1cea-dam ile-de-france high-gain direct-drive shock ignition for the laser megajoule:prospects and...

15
1 CEA-DAM Ile-de-France Ignition for the Laser Megajoule:prospects and first results. B. Canaud CEA, DAM, DIF France 7th Worksho Direct Drive and Fast Ignitio May, 3-6, 200 Prague, FCI2 Direct Drive @ 2 rings Density at stagnation 50 100 Radius (µm) 5 0 10 0

Upload: milton-bates

Post on 18-Dec-2015

218 views

Category:

Documents


1 download

TRANSCRIPT

1CEA-DAM Ile-de-France

High-Gain Direct-Drive Shock Ignition for the Laser Megajoule:prospects and first results.

B. CanaudCEA, DAM, DIFFrance

7th WorkshopDirect Drive

and Fast IgnitionMay, 3-6, 2009

Prague,

FCI2Direct Drive @ 2 rings

Density at stagnation

50 100Radius (µm)

50

100

2CEA-DAM Ile-de-France

Collaborators

X. Ribeyre, M. Lafon, J.L. Feugeas, J. Breil, G. SchurtzCELIA, Bordeaux

M. Temporal, R. Ramis ETSIA, Madrid, Spain

3CEA-DAM Ile-de-France

Standard LMJ direct drive illumination differs from indirect one by a more isotropic beam layout on the target chamber.

a) Baseline LMJ Direct Drive b) LMJ Indirect Drive

33.2° (10 beams)

49° (10 beams)

59.5° (10 beams)

Z

DT

33.2° (10 beams)

78° (10 beams)

59.5° (10 beams)

Z

DT

ID

DD

33.2°

59.5 °49°

78°

102°

131°120.5°

146.8°

Quad

Each LMJ beamlet is limited by its power max: Pmax ≤ 2.5 TW.

4CEA-DAM Ile-de-France

A few years ago, we proposed a new direct drive configuration with indirect drive beam layout [*]…

b) LMJ Indirect Drivea) Baseline LMJ Direct Drive

33.2° (10 beams)

78° (10 beams)

59.5° (10 beams)DT

33.2° (10 beams)

49° (10 beams)

59.5° (10 beams)

Z

DT

… but with only 1.2 MJ of laser energy.

(*) Canaud B. et al, Plasmas Phys. Cont. Fusion, 49, B601 (2007).

5CEA-DAM Ile-de-France

49° (45%)59.5° (55%)

Zearly time

late time

large spot

narrowspot

Focal spot zooming increases laser-target coupling efficiency[**].

1 beam large, 3 narrows on each quad.

With zooming and 2 rings,Gain=32 with 1 MJ laser.

With zooming and 2 rings,Gain=32 with 1 MJ laser.

A new 2-rings baseline(*) high-gain Direct-Drive design has been proposed with focal spot zooming.

(*) Canaud B. et al, Nucl. Fus., 47, 1642 (2007)

1 µm CH

DTgas

DT iceWetted foam

165 µm134 µm

1341 µm

Adiabat = 3.5 V=4.105 m/s

FCI2Direct Drive @ 2 rings

Density at stagnation

50 100Radius (µm)

50

100

(**) Canaud B. et al, Nucl. Fus., 45, L43 (2005)

6CEA-DAM Ile-de-France

Laser energy (MJ)with 3D ray-tracing

The

rmon

ucle

ar g

ain

Adiabat = 3.5 V=4.105 m/s

1 µm CH1642 µmDT gasDT iceCH(DT)n203 µm164 µm

0.1

1

10

100

0.4 10.6 3

w/o Zoomingw/ Zooming

LMJ design with zooming

Without zooming, the target is marginally igniting.

LMJ design without zooming

: adiabatv : implosion velocity

E, M f 3

R,t f

P f 2

Homothetic target family curve

7CEA-DAM Ile-de-France

• Isobaric ignition concerns standard direct drive ignition.

Alternative exists to displace the energy threshold towards lower energies, keeping constant the implosion target parameters (,v).

Hot-spot DTfuel

radius

T

PisoIsobaric Ignition threshold

Ethresholdisobaric

3

v 7

: adiabatic parameterv : implosion velocity

10-1

100

101

102

0,01 0,1

ET

h(MJ)

Ec (MJ)

Burn of

Hot spot

Burn of

DT fuel

E,M f 3

R,t f

P f 2

(*) Betti R. et al, Phys.Rev. Lett., 98, 155001 (2007)

• Non-isobaric ignition reduces the energy threshold for ignition.

E thresholdnon isobaric

E thresholdisobaric

Hotspot

DTfuel

radius

T

Pnon iso

where

P non isobaric

P isobaric

3

Piso

8CEA-DAM Ile-de-France

• A low-isentrope compression is obtained by a usual pulse shape.

Non isobaric conditions can be achieved by launching a strong shock at the end of the implosion.

• An additional spike launches a strong shock in the target.

tspike

Pspike

9CEA-DAM Ile-de-France

Shock can be created by the 33°-ring of the LMJ(*).

33.2° (10 beams)

49° (10 beams)

59.5° (10 beams)

Z

DT }

(*) Ribeyre X. et al, Plasmas Phys. Cont. Fusion, 51, 015013 (2009).

2D CHIC simulations of bipolar shock ignition show a good sphericity of the ignitor shock.

10CEA-DAM Ile-de-France

0,001

0,01

0,1

1

10

100

1000

0,01 0,1

Et(

MJ)

Ec(MJ)

• The target is far below the ignition threshold.

Fast-ignitor (*) targets can be considered for Shock Ignition (+).

(*) Ribeyre X. et al, Plasmas Phys. Cont. Fusion, 50, 025007 (2008).

(+) Ribeyre X. et al, Plasmas Phys. Cont. Fusion, 51, 015013 (2009)

tspikeP sp

ike

(TW

)

100

200

50

10

20

30

40

10

P (TW)

t (ns)tspike

Pspike

200 ps

300 ps

200 ps

109.5 10.4

DTgas

DT ice@ 250 kg/m3210 µm 1040 µm

HiPER(*) baseline target

1D implosion data Absorbed energy 110 kJ Adiabat 1 Implosion velocity 290 km/s Density Max 600 g/cm3

Areal density max 1.5 g/cm2

0,001

0,01

0,1

1

10

100

1000

0,01 0,1

Et(

MJ)

Ec(MJ)

P=180 TWETh=20 MJ

11CEA-DAM Ile-de-France

With the spike and 2 rings, G1D=50 with 0.2

MJ absorbed laser.

With the spike and 2 rings, G1D=50 with 0.2

MJ absorbed laser.

Marginally igniting standard direct drive target can be triggered by shock ignition (SI).

1 µm CH

DTgas

DT iceWetted foam

120 µm100 µm

960 µm

BaselineDirect Drive

= 3.5 V=400 km/s

50

100

150

7

P (TW)

t (ns)tspike

Pspike

200 ps

300 ps

200 ps

1D implosion data Absorbed energy 200 kJ Density Max 500 g/cm3

Areal density max 1. g/cm2 With SI (@max) Pspike 190 TW Density Max 1700 g/cm3

Areal density max 1.27 g/cm2

Eth 11 MJ

0,01

0,1

1

10

100

0,01 0,1

Eth

erm

onuc

lear

(MJ)

E kinetic

(MJ)

With Shock ignition

12CEA-DAM Ile-de-France

Different targets from the FI-family should be considered for LMJ.100 KJ-absorbed 500 KJ-absorbed

=1v = 290 km/smax= 600 g/cm3

1D implosion data Absorbed energy 500 kJ r 2 g/cm2

Spike Laser Power max 110 TW Abs Intensity 2e15 W/cm2

Thermonuclear rho r 2.2 g/cm2

Energy Th. 133 MJ

850 KJ-absorbed

1D implosion data Absorbed energy 850 kJ r 2.24 g/cm2

Spike Laser Power 100 TW Abs Intensity 1e15 W/cm2

Thermonuclear rho r 2.4 g/cm2

Energy Th. 260 MJ

2090 µm

DTgas

DT ice420 µm

1750 µm

DTgas

DT ice350 µm

1D implosion data Absorbed energy 200 kJ r 1.6 g/cm2

Spike Laser Power 160 TW Abs Intensity 5e15 W/cm2

Thermonuclear rho r 2 g/cm2

Energy Th. 44 MJ

1D implosion data Absorbed energy 100 kJ r 1.2 g/cm2

Spike Laser Power max 120 TW Abs Intensity 6e15 W/cm2

Thermonuclear rho r 1.7 g/cm2

Energy Th. 18 MJ

1040 µm

DTgas

DT ice210 µm

200 KJ-absorbed

1240 µm

DTgas

DT ice250 µm

13CEA-DAM Ile-de-France

The power in the spike is a key parameter for SI.

100 KJ-absorbed

=1v = 290 km/smax= 600 g/cm3

1040 µm

DTgas

DT ice210 µm

200 KJ-absorbed

1240 µm

DTgas

DT ice250 µm

Need between 200 and 300 TWfor ignitor pulses :The 33° rings will produce only 200 TW

We need to redefine a target design and to improve the laser-target coupling efficiency for the ignitor pulses.

1D implosion data Absorbed energy 200 kJ r 1.6 g/cm2

Spike Laser Power 160 TW Abs Intensity 5e15 W/cm2

Thermonuclear r 2 g/cm2

Energy Th. 44 MJ

1D implosion data Absorbed energy 100 kJ r 1.2 g/cm2

Spike Laser Power max 120 TW Abs Intensity 6e15 W/cm2

Thermonuclear r 1.7 g/cm2

Energy Th. 18 MJ

14CEA-DAM Ile-de-France

Low energy for fuel assembly should allow to use only the 49° ring.

100 KJ-absorbed

=1v = 290 km/smax= 600 g/cm3

1D implosion data Absorbed energy 200 kJ r 1.6 g/cm2

Spike Laser Power 160 TW Abs Intensity 5e15 W/cm2

Thermonuclear r 2 g/cm2

Energy Th. 44 MJ

1D implosion data Absorbed energy 100 kJ r 1.2 g/cm2

Spike Laser Power max 120 TW Abs Intensity 6e15 W/cm2

Thermonuclear r 1.7 g/cm2

Energy Th. 18 MJ

1040 µm

DTgas

DT ice210 µm

200 KJ-absorbed

1240 µm

DTgas

DT ice250 µm

b) LMJ Indirect Drive

33.2°

49°59.5°

Z

DT

We need more than 200 kJ to assemble the target: the 49° rings should be a good candidate.

We need to improve the irradiation uniformity.

15CEA-DAM Ile-de-France

High gain direct drive Shock ignition on LMJ requires to address several physical key issues.

Summary

• Standard direct drive fuel assembly is achievable with a part of X drive beams (rings @ 49° et 59°5).• Using the ring @ 49° needs well characterize and to improve (if necessary) the irradiation uniformity (PDD, Green House Target, …)• Shock ignition with the last beams (rings @ 33°) should be possible but we may need to redefine a target with lower power ignitor.• Extremely high gains could be achieved on LMJ :

E1D absorbed~ 0.2 MJ, Eth ~ 40 MJ

Restrictions• Parametric instabilities driven by the shock ignitor could be problematic.• Hydrodynamic stability of the capsule must be addressed• Unknown Physics (eos, heat conductivity, kinetic effects,…) could be limiting.• …

• 1D design must be revisited (wetted foam, reduced IFAR, …).• Fully 2D calculations (with ray-tracing 3D) have to be done for LMJ.

In addition, to be done …