1mod intro

Upload: ghazanfar-ali

Post on 06-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 1mod Intro

    1/14

    Overview of Modulation

    Techniquesfor Wireless

    EEL 6593 Fall '95 Paul FlikkemaUSF

    1

  • 8/3/2019 1mod Intro

    2/14

    Introduction

    The purpose of analog modulation is to impressaninformation-bearing analog waveform onto acarrier fortransmission.

    The purpose of digital modulation is to convert aninformation-bearing discrete-time symbolsequence into acontinuous-time waveform perhaps impressed ona carrier.

    Key concerns | bandwidth e ciency andimplementationcomplexity. These are a ected by:

    baseband pulseshapephase transitioncharacteristicsenvelope uctuations channel non-linearities?

    EEL 6593 Fall '95 Paul FlikkemaUSF

    2

  • 8/3/2019 1mod Intro

    3/14

    Example Modulation Schemes forWirelessFM | AMPS

    MSK minimum-shift keying |CT2

    GMSK Gaussian MSK | GSM, DCS 1800, CT3,DECTQPSK | NADC CDMA - basetransmitterOQPSK | NADC CDMA - mobiletransmitter

    =4-DQPSK | NADC TDMA, PDC Japan, PHP JapanM-ary PSK some wirelessLANs

    EEL 6593 Fall '95 Paul FlikkemaUSF

    3

  • 8/3/2019 1mod Intro

    4/14

    Frequency

    ModulationAngle modulation: transmittedsignal isxt = A cos !c t + t = fAej !c t+tg

    with instantaneous

    phase i t = !ct + t;

    and instantaneousfrequency

    di t = ! + dt:

    !i t = dt c dtt is the instantaneous

    phase

    EEL 6593 Fall '95 Paul FlikkemaUSF

    instantaneous frequencydeviation.

    dtis

    thedeviation, and dt

    4

  • 8/3/2019 1mod Intro

    5/14

    For phasemodulation,

    t = kp mtwhere mt is the message signal, and kp is the phasedeviation

    constant rad volt. For FM, we have dt= kfmt or

    dt Zt t = kfmsds + t0

    to

    where kfis the frequency deviation constant radsec volt.

    With t0 = ,1 and t0 = 0, we havext = A cos !c t + kp mtPM

    Ztxt = A cos !c t + kfmsdsFM

    ,1

    EEL 6593 Fall '95 Paul FlikkemaUSF

    5

  • 8/3/2019 1mod Intro

    6/14

    FM using integrator and phasemodulator

    v(t)Integrator Ph. Modulator

    EEL 6593 Fall '95 Paul FlikkemaUSF

    6

  • 8/3/2019 1mod Intro

    7/14

    If modulating signal is a sinusoid, mt = Am cos !mt, then

    xt = A cos !ct + sin !m twhere = kf!Am , the modulation index de ned forsingle-tonem modulation only. In this

    case, it can be shown that xAtisJ0 cos !ct+1X

    n=1,1n Jn cos!c ,n!m t+,1n cos!c +n!mt

    For small , wehave 2

    J0 1, 2 n 1

    Jn n! 2 ; n 6= 0

    7EEL 6593 Fall '95 Paul FlikkemaUSF

  • 8/3/2019 1mod Intro

    8/14

    This implies

    xt cos ! t , cos! , ! t + cos! + ! tccmcm A22

    or using a trig identity xt cos ! t , sin ! t sin ! tcmc AGeneral rule: if0:3, the bandwidth of the modulatedsignal is

    approx. 2!m ; and we have narrow-band FM NBFM.This is themodulation scheme used in AMPS.

    EEL 6593 Fall '95 Paul FlikkemaUSF

    8

  • 8/3/2019 1mod Intro

    9/14

    FM DemodulationMethods

    Limiter-discriminatorFM feedback FMFB

    Phase-locked loopPLL

    FM PerformanceCharacterized by signal-to-noise ratio SNR: the

    demodulatorinput CNR carrier-to-noise ratio for AMPS is speci edto be 18dB, resulting in an output SNR of 40 dB.

    EEL 6593 Fall '95 Paul FlikkemaUSF

    9

  • 8/3/2019 1mod Intro

    10/14

    DigitalModulationCriteria forselection:

    BERperformance

    Mobile personal channel severefading

    Cellular architecture interferenceTypically, req't is 10,2 or betterspeechSpectral e ciency

    Adjacent channel

    interferencePower e ciency esp. atmobileImplementation complexity cost may requiredual-modemobile

    EEL 6593 Fall '95 Paul FlikkemaUSF

    10

  • 8/3/2019 1mod Intro

    11/14

    Digital Modulation | Classi cationConstant-envelope methods: Allow use ofless expensiveampli cation not dependent on signal amplitude at theexpense

    of out-of-band emissions. Limited to a spectral e ciencyof about 1bit sec Hz.Examples: MSK, GMSK

    Linear methods: Higher spectral e ciency, but mustuse linearampli ers to maintain performance and to limit out-of-bandemissions.

    Examples: PSK, QAMEEL 6593 Fall '95 Paul FlikkemaUSF

    11

  • 8/3/2019 1mod Intro

    12/14

    Spectral E

    ciencySpectral occupancy per channel isroughlySO = B + 2f

    where B = bandwidth occupied of RF signal powerspectrum and

    fis the maximum one-way carrier frequency oscillatordrift.Remark: Per-channel spectral e ciency for narrowbandsystems

    onlyWe can express the bandwidth as

    Rd B= nwhere Rd is the channel data rate and n is the spectral

    e ciencyin bits sec Hz.

    EEL 6593 Fall '95 Paul FlikkemaUSF

    12

  • 8/3/2019 1mod Intro

    13/14

    Rd + 2fSO = n

    Thus, to minimize spectral occupancy thus maximizingcapacity innumber of users we can:1. Lower speech encoder rate trade: cost,delity, or2. Improve spectral e ciency of modulation trade:complexity,

    or3. Improve transmitter receiver oscillatorstrade: cost.

    Combining,

    EEL 6593 Fall '95 Paul FlikkemaUSF

    13

  • 8/3/2019 1mod Intro

    14/14

    State of the technology:Bandwidth e ciency: 1 n 2

    Speech encoder rate: Rd 4 8 kb sec

    Oscillator stability: 1 10,6 year implying f 1 kHz at

    900MHz long-termExamples:

    NADC TDMA: 48.6 kbps in 30

    kHzGSM: 34 kbps in 25kHz

    EEL 6593 Fall '95 Paul FlikkemaUSF

    14