

    2 29 30 25 9 ......................(1)x x y

    3 1 3 1z x iy

    1)x i y

    2 23 1)x y

    2 22 1 ......................(2)x x y

    2 2 2 23 5 3 1 9 30 25 9 2 1z z x x y x y x

    (1) (2by and

    Squaring both sides we get

    2 2 2 29 9 30 25 9( 2 1)x y x x y x

    29 x 29 y 230 25 9x x 29 y 18 9 0x

    48 14 0x

    24 7 0x

    Locus of P is a straight line

    Characteristic equation is 2 5 4 0P p

    2 4 4 0P P P ⇒P (P+4) + +1 (P+4)=0

    (P+4) (P+1) = 0 ⇒P +4 = 0 or P+1 = 0

    P = -4 or P = -1

    Complementary function is 4x xAe Be

    2

    1. 5

    5 4P I Sin x

    D D

    2

    15

    5 5 4Sin x

    D

    15

    5 21Sin x

    D

    5 215

    (5 21) (5 21)

    DSin x

    D D

    2

    5 215

    25 ( 5 ) 441

    DSin x

    (5 21) sin 5

    625 441

    D x

    1[ 5.5 cos 21sin 5 ]

    1066x x

    (25 cos 5 21sin 5 )

    1066

    x x

    General Solution is

    4 (25 cos 5 21sin 5 )

    1066

    x x x xy Ae Be

    Page 7 PREPARED BY :S.MANIKANDAN ., VICE PRINCIPAL ., JOTHI VIDHYALAYA MHSS., ELAMPILLAI., SALEM ., 9047039080 www.Padasalai.Net

    www.TrbTnpsc.com

  • MARCH 2012 JUNE 2012 OCTOBER 2012 Find the order of each element of the

    group, 7 7( {[0]}, )Z

    G = {[1], [2], [3], [4], [5], [6]}

    Find the rank of matrix

    41

    44

    0

    2( ) 1dy

    x ydx

    i). The identify element is [1]

    So its order is 1

    0 ([1]) = 1

    ii). 3[2] = [2] 7 [2] 7 [2] = [8] = [1]

    0 ([2]) = 3

    iii). 6[3] = [3] 7 [3] 7 [3] 7 [3] 7 [3] 7 [3] 7

    = [729] = [1]

    0 ([3] = 6

    iv). 3[4] = [4] 7 [4] 7 [4] 7

    = [64] = [1]

    0 ([4] = 3

    v). 6[5] = [5] 7 [5] 7 [5] 7 [5] 7 [5] 7 [5] 7

    = [15625] = [1]

    0 ([5]) = 6

    vi). 2[6] = [6] 7 [6]

    = [36]

    = [1]

    0 ([6]) = 2

    4 11

    4 14

    0 0

    Let A

    3 1 3

    1

    ~ 1

    0

    R R R

    3 2 3

    1

    ~ 1 2 ( ) 3

    0

    R R R A

    2( ) 1 (1)dy

    x ydx

    Let Z = x+ y (2)

    Differentiate w.r, t x

    1dz dy

    dx dx ⇒ 1 (3)

    dy dz

    dx dx

    Put (2), (3) in (1) 2(1) 1 1dz

    zdx

    2

    2 2 2

    1 1 11 1

    dz dz dz z

    dx z dx z dx z

    2

    21

    zdz dx

    z

    ⇒2

    2

    (1 ) 1

    1

    zdz dx

    z

    2

    11

    1dz dx

    z

    2 1

    dzdz dx C

    z

    1tanz z x c

    1tan ( )x y x y x c

    1tan ( )x y x y x c

    Page 8 PREPARED BY :S.MANIKANDAN ., VICE PRINCIPAL ., JOTHI VIDHYALAYA MHSS., ELAMPILLAI., SALEM ., 9047039080 www.Padasalai.Net

    www.TrbTnpsc.com

  • MARCH 2013 JUNE 2013 Solve the following system of linear

    equations by determinant method

    x+y+3z=4; 2x+2y+6z =7; 2x+y+z=10.

    If , ,a i j b j k c k j

    , then find

    , , ,a b b c c a

    1 1 3

    2 2 6

    2 1 1

    = 1 (2-6) – 1 (2-12) + 3(2-4)

    = 1 (-4) – 1 (-10) + 3 (-2)

    = - 4 + 10- 6

    = - 10 + 10 = 0

    =0

    4 1 3

    7 2 6

    10 1 1

    x

    = 4 (2-6) – 1 (7-60) + 3 (7-20)

    = 4 (-4) -1 (-53) + 3 (-13)

    = - 16 +53 – 39

    = -55 + 53 = -2

    x = - 2 0

    and x and so

    The given equations are in consistent and

    hence no solution.

    ( ) )a b i j j k

    a b i j j k

    2a b i j k

    b c i j k

    2c a i j k

    , , [ 2 , 2 , ]a b b c c a i j k i j k i j k

    1 2 1

    1 1 2

    2 1 1

    = 1 (1+2) – (-2) (1-4) +1 (1+2)

    = 1 (3) + 2 (-3) + 1 (3)

    = 3-6+3

    = 6-6

    = 0

    , , 0a b b c c a

    Page 9 PREPARED BY :S.MANIKANDAN ., VICE PRINCIPAL ., JOTHI VIDHYALAYA MHSS., ELAMPILLAI., SALEM ., 9047039080 www.Padasalai.Net

    www.TrbTnpsc.com

  • TEN MARKS

    MARCH 2006 JUNE 2006 OCTOBER 2006 Find the volume of the solid

    generated by the revolution of the

    loop of the curve 2x t and 3

    3

    ty t

    Find the vector and Cartesian equation of the

    plane passing through the point

    (-1, -2, 1) and perpendicular to two planes

    x+2y+4z+7=0 and 2x-y+3z+3=0.

    A poster is to have an area of 180 cm2 with 1 cm

    margins at the bottom and sides and a 2cm

    margin on the top. What dimension will give the

    largest printed area ?(Diagram also needed)

    2x t

    3 3

    13 3

    t ty t t

    2

    2 2 13

    xie y t

    0 0 1 03

    xLet y x or

    0 3x or x Volume 3

    2

    0

    y dx

    23

    0

    13

    xx dx

    23 2

    0

    21

    3 9

    xx x dx

    2 33 3 2 3 32

    0 0

    2 2 1. .

    3 9 2 3 3 9 4

    x x x xx x dx

    32

    3 4

    0

    2 1 9 96 (0)

    2 9 36 2 4

    xx x

    9 9 18 24 9 3642 4

    The vector normal to the planes x+2y+4z+7 = 0 and 2x-

    y+3z+3=0 are 2 4i j k

    and 2 3i j k

    .

    The required plane is r to the planes

    x+2y+4z+7 = 0 and 2x-y+3z+3= 0

    The required plane parallel to the above two vectors

    2 4i j k

    and 2 3i j k

    and passes through the point

    (-1, -2, -1). Vector equation is r a su tv

    Iet 2 2 4 2 3r i j k s i j k t i j k

    Its Cartesian equation is

    1 1 1

    1 1 1

    2 2 2

    1 0

    1

    x x y y z z

    m n

    m n

    Thus the Cartesian equation is

    1 2 1

    1 2 4 0

    2 1 3

    x y z

    (x+1) [6+4] – (y+2) [3-8] + (z-1) [-1-4] = 0

    10x+10+5y+10-5z+5 = 0

    10x+5y-5z+25 = 0⇒ 2x+y-z+5 = 0

    Let the length of printed portion ABCD be x can and its

    breadth be y cm (x+2) cm and its breadth is (y+3) cm.

    Poster area is given as 2180 cm

    (x+2) (y+3) = 180⇒180

    32

    yx

    1803

    2y

    x

    (1)

    Let the area of the printed portion be A A = xy

    1803

    2A x

    x

    1803

    2A x

    x

    2

    2

    3603 360 ( 2) 3

    ( 2)

    dAx

    dx x

    23

    2 3

    720360 ( 2) ( 2) 0

    ( 2)

    d Ax

    dx x

    0dA

    dx 2 2

    2

    3603 0 3( 2) 360 3, ( 2) 120

    ( 2)x by x

    x

    2 120 2x x 2

    2 2 30 2 3 3

    720 720

    (2 30 2 2) (2 30)x

    d ANegative

    dx

    Printed

    area is maximum when 2 30 2x 180(1) 32 30 2 2

    90 90 303 3

    3030y = 3 30 3 The he printed area

    are 2 30 2 cm and 3 30 3 cm.

    1 1 1( , , ) ( 1, 2,1)x y z

    1 1 1(1 , , ) )m n

    2 2 2(1 , , ) (2,m n

    1 1 1(1 , , ) )m n

    2 2 2(1 , , ) (2,m n

    Page 10 PREPARED BY :S.MANIKANDAN ., VICE PRINCIPAL ., JOTHI VIDHYALAYA MHSS., ELAMPILLAI., SALEM ., 9047039080 www.Padasalai.Net

    www.TrbTnpsc.com

  • MARCH 2007 JUNE 2007 OCTOBER 2007

    Find the common area between 2y x

    and 2x y .

    Find the axis focus, latusreetum, equation of

    the latus rectum, vertex and directrix for the

    parabola 2 8 2 17 0y x y

    Find the eccentricity, centre, foci and vertices of the

    hyperbola 2 212 4 24 32 127 0x y x y and draw the

    diagram.

    2y x (1) 2x y

    (2)

    Solve (1) and (2) to get the point of

    intersection Put (2) in (1)

    2 2( )x x ⇒ 4 0x x ⇒ 3( 1) 0x x

    30 1 0x x

    x =0 x= 1

    x = 0 in (2), y =0

    x = 1 in (2), y = 1

    The point of intersection are (0,0) and (1,1)

    Required area [ ( ) ( )]b

    a

    f x g x dx

    2( ) ,f x y x 2( ) :g x x y

    2x x dx

    332 3

    322 1

    3 3 3 32

    x xx x

    2 1.1 .1 0 0)

    3 3

    2 1 2 1.

    3 3 3

    1

    3

    sq. units

    2 8 2 17 0y x y ⇒ 2 2 8 17y y x

    2 2 22 1 1 8 17y y x ⇒ 2( 1) 1 8 17y x

    2( 1) 8 17 1y x ⇒ 2( 1) 8( 2)y x

    2 8 Y=y-1X=x-2Y X where 4a 8 2a

    About X,Y Referred to x.y

    Axis Y=0 Y=0y-1=0y=1

    Focus (a,0) ie (2,0) X=2x-2=2x=2+2 x=4

    Y=0y-1=0⇒y=1⇒F(4,1)

    Latus

    rectum

    X=a

    ie X=2

    X=2x-2=2x=2+2

    x=4

    Vertex (0,0) X=0x-2=0 x=2

    Y=0y-1=0⇒ y=1V (2,1)

    Directri

    x

    X = -a

    X = -2

    2 2 2X x

    2 2x ⇒ 0x

    Graph referred to x,y

    2 212 4 24 32 127 0x y x y

    2 2 2 2 2 212( 2 1 1 ) 4 ( 8 4 4 ) 127x x y y

    2 212[( 1) 1] 4[( 4) 16] 127x y

    2 212 ( 1) 4( 4) 127 12 64x y

    2 2

    175 75

    12 4

    X YWhere X x

    4Y y

    5 5 3

    2 2a b

    2

    75 41

    4 25e

    2 21 3 4 4 2e e e e

    Referred to X, Y Referred to x,y

    Centre C (0,0 ) C (1,4)

    Foci F (ae, 0) = (5,0)

    1F (-a e, 0) = (-5,0)

    F (6,4)(-4, 4)

    Vertics 5,0

    2A

    5,0

    2A

    7

    2, 4 3 ,42A

    Graph Referred to x, y

    Page 11 PREPARED BY :S.MANIKANDAN ., VICE PRINCIPAL ., JOTHI VIDHYALAYA MHSS., ELAMPILLAI., SALEM ., 9047039080 www.Padasalai.Net

    www.TrbTnpsc.com

  • MARCH 2008 JUNE 2008 OCTOBER 2008 Find the vector and Cartesian equation of

    the plane passing through the point

    (-1, -2, 1) and perpendicular to two planes

    x+2y+4z+7=0 and 2x-y+3z+3=0.

    Find the common area between 2y x and

    2x y .

    Find the local minimum and maximum values of

    3 2( ) 2 3 36 10f x x x x

    The vector normal to the planes x+2y+4z+7 = 0

    and 2x-y+3z+3=0 are 2 4i j k

    and 2 3i j k

    .

    The required plane is r to the planes

    x+2y+4z+7 = 0 and 2x-y+3z+3= 0

    The required plane parallel to the above two

    vectors 2 4i j k

    and 2 3i j k

    and passes

    through the point (-1, -2, -1).

    Vector equation is r a su tv

    Iet 2 2 4 2 3r i j k s i j k t i j k

    Its Cartesian equation is

    1 1 1

    1 1 1

    2 2 2

    1 0

    1

    x x y y z z

    m n

    m n

    Thus the Cartesian equation is

    1 2 1

    1 2 4 0

    2 1 3

    x y z

    (x+1) [6+4] – (y+2) [3-8] + (z-1) [-1-4] = 0

    10x+10+5y+10-5z+5 = 0

    10x+5y-5z+25 = 0⇒ 2x+y-z+5 = 0

    2y x (1) 2x y (2)

    Solve (1) and (2) to get the point of

    intersection Put (2) in (1)

    2 2( )x x ⇒ 4 0x x ⇒ 3( 1) 0x x

    30 1 0x x

    x =0 x= 1

    x = 0 in (2), y =0

    x = 1 in (2), y = 1

    The point of intersection are (0,0) and (1,1)

    Required area [ ( ) ( )]b

    a

    f x g x dx

    2( ) ,f x y x 2( ) :g x x y

    2x x dx

    3

    32 332

    2 1

    3 3 3 32

    x xx x

    2 1.1 .1 0 0)

    3 3

    2 1 2 1.

    3 3 3

    1

    3 sq. units

    3 2( ) 2 3 36 10f x x x x

    2'( ) 6 6 36f x x x

    "( ) 12 6f x x '( ) 0Let f x

    26 6 36 0x x ⇒ 2. , 6 0i e x x

    2 3 2 6 0x x x ⇒ ( 3) 2 ( 3) 0x x x

    ( 3) ( 2) 0x x ⇒ 3 0 , 2 0x x

    3, 2x x

    3[ "( )] 12 ( 3) 6xf x 36 6 30

    negative

    f(x) attains maximum when x= 3

    maximum value is 3 22( 3) 3( 3) 36 ( 3) 10

    = 2 ( 27) (9) 108 10 54 27 108 10 91

    2[ "( )] 12 (2) 6 24 6 30xf x positive

    ( )f x attains minimum when x = 2

    Minimum value is

    3 22(2) 3(2) 36(2) 10 2 (8) 3(4) 72 10ie

    16 12 72 10 34ie ie

    Minimum value is -34.

    1 1 1( , , ) ( 1, 2,1)x y z

    1 1 1(1 , , ) )m n

    2 2 2(1 , , ) (2,m n

    1 1 1(1 , , ) )m n

    2 2 2(1 , , ) (2,m n

    Page 12 PREPARED BY :S.MANIKANDAN ., VICE PRINCIPAL ., JOTHI VIDHYALAYA MHSS., ELAMPILLAI., SALEM ., 9047039080 www.Padasalai.Net

    www.TrbTnpsc.com

  • MARCH 2009 JUNE 2009 OCTOBER 2009 P represents the variable Z

    Find the locus of P if Re1

    01

    z

    z

    Find the eccentricity, centre, foci and

    vertices of the ellipse 2 216 9 32 36 92x y x y

    and draw the diagram .

    Solve : 2 3( 5 6) 2 xD D y Sin x e

    Let z = x+iy

    1 1

    1

    z x i y

    z x i y i

    1)

    ( )

    x iy

    x i y i

    1) ( 1)x

    ( 1) ( 1)

    x i y x i y

    x i y x i y

    =

    2 2

    2 2

    ( 1 ( 1) ( 1)( 1)

    ( 1)

    1 ( 1) ( 1)Re

    1 ( 1)

    x x y y i xy x y

    x y

    z x x y y

    z x y

    It is given that Re 1

    01

    z

    z

    2 2

    ( 1) ( 1) 0

    1( 1) 1

    x x y y

    x y

    ie ( 1) ( 1) 0x x y y

    ie 2 2 0x x y y

    2 2 0Locus of x y x y

    2 216 9 32 36 92x y x y

    2 216( 2 1 1) 9 ( 4 4 4) 92x x y y

    2 216 ( 1) 9 ( 2) 144x y

    ing by 144 2 2( 1) ( 2)

    19 16

    x y

    2 2

    19 16

    x y 2 216, 9a b

    2 2 7

    4

    a be

    a

    w.r. to X, Y w.r to x,y

    1, 2x x y y

    Centre

    (0, 0)

    (1, -2)

    Foci (0, )ae

    (0, 7)

    (1, 2 7) (1, 2 7)and

    Vertices

    (0, ±a)(0, ±4)

    (1, 2) (1 6)and

    Characteristic equation is 2 5 0P p

    (p-3) (p-2) = 0⇒P = 3 or p = 2

    Complementary function is 3 2x xAe Be

    1 2

    1

    5 6PI Sin x

    D D

    2

    1

    1 5 6Sin x

    D

    1

    1 5 6Sin x

    D

    1

    5 5Sin x

    D

    2

    1 1 1 1

    5 ( 1) ( 1) 5 1

    D DSin x Sin x

    D D D

    1 1

    5 1 1

    DSinx

    1 1 11)

    5 2 10

    DSin x D Sin x

    1 1] ]

    10 10D Sin x Sin x Cos x Sin x

    3 3

    2 2 2

    1 12

    5 6 3 5.3 6

    x xPI e eD D

    31

    0

    xe

    3 3

    2

    1 12

    ( 3) ( 2) ( 3 3) (3 2)

    x xPI e eD D D

    3 3 31 12.1

    x x xe e xeD D

    General Solution is y = C.F + P.I1 + P.I 2

    3 2 31 [ ] 210

    x x xy Ae Be Cosx Sinx xe

    Page 13 PREPARED BY :S.MANIKANDAN ., VICE PRINCIPAL ., JOTHI VIDHYALAYA MHSS., ELAMPILLAI., SALEM ., 9047039080 www.Padasalai.Net

    www.TrbTnpsc.com

  • MARCH 2010 JUNE 2010 OCTOBER 2010 Find the volume of the solid obtained by

    revolving the area of the triangle whose sides are having the equation y = 0, x=4 and 3x-4y=0,

    about 3 4 0x y

    3 2 2(1 2 ) 6 secdy

    x x y Co xdx

    Find the vector and Cartesian equations of the

    plane, through the point (1,2-2) and parallel to

    the line 2 1 4

    3 2 4

    x y z

    and perpendicular to

    the plane 2x+3y-3z=8.

    about

    3 4 0x y ⇒y = 0 3 x = 0 x = 0

    x = 0 to 4 3x – 4y = 0

    4y = 3x ⇒3

    4y x ⇒ 2 2

    9

    16y x

    Volume 2b

    a

    y dx

    4

    2

    0

    9

    16x dx

    44 32

    0 0

    9 9

    16 16 3

    xx dx

    33

    4 0 12 .16

    cu units

    3 2 2(1 2 ) 6 secdy

    x x y Co xdx

    2 23

    3 3

    6 sec1 2 ,

    1 2 1 2

    dy x Co xx

    dx x x

    2 2

    3 3

    6 sec

    1 2 1 2

    x Co xP Q

    x x

    23

    3

    6log (1 2 )

    1 2

    xPdx x

    x

    3log (1 2 ) 3Pdx x

    e e x

    Solution is ( ) ( )y IF Q IF dx C

    23 3

    2

    sec(1 2 ) (1 2 )

    1 2

    Co xy x x dx C

    x

    3 2(1 2 ) secy x Co x dx C

    3(1 2 )y x Cot x C

    3(1 2 )y x Cot x C

    The normal vector to the plane 2x+3y+3z =8 is

    2 3 3i j k

    .

    This vector is parallel to the required plan. The

    required plane passes through (1,2-2) and parallel

    to 3 2 4u i j k

    and 2 3 3v i j k

    .

    The vector equation of the required

    plane is r a su tv

    i.e. 2 2 (3 2 .4 ) ( 3 3 )r i j k s i j k t i j k

    Cartesian from

    1 1 1

    1 1 1

    2 2 2

    1 0

    1

    x x y y z z

    m n

    m n

    1 2 2

    3 2 4 0

    3 3 3

    x y z

    i.e. (x-1) (-6+12) – (y-2) (9+8) + (z+2) (9+4) = 0

    6 (x-1) – 17 (y-2) + 13 (z+2) = 0

    6x-6 -17y+34+13z+26 = 0⇒6x-17y+ 13z+ 54 = 0

    1 1 1( , , ) (1,2, 2)x y z

    1 1 1(1 , , ) )m n

    1 2 2(1 , , ) (2,m n

    Page 14 PREPARED BY :S.MANIKANDAN ., VICE PRINCIPAL ., JOTHI VIDHYALAYA MHSS., ELAMPILLAI., SALEM ., 9047039080 www.Padasalai.Net

    www.TrbTnpsc.com

  • MARCH 2011 JUNE 2011 OCTOBER 2011 Find the vertex, axis, focus, equation of latus

    rectum, equation of directrix and length of latus

    rectum of the parabola 2 4 4 8 0y y x and

    hence. Draw the diagram.

    Find the vertex, axis, focus, equation of latus rectum, equation of directrix

    and length of latus rectum of the

    parabola 2 4 4x x y

    Solve the system to equations.

    X+2y+z=2, 2x+4y+2z=4, x-2y-z=0

    2 4 4 8 0y y x

    2 4 4 4 4y x x ⇒ 22) 4 4y x

    22) 4y x 2 4Y X

    Where Y = y +2 ; X = x +1 ; 4a = 4 ; a = 1

    The type is open left ward.

    Referred to

    X, Y

    Referred to x,y

    X = x +1 Y = y+2

    Vertex (0, 0) (-1,-2)

    axis Y = 0 Y = -2

    Focus (-a,0)i.e (-1,0) Focus = = (-2, -2)

    Equation of

    latus rectum

    X = -a

    i.e X = -1

    X = -1 x +1 = -1

    x = -2

    Equation of

    directrix

    X =a

    i.e X = 1

    X = 1 x+1 = 1

    x = 0

    Length of L.R 4a = 4 4a =4

    2 4 4x x y ⇒2 2 24 2 2 4x x y

    2( 2) 4( 1)x y

    2 4 1X Y Where Y y

    4 4 2a X x 1a

    The type is open downward.

    Referred

    toX, Y

    Referred to x,y

    X = x +1

    Y = y+2

    axis X = 0 x- 2 = 0

    Vertex (0,0) (2, 1)

    Focus (0, -1) Focus = (2, 0)

    Equ.ofL.R Y = 1 y = 2

    Equ.of dir. Y = -1 y = 0

    Len. L.R 4a=4 4a = 4

    1 2 3

    2 4 2 1( 4 4) 2 ( 2 2) 3 ( 4 4)

    1 2 1

    2( 4) 3( 8) 16

    2 2 3

    4 4 2 ( 4 4) 2 ( 4 0) 3 ( 8 0)

    0 2 1

    x

    = 8

    – 24 = -16

    1 2 3

    2 4 2 ( 4 0) 2 ( 2 2) 3 ( 0 4)

    1 2 1

    y

    = -4

    + 8 – 12 = -8

    1 2 2

    2 4 4 (0 8) 2 (0 4) ( 4 4)

    1 2 0

    z

    = 8 + 8 – 16 = 0

    161

    16

    xx x

    8

    16

    yy

    1

    2y

    00

    16

    zz

    11, , 02

    x y z

    Page 15 PREPARED BY :S.MANIKANDAN ., VICE PRINCIPAL ., JOTHI VIDHYALAYA MHSS., ELAMPILLAI., SALEM ., 9047039080 www.Padasalai.Net

    www.TrbTnpsc.com

  • MARCH 2012 JUNE 2012 OCTOBER 2012 Find the area between the curves

    2 2 3y x x x – axis and the lines x = -3

    and x =5.

    Find the eccentricity, centre, foci and

    vertices of the hyperbola

    2 2(9 36 ) (7 14 ) 92x x y y and draw the

    diagram.

    Find the vector and Cartesian equations of the

    plane which contains the line 1 1

    2 3 1

    x y z and

    perpendicular to the plane x-2y+3z-2=0.

    Required area 1 2 3A A A

    ( )y dx y dx y dx

    2 2 2( 2 3 ) (3 2 ( 2 3)x x dx x x dx x x dx

    1 3 5

    3 3 32 2 2

    3 1 3

    3 3 33 3 3

    x x xx x x x x x

    11 3

    3

    1 1253 1 25 15

    3 3

    2 9 9 2 40 9

    = 32

    sq.unit

    2 2(9 36 ) (7 14 ) 92x x y y

    2 29 ( 4 ) 7 ( 2 ) 92x x y y

    2 29[( 2) 4] 7[( 1) 1] 92x y

    2 27 ( 1) 9( 2) 63y x

    2 27( 1) 9( 2)1

    63 63

    y x

    2 2( 1) ( 2). 1

    9 7

    y xi e

    2 2

    19 7

    Y X Where 2; 1X x Y y

    2 9 3a a 2 7b 2

    21

    be

    a

    4 12 164 2

    4 4

    Referred

    to X, Y

    Referred to x,y

    2; 1X x Y y

    Centre C (0,0 ) (-2, 1)

    Foci F (0, 6 ) (-2, 7) & (-2, - 5)

    Vertices (0, 3)V (-2, 4) and (-2, -2)

    The required plane contains the line 1 1

    2 3 1

    x y z i.e,

    the line 1 0 ( 1)

    2 3 1

    x y z

    The plane passes through

    the point (1, 0, -1) and parallel to the vector 2 3u i j k

    This plane is perpendicular to x-2y+3z-2 = 0.

    That is the plane is parallel to 2 3i j k

    .

    The required plane passes through (1,0, -1) whose

    postion vector a i j

    and parallel to two vector

    2 3u i j k

    and 2 3L j k

    .

    Vector equation r a su tv

    i.e, (2 3 ) ( 2 3 )r i j s i j k t i j k

    Its Cartesian form is 1 1 1

    1 1 1

    2 2 2

    1 0

    1

    x x y y z z

    m n

    m n

    Ie1 0 1

    2 3 1 0

    1 2 3

    x y z

    (x-1) (-9+2) – y (6-1) + (z+1) (-4+3) = 0

    (x-7) (-7) – y(5) + (z+1) (-1) = 0

    -7x – 5y –z +6 = 0⟹7x+5y+z-6 = 0

    Page 16 PREPARED BY :S.MANIKANDAN ., VICE PRINCIPAL ., JOTHI VIDHYALAYA MHSS., ELAMPILLAI., SALEM ., 9047039080 www.Padasalai.Net

    www.TrbTnpsc.com

  • MARCH 2013 JUNE 2013

    Verify 2 2u u

    x y y x

    for the function n

    sinx

    uy

    1

    2

    sin Pr .

    u u x y x yx y Cos if

    x y x y x y

    x yu ove

    x y

    sinx

    uy

    1cos

    xu

    x y y

    2

    2 2

    1 1cos .

    x x xuSin

    x y y y y y y

    2 3

    1cos .... (1)

    x x xSin

    y y y y

    2cos

    x xu

    y y y

    2

    2 2

    1 1cos sin

    x x xu

    x y y y y y y

    2 3

    1cos

    x x xSin

    y y y y

    2 2u u

    y x x y

    sinx y

    ux y

    1. sin ( )x y

    i e ux y

    1 ( )x y

    f Sin ux y

    Put x = tx, y = ty⇒tx ty

    ftx ty

    ( )

    ( )

    t x yf

    t x y

    12

    ( )x yf t

    x y

    f is a homogeneous function in x and y of degree 12

    &By Euler’s theorem 1

    .2

    f fx y f

    x y

    1 1 11(sin ) ( )2

    x y Sin u Sin ux y

    1

    2 2

    1 1 1. .

    21 1

    u ux y Sin u

    x yu u

    2 11. .2

    u ux y u Sin u

    x y

    2 111 .2

    x y x ySin Sin Sin

    x y x y

    2 1.2

    x y x yCos

    x y x y

    1

    2

    x y x yCos

    x y x y

    Page 17 PREPARED BY :S.MANIKANDAN ., VICE PRINCIPAL ., JOTHI VIDHYALAYA MHSS., ELAMPILLAI., SALEM ., 9047039080 www.Padasalai.Net

    www.TrbTnpsc.com