1art (1).pdf

Upload: axl1097332630

Post on 02-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 1art (1).PDF

    1/11

    SPE

    SPE7785

    I NTHE

    CONDIT

    NECESSI OFRESPECTI NGESERVOI R

    ONSI NLABORATORYI SPLACEMENTTUDES

    by L. Cui ec,D. Longeron,andJ . ?acsi rszky,

    I nsti tutFrancai sdu Petrol e

    @Copyright1979.Societ yof Petrol eumEogineBrs

    Thispaperwaspresentedat the MiddleE@ 011TechnicalConferencef theSociet yof petroleumEngineerseldIrrManama,Bahrain,25.2SMarch1979.Themateriala subjectto correct ion y theauthor.

    Permlasionoc opyis restric tedo an abstractof not morethan300w ords.WriteSPE,S200NorthCentral.Exprassway,Dallaa,Texas752CUIUSA. Tele x730 SS9SPEOAL .

    ABSTRACT

    .

    Predictionof the fieldbehaviorduringprimary

    or secondaryrecoveryrequiresrepresentativeabora-

    torymeasurements,

    Insuringrepresentattvityf the rocksurface

    propertiesand of the fluiddistributionis not possi-

    ble,evenforpreservedsamples,

    A procedurefor restoringoriginalrock surface

    propertiesis presented,and resultsshowingthe in-

    fluenceon oil recoveryof both themethodused for

    establishinginitialwater saturationand the aectu-

    rationlevela:tainedare diacuased.

    INTRODUCTION

    Choosingthe racoverymethodsbest suitedfor

    productionfroma reservoirgoesvia laboratorytests

    usingreservoir-rockamples.

    Generaliy,the stateof coresampleabroughtto

    the surfaceis not representativef theirstatein

    situ.Even in takingprecautionsimmediatelyupon

    arrivalat the surfaceso as to preventany effectof

    the oxygenin the air or of evaporation,the corehas

    un

    while it is beingbroughtup to the surface,a de-

    craasein temperaturecannotbe avoided,and press~re

    maintenanceis lotstanoardpractice.Therefore,it

    is,a priori-difficulto assertthatthe surface

    stateof the so-calledpreaervedrrockas not been

    altered.

    In orderto solvethis importantproblema method

    capableof clearingup thiquncertaintyhas beende-

    velopedfor restoringthe originalsurfacestate.

    Descr&tion of themethod

    .

    It consistsin comparingthe nettabilityof the

    rockupon receptionand afterrestorationso as to

    justifyeitherthe directuse of the samplesrecaived

    or the applicationof a treatmantfor restoringthe

    originalsurfacastate.A schematicdiagramof the

    methodis givenin Figuze1.

    3 firstconsistsin

    he restorationprocedure

    cleaningthe samplesso as to make themas waterwet

    as possib~eby floodingcarefullychosensolven~s

    Then the samplea

    are dried&nd saturatedwith the

    reservoirfluids(storageoil and synthaticbrine)

    ..

    ..

  • 8/11/2019 1art (1).PDF

    2/11

    38

    ON TRE NECESSITYOF RESPECTINGRESERVOIRCONDII

    so as to obtaina fluiddistributionas closeaa pos-

    sibleto the one existingin situ.The rock-fluid

    syateais then

    Ilagedl:nderreservoirtemperatureand

    pressursconditionsduringthe time ;equiredto set

    up adsorptionequilibria.

    The nettabilityof the samples,whetherupon

    reception,after cleaningor after restoration,is

    evaluatedby a teutbaaedon spontaneousand forced

    displacementexperiments.

    A few aspectsconcerningthe experimentalmethod$

    are givenLn the appendix.

    Two examplesof thismethodbeingappliedin the

    caseof carbonatera:,ervoirs,s is frequentlyencoun.

    teredin the Middleitast,are preie~ttid,hese exam-

    ples are takenfroma stcdyc~veringsome fifteenre-

    servoirshavinga varyingxatureand location.

    Applicationexamples

    l.Reservoira

    ...........

    The rock fromthis reservoiris of dolomitictyp(

    The sampleswere receivedimpregnatedand un-

    prestwvedfromthe effectof theatmosphere.

    .-

    The resultsobtainedare givenin Table 1.

    The porosityof the samplesis about10%,and

    the intrinsicpermeabilityto brineis lessthan10

    millidarcies,

    Evaluationof nettabilityu~on recegtian

    ----------------------- -- ------------

    The amountof oil spontaneouslyisplacedby

    brine is smallor nil. On the otherhand,the amount

    of brinespontaneouslyisplacedby oil is smallor

    large,Thismaanethat in one case both nettability

    indicashave low and comparablevalues,whereasin

    the othertwo casesthe waternettabilityindexr is

    nil and the oil nettabilityindexr. has a high v~lue,

    Likewise,one of the sampleshas neutralnetta-

    bility,whereasthe othertwo are preferentiallyil

    wet, The mean nettabilityof the rockupon reception

    is thus.reasonablyronouncedforoil.

    Studyof cleaning

    -----------------

    Variousprocedureswere tested(seeappendix).

    Severalof themwere.able to make the rock claarly

    preferentiallyaterwet in the presenceof a refi-

    ned oil. Indeed,whereasthe r

    indexhus a value

    relatively

    close

    to the max~mumvalue,the r.

    indexhas a minimumvalueof zero.

    Evaluationof nettabilityafter restoration

    ----------------------- ------------------

    Samplesthat firsthad beencorrectlycleaned

    were usedfor analyzingthe influenceof agingtime

    in the presenceof reservoirfl-lidsn themodifica-

    tionof surfaceproperties.

    Despitesome degreeof dispersionamongthe re-

    sults,the rockappearsto becomeof neutralnetta-

    bilitywhetheraginglaatsfor severalhoursor seve-

    ~al thousandsof hours.This is illustratedin Figuri

    2 wherethe variationin the differenceof thenetta-

    bilityindiceeis shownas a functionof agingtime.

    NS IN LABOIUiTORYISPLACEMENTSTUDIES SPE 778:

    In the caseof thisrockand basedon the mean

    nettabilityof the samplesupon receptionand after

    restoration,e feelthat it is moreadvisableto use

    restoredsamples.

    2.Reservoirb (MiddleEast)

    -----------

    The rockfromthis reservoiris of the calcitic

    type.

    The sampleswere alsoreceivedimpregnatedut

    unpreservedfromcontactwith the atmosphere.

    The resulteare givenin Table2.

    The porosityof the sampleswas closeto 20%,

    and the intrinsicpermeabilityto brinewas appro-

    ximately4 millidarcie8.

    Evaluationof wettg.bilityu~onece~tion

    ---------------------.- -- ----------

    This evaluationwas made for severalsamples.,

    Spontaneousoil recoveryduringIfibibitionn brine

    was v r y low,and the valueof the waternettability

    indexwas thus closeto zero.OY.theotherhand spon-

    taneousbrinsrecoveryby imbi$,itionn oil was v r y

    high,and thaoil nettabilityfndexhad a maximum

    valueof one in all cases.The conclusionwas thus

    reachadthat the rockupon receptionhas a great

    affinityfor oil.

    Studyof cleaning

    ---------------

    Severalcleaningprocedureswere carziedout.

    They allmake the rock slightlywater

    w t

    althoughthe procedureusinga mixtureof solvants.

    appearstobethe leastaffective.Tha waternetta-

    bilityindexin all casesis sli~htlyhigherthan

    the oil nettabilityindex.The affinityforwater

    couldnot be increabedby applyinglongercleaning

    proceduresand by ueingmore complexeolventmixtures.

    The slightlyaffirmedcharacterof preferential

    affinityof the cleanedroc:corwateris possiblydue

    to the presenceof relativelyunhydrophilicr even

    hydrophobicciteson the matrixeurface.This should

    be comparedwith thehigh amountaof unextractable

    organiccarbonin somepartaof thematrix(approxi-

    mately1% weightof the extractedrock).

    In any case,threeof,thefourprocedurescarried

    out appearto have the same efficiencyand are capa-

    ble of changingthe initialnettabilityto oil to a

    slightdegreeof preferentialwaternettability.

    Evaluatingwettahilityof reetoredsam~les

    --------------------------------------

    After restorationthe samplesbecomehighlyoil

    wet,and thisoccursafteran agingtimeof several

    hoursfor the rock-fluidsystemfromthe fieldunder

    reservoirconditions(Figure3).

    A comparisonof the resultsobtaineduponrecep-

    tionand afterrestorationdoesrmt revealany great

    differenceswith regardto the-affinityof the rock

    for one or the otherfluid.In thiscaaeand for labo-

    ratoryexperiments,the samplesreceivedcan be used

    d$rectly,provi~edhatthe settingof fluidsis done

    under appropriateconditions.

  • 8/11/2019 1art (1).PDF

    3/11

    mm 77QR T..

    f7nTT7.c.

    n.

    T41NCERON. .T. PACSTRS7,KY

    2FiQ

    -

    ,

    - . - , - . - - -

    The resultsthathavejustbeen describedare

    finaldeplettonpressure,brinewaa injactedfromtha

    onlytwo examplestakenfroma morethoroughinvea-

    bottomof themodelat a constantrate,whichalso

    ttgation4.This investigationill enableua to draw

    was the same forall tests.Oil relativepermeability

    ganaralconclusions.

    beforaand aftardapletionand oil recoveryweremeasu-

    red.The resultsare givenin Table5.

    PROCEDURESFOR ESTABLISHINGINITIALWATERSATURATION

    -

    We noticedthatthe gasobtainedby depletion

    Initialwatersaturation,Swi, is an important

    remainstrappedduringthewaterflood.Figure5 shows

    parameterin studyingoil displacementin porous

    that a singlecurvecan be plottedforall oil residual

    media.Generally,themeasuredvalueor the one

    saturationvalues,Sor

    , at the end of the waterflood

    assuaedforthe reservotris respected.Bbt in most no matterwhatmethodwas usedforestablishinginitial

    cagesthisvaluecannotbe attainetiy the direct

    fluidsaturationandno matterwhat the valueof Swt

    displacementof

    watar

    by reservoiroil.Thereforeindi-

    was.

    rectmethodsof settinginitialwatersaturationmust

    be usedand comparedwithone anotherciccordingo

    Thereforeit appearsthattheway usedforestabli-

    the resultsobtainedin the displacementexperiments.

    shinginitialwatersaturationhas no influenceon

    recovery.

    The samplechosenis a vugularcalciticresarvoir

    rock.Itspropertiesare givenin Table3 (seevugu-

    Figure6 showsthe oil relattvepermeabilityas a

    lar limestonen 1).Oil propertiesare listedin

    functionof S,i

    beforeand afterdepletion.Before

    Table4 (seereservoiroiln 1).The syntheticbrine

    depletionit ~s reasonableto plota singlecurvebet-

    contains230 g/1 of sodiumchloride.Accordingto

    weenall the experimentalvaluesno matterwhatmethod

    measurements,the initialwater saturationin the ra-

    ts used for establishingirrftialatersaturation.

    servoiris about10%.

    Afterdepletionone valuais clearly outsideof the

    curveconnectingthe pointsfor whichSwi is obtained

    A diagramof ~he laboratoryequipmentis gtven

    in Figure4. Betweentwo tests,the surfacestateof

    by evaporationor displacementby reservoiroil.This

    the samplewas restoredaccordingto the procedare point

    is

    forSwi set by

    a

    viscousoil displacement.

    described?n the firstpartof the paper.

    For thetimebeing,we cannotaccountforthis diffe-

    rence.Thismay be the resultof a microscopicphase

    Fourmethodsof establishinginitialwatersatu-

    distributiondifferentfromwhat wouldhavebeenob-

    rationwere used :

    tainedby the evaporationmethod.In thiscase,how-

    ever,oil relativepermeabilitybeforedepletionand

    MethodI ts directdisplacementof waterby

    oil racoveryafterwaterfloodingshou.

    not be in

    reservoiroil.At reservoirtemperature,oik.

    agreementwiththoseforthe otheriasts.

    andwaterviscosities

    are very

    similar,i.e.

    respectively0.35and 0.40x 10-3Pas, Resi-

    Theseresultsmust be confirmedand developed

    dualwatersaturationis 42%,whichis a much

    becausethe initialwaterplayssuchan importantrole

    higharvaluethan the one in the reservoir.

    in displacementshatthe validityof the technique

    used to

    establish it must be carefullycheckad.

    Method11 is displacementGf water y high-

    3

    Unfortunatelyin the presentstateof knowledgeit is

    viscosityrefinedoil (V = 35 x In- Pa.a)at not possibleto knowwhetherthemethodsusedin this

    laboratorytemperature.The water saturation

    studyproduce,on a microscopicscale,phasedistri-

    obtainadis then21.5%. butionssimilarto thoseex%stingin the reservoir.

    Initialwatersaturationsas low as thoseprevailing

    Methods111and IV are quitesimilarand use in thisparticularreservoirmaybe achievedonlyby

    evaporationby circulatingmethaneat reservotr

    usingevaporationmethods.

    temperature,hey enablelow valuesof Swito

    be attainedin agreementwith thoeeas8umed

    INFLUENCEOF THE VALUEOF Swi ON DIFFERENTRECOVERY

    for tha consideredreservoir.In method111,

    MSTHODS

    the sampleis initiallysaturatedwithwater,

    thensweptby gaaalternatelyin one directton

    Influenceof S~,i------

    n dts~lacementby water

    and thenthe other.In methodIV the eampleis

    -------------

    ----------------

    initiallysaturatedwith gas,thensweptby

    waterand thenby gaa as in the preceding

    Besideethe investigationf themethodfor

    mathod.For boththesemethodsthe saltconcen-

    establibhinginitialwater,Figure5 showsthe effact

    trationin the brineis chosenas a function

    of s

    levelon displacements.

    or

    waterfloodperfor-

    of expectedevaporation.

    med ~ teran identicaldepletion,Sor decreasesas

    s

    Wi increases,althoughlessquicklyat high valuas

    Oncethe fluidsara in place;the sampleis left of Swithanat low ones.

    to restforaging.Morecver,the tinwchosenwas much

    longerthanthatrequiredto attainadsorptionequi-

    libriumso thatthe phasedistributionwould-become

    Thisresultsin e.maximumon thewater-injection

    stabilized,especiallyaftermethods11, iII and IV

    outputcurve,(Sol-Sor)/Sol~n whichSO1

    h

    the oil

    which

    are particularlydrastic, saturationat the end of depletion.

    With theporous~ediumplacedin a vefiicalposi-

    Influanceof Swian crittcalgas saturation

    tion,a depletionwas firstperformedwiththe top.

    faceopenand the bottomfacecloaad.Thisdepletion,

    Cri,tical

    as

    saturation,S

    dependson the

    at the sameconstantrate for all the tests,was

    gc

    stoppedat the camepresaurclevel{191bars),This

    propertiesand on phasedistribution,he natureand

    oczuredalwaysbeforegaemobility(Fig.5). Than at

    morphologyof the porousmediumand the rateof deple-

    tion.The resultsdescribadherehaveto,dowiththe

  • 8/11/2019 1art (1).PDF

    4/11

    .

    290

    ON THE NECESSITYOF RESPECTINGRESERVOIRCONDITIONSIN LABORATORYDISPLACEMENTSTUDIES

    SPE778----- .-- .

    influenceof Swi on S

    and are basedon researchdone

    *lReservoirock Nettability.Its Significanceand

    gc

    by K. Medaoui6,

    Evaluation,TransAIME, 1958,vol. 213, 155-160.

    Two porousmediaware used,Fontainebleausands-

    2.

    Amott,Earl,lObservationsalatingto theWetta-

    tone,an outcroprockmade up of pure silicawithan

    bilityof PorousRock,1959,Trans.AIME,

    intergranularorosity,and a vugularreservoirlimes-

    VO1.216,156-162.

    tone (limestone2). Theirpropartiasare givanin

    3.

    Cuiec,Louis,fStudyf ProblemsRelatedto the

    Table3.

    Restorationof theNaturalStateof CoreSamples,

    Threaoilswere used,two purehydrocarbonmix-

    J. of Can. Petr.Techn.,Ott-Dec.1977,vol.16,

    turea(Cl -C4and C1-C&- Clo) and a reservoiroil

    No. 4, 68-80.

    (n2). Theirpropertiesare giv,.nin Table4.

    4*

    Cuiec,Louis,Longeron,Danieland Pacsirszky,

    Joseph,

    Etudexp6rimentalees d6placements

    Depletionexperimentswere performedwith the

    en conditio.lae r~.servolr,orld Petroleum.

    apparatusahownin Figure4 and underthe same condi-

    Congress(tobe presented),Bucharest,Sept.1979

    tions.The depletionratewas high,approximately

    0.5 b r/hour.The depletionrateis knownto influence 5.

    S 6,70 S

    Treiber,L.E.,Archer,DuaneL. and Owans,W.W,.,

    Wi was establishedby methodsI an; III.

    IA

    aboratory

    Evaluationof tha Wattabilityof

    gc

    FjftyOil-Producingeservoirs,SOC.Pet.Eng.

    The results

    are

    givenin Table 6. For the diffe-

    J

    S

    Dec. 1972,531-540~

    rentoil-porousmediumsystems,Figure7 givesthe

    variationof effectivecriticalgas saturationSt =

    6.

    Madaoui,Khaled,Conditionse mobilit6de la

    sgc/(l-

    Swi)as a functfonof Swi.

    gc

    phasegazeuselors,dela d6compreasionun

    m61angedthydrocarburesn milieuporeux,Thesis

    For thesedifferentsystemsS increaaesvery

    Universityof Toulousa,Franca,OrderNo 4S0:

    muchwith Swi.

    This is all themoreg&identas the.oil

    1975.

    is closerto criticalconditions.This is the caee for

    7* .Wit:K*>

    f Solution.Gas-DriVen HeavYOil

    mixtureC

    1

    - C4 forwhich an aaymptottcvaluehas been

    Reservoirs,Symp.on HeavyCrudeRecovery,

    Dbtainedfor Si

    gc (seeFigure7).

    Meraca tbo,uly 1974.

    ,,

    APPENDIX

    .

    CONCLUSIONS

    -

    =m-&t~used to StUdYthe proceduref?:

    1. Rock samples,suchas thoseordinarilyavai-

    rastoringoriginalsurfacestateof rock samples

    Lablein petroleumlaboratories,re oftenpreferen-

    tiallyoilwet.This La in agreementwith the results

    Sfzasof sam~les

    ---------------

    ~btainedby Tre%bcret a15.

    The followingsamplesizeswere used :

    2. In the greatmajorityof casascleaningcan

    . diamater= 4 cm

    make a rockpreferentiallywaterwet in

    thepresenceof rafinedoil by maana~f carefully

    length

    = approximately6 cm

    chosensolventa. Descriptionof wettabilit~test

    ----------------------------

    3. In almostaSl cases,the adsorp~ionequili-

    briumbetweanpreviouslycleanedrockand reservoir

    The nettabilityof a samplewas evaluatedunder

    fluidsis obtninedin severaltensof hoursunder

    standardtemperatureand pressureconditions,by us%ng

    raservoirconditions.

    a pairof fluidsconstitutedby brineand rafinedoil

    Soltrol130 (extremelypure iaoparaffinicil).For

    4.Ina graatmany cases,differenceshave appea-

    eachreservcir,syntheticbrinewas used.The ratio

    red betweenthe meanwettabilitiesof samplesupon

    of oil viscosityto waterviscositywas approximately

    receptionand afterrestoration.

    1.2.

    5. In samplasof cleanedvugularlimestonerocks,

    The test chosenwae derivedfromthe one proposed

    the forceddisplacementtechniquecannotbe used to

    by Amott2.

    establishan initialwatersaturationchat is as low

    as the connatewaterof such reservoirs.

    Once the samplehad been saturatedwith oil and

    brine,the latterat residuals~turation,the test

    6. Evaporationmethod for eatabltshinginitial

    consistedin auc eaaivelyperformingthe following

    5water maturationappearsto give suitablerasults, fourexperiments :

    provfdeda sufficientwaitingtime is allowadfor

    phaseequilibrium.

    .

    imbibitionin brine,

    .

    displacementby brine,

    7. The importanceof reachinga water saturation

    . imbibitio~,n Soltroloil,

    levelsimilarto thatof the reservoirf~ all the

    . displacementby Soltroloil.

    greaterae this eaturatiions low,as ehownby inves-

    tigationson oil recaveryby waterfloodand the appea-

    Imbibitionswere performedin Pyrzxglassequip-

    ranceof a mqbilegas phaseduringdepletion.

    ..

    ment at 20C.They were pursueduntila sufficiently

    REFERENCES

    stablefluidrecoverywas obtained,.reaultingn expe-

    .

    rimentaltimesrangingfrom severaldays.toseveral

    1.

    Bobak,J.E.,

    weeks.

    Matt~x,C.C. and Denekas,M.O.,

  • 8/11/2019 1art (1).PDF

    5/11

    :PE ;785

    L.

    CtlIEC,. LONGI

    Displacementwere performed,,,inassler-typecore

    holder,operatingat a constantpressuregradient.The

    swaptvolumesof the two displacementincludedin the

    presenttestwere of about10 pore volumes.

    The waternettabilityindexrwwas evaluatedso

    that :

    _ amountof oil dfsplacedby brineby imbibition

    r

    w

    amountof oil displacedby IAneby imbibition

    and displacement

    andan oil nettabilityindexr. :

    r=

    amountof brinedisplacedby oilby,imbibition

    o

    amountof brinedisplacedby oil

  • 8/11/2019 1art (1).PDF

    6/11

    d

    uponaccpton

    TAB L S 1

    . s WL U ATI D N

    OF TSS HBT2AB

    SAW

    D16PMC-By

    mm

    60LTROLIL

    I

    t-=---

    1

    5

    6

    .*

    .*

    .*

    LTTVOF TNS RESERVOIR - RWK UPLtl RSC8PTION, AFTER CLSANRiG,

    M2 ER R S S ZOS A TIO N.

    WSTT ABILITY

    TEST

    0

    I

    34.5

    I

    I

    .40.5

    I

    o

    .

    non wailcblo

    b) After clmnina

    Clemimp procgdura($CCAppendix)

    4

    meqwncaof

    no n

    Folar-aolvant*

    62.5

    12;5

    0.s 49.5

    0

    13.5

    5 m2xtur* of nolvmts 51,5

    3

    12 36,5

    1

    2

    21

    ,, ,,

    ?6

    1.4.5 o 61.5

    0

    1

    16.5

    basic.typeolvants 83

    13 2 6a

    o

    6

    18

    acid.typasolvants

    S1.5 o 50 31.5

    22

    30

    .

    C After r9 tWrati0n

    BY OIL I -ABIL32Y 2NMCSS

    .

    0.27

    0.15

    0

    0.44

    0

    1

    63

    0.96

    0

    58.5 0.2 0,05

    7s

    1 0

    86 0,87

    0

    83.5

    0

    0.42

    4

    5

    5

    4

    3

    2

    1

    3

    1,5

    10

    67

    6a

    163

    331

    1150

    3264

    87

    60.5

    57.5

    $?

    75

    7s

    78

    (91)

    o

    1.5

    2.5

    5

    2

    7

    6.5

    s

    26.5

    14

    14.5

    32

    42.5

    37.5

    16

    29

    4,5

    1

    0.5

    11,5

    14

    2

    10

    1

    23

    12.5

    18

    29

    21,5

    23

    11.5

    9

    TABL22 . SVALLIATIDNF TN 3 JB TTA B3L ITY O F TES R S S S R V0 2S

    b -

    R WK WO N R E CE P TI ON ; A P 2E & C L MN I NG , AF 1S R RESTORATION.

    a)

    uDOnaaanton

    o

    0.16

    0.097 , 0.07

    0.15 0.03

    0.13

    O*2R

    0.044

    0.39

    0.16 Ooctl

    0.29

    0.46

    0.15 0.10

    DISP2ACEFEfiT

    NETTABILITY

    E:

    TS ST

    EY SOLTROL03L

    .-

    ISOISITIUi XN BR33iE D3BFMC~ BY BRINE I~3BITIGN

    DISPMCEP. .N2

    B Y 0 2L

    IN OIL

    UsTMB2LX,lCM

    s% OIL

    ISP3ACSD Z w 03L DISP3ACED Ser %

    Oi

    BR~zE~. SR3NS OISPL . s,, 7. To

    w ~ t ~ r

    W

    To oi l

    99

    w

    e

    1

    -

    2.5

    61

    .

    42

    0

    -

    0.04

    1

    2

    .*

    1.5 66

    .

    49

    0 0.02 .- 1

    3

    -*

    2 61.5

    .

    47 0

    .

    0,03

    1

    4

    1.5

    62

    .

    45

    0

    .

    0.02

    ;

    1

    5

    2

    69.5

    .

    51.5

    0

    .

    0.03

    1

    * non ava tl abl o

    Af te r C I Wl il ls

    - ~

    CIUnsnS procadura (sac pmd2x)

    I

    4 mqucnca of

    non-polar solvmm

    86

    6.5 49,5

    30

    0

    57 ,5 88.5 0.12 0

    1

    lxtur* of

    mlvmts 75 5.5

    51 3s.5

    2,25 56.5 77,25

    0.1 0.04

    5+

    axturc

    f olvmlts

    87

    6,5

    3n

    22.5

    4 54.5

    81 0.1 0.07

    2

    tmic.typaSolvmts

    79.5 7

    53.5 19

    1

    56,5 76.5

    0,11 0.02

    3

    idc-ty9aSOI%QCG

    77

    9

    43.5

    24.5

    1.5

    50.5 76.5

    0,17 0.03

    r ataurmkn

    5 4

    .

    70.5 1

    2

    72

    74.5 1

    4

    186

    87.5

    0.5

    3 427 70

    0.5

    I

    1

    I

    643

    I

    75

    I

    1 .s

    64.5 5 44.5

    13 62.5

    0.02 0.77

    61.5 12 48.5

    2,5 63

    0.02

    0.95

    53 34 44.5

    10.5 89 0.01

    0.81

    59.5 _ 10

    31

    26.5 67.5

    0.01 0.54

    58

    15.5 33

    ZR.5

    77

    0.02

    0.54

  • 8/11/2019 1art (1).PDF

    7/11

    TABLE 3 .

    CHARACTERISTICSOF ROCK SAMPLR~

    .-

    POROUSMEDIA

    I

    I

    I

    VugvlarLimestone nl

    I

    40

    I

    4.6

    I

    39

    I

    25.3

    1 t I

    ---- ----- ---

    FontainebleauSandstone

    I

    40

    I

    4,6

    I

    340

    I

    12.7

    - 1 - i

    . - - - - - - - - - - - - - - - - . - - - - - - -

    - - - - - - - l - - - - - -

    JugularLimestone n02

    I 40 I 4 6 154126 2

    FLUIDS

    ReservoirOilnl

    T = 93C

    ,- -- - - -- - .

    ReeervoirOiln2

    T = f35C

    .----- ----

    ixturecl-c4-cli

    T =85C

    ,- -- -- - - - .

    titurecl-c4

    T = 71C

    TABLE 4

    .

    PROPERTIESOF FLUIDS

    I

    UBBLEPOINT VOLUME

    FACTOR

    PRESSUREPb

    at Pb

    T

    1

    ----------

    141.0

    1.316

    139,2

    1.870

    113.9

    l=

    DISSOLVED

    SAS

    ae Pb

    200.0

    -----

    91.2

    200,0

    e.-- - -

    00

    VISCOSITY

    at Pb

    10-3Pa.s

    0.35

    -- - - --

    0.55

    0.15

    0.046

    NTERFAC14

    TENSION

    (UNh)

    4.0

    -----

    6.40

    -----

    1.21

    -----

    0.12

    .

  • 8/11/2019 1art (1).PDF

    8/11

    TMLB 5

    DE &TICtl... HATECW~DINC

    Vugulax Limestone

    n 1

    ReservoirOil n 1

    RUN n

    1

    2

    3 4

    5 6

    RlIT3AL

    s%

    Wi

    42.0

    21.5

    16.9 10.3 9.9

    4.6

    C~ITIONS

    Methodof

    ~stablishingSvt I II III

    N III 111

    P - 216

    bars

    Soi %

    58.0

    78.5

    S3.1 89.7

    90.1 95.4

    k

    ro

    0.31

    0.61

    0.64 0.75 0.80 0.83

    mm

    Swi z

    42.0

    21.5

    16.9 10.3 9.9

    4.6

    sol %

    51,2

    69.7

    73.4 79.3 79.7

    84.5

    DEPLETION

    s%

    gl

    6,8

    8.S 9.7

    lo.k 10.4 10.9

    AT 191 bars

    S;l. s fs

    @ 01

    11.7

    11.2

    11.7 11.6

    11.5

    11.4

    k

    ro

    0.16

    0.24

    0,16 0.16 0.18

    0.22

    ...-.

    AFTER

    s%

    35..

    or

    41.6

    42*9

    46.6 47.6 55.7

    s%

    6.8

    8.8 9.7

    @

    10.4 10.4 10.9

    PLQOD

    Sw z 5S.2 49,6 47.4 43.0

    42.0 33.4

    (sol-sor)/sol

    0.316 0.403

    0.416 0.412 0.403 0.341

    -

    TABLE6

    EFFEq OF SWi ~ S

    go

    POROUSMEDIA

    FLUID

    Swi (7W)

    3dlTIiODF

    S5C

    p,t

    EST:BLISH3NG

    ~%~,

    s

    Wi

    ?ONTALNEBLSAU

    remrvoir

    32.5

    I

    18.0

    26.7

    oil

    II*2

    SANDSTCWE

    i6.5

    III

    14.0

    16.8

    0

    11.0

    k=340m&

    11.0

    ------ -- .-----

    ------ ..----- ------

    = :2.7%

    c1 - C4 - Clo

    42,3

    I

    15.7

    27.2

    24.5 III

    9.0 11.9

    9.0

    111

    6,8 7.5

    0

    -

    4.4 4.4

    ------ -- .-----

    ------- ..----- ------

    c1 - C4

    54.3

    I

    18.3

    40.0

    34.7

    111

    26.4 40.5

    0

    la.0

    18.0

    WGDIAR

    C1-C4-C10

    72.3 I

    .-..-.

    11.7

    42.2

    LIlD3ST~E s*2

    46.9

    111

    17.1

    32.2

    k = 154md

    31.1

    III

    15.0

    21,8

    6 = 26,2%

    o

    .

    8.6 8.6

  • 8/11/2019 1art (1).PDF

    9/11

    .

    I

    SAWPLSSUFON

    MCEFTION

    I

    CUANING

    I

    n

    OMPARISON OF TKE

    RSSULTS ANO

    RSCOMtCENDATIONS

    Saturation WITH

    RSSERVOIR FLUIDS

    AND AGING UNJ)ER

    RSSERVOIR CONDITIONS

    I /

    WSTTABILITY

    EVALUATION

    FI G, 1- METHOD FOR OBTAINI NG

    RESERVOIR

    ROCK SAM PLES WI TH SURFACE PROPER-

    TI ES AS REPRESENTATI VE AS POSSI BLE,

    , -0.5

    6

    .1

    -1~------

    1

    1

    1

    10

    {OE

    I

    h

    10

    Aging time, in haure

    FIG 2 NETTABI LI TY VARIATI ON VERSUS ROCK- FLUID AGI NG

    ; I ME, UNDER RESERVOI R CONDI TIONS FOR

    RESERVOI R A,

    (rw-ro) +1 a

    g

    ~

    +o.5-

    1

    Aver age for c leaned samples

    SE 2

    ~

    1

    ~

    \

    \

    1-0.5-

    \

    -

    -~

    *

    .=

    0

    -

    -1-

    -.,--- ---

    ..

    1 I

    h

    ..

    1

    10

    102

    103

    Aging time, in kre

    ;~:LR:o;R~k:TABI LITY VARIATION VERSUS ROCK-FLUID AG1 NG TIME, UNDER RESERVOIR COilDITIONS FOR

  • 8/11/2019 1art (1).PDF

    10/11

    t-

    .. . .. .. . -. -. ..

    -.. . -- -- - - -.

    x

    I I -.

    -- --.

    -- -. .

    L- - L- . ..

    .i

    Il l

    .

    ~

    ~1

    I

    ,

    14

    I

    i

    .

    .

    ..-.- ..._

    ---------------- -1

    I

    --- -

    -----_-L -----

    I

    1

    2-3

    4

    5.6

    7

    t

    Co n h of hr

    and

    porousmw7um

    9-10 Ab olute

    OSWIV t fM7SdUCOf

    c el l om@o of f lu lW8 11 Wi t h d t uw l w t cw ot ic pump

    D i8pbc *mont pump

    12 Wet t .etg os mo t or

    Sm?k

    prow uro rq?ut i t ar WIW 13 Therm is t or

    60 s. l i ~t d seporotw M

    Sm on fi ol r ec or ~o r

    P f fo r ent i o l p r e8su tv t r ansdmr

    15

    4 ir t em p8mt um i h

    F]s,4- SCHEMATIC DI AGRAM OF THE APPARATUS FOR DISPL EMENT STUDI ES t

    Sor

    0102

    1

    1 1

    Initi al water Sotumti on , S wi%

    om -

    0. 40

    0.30-

    0. 20

    a

    o.1o-

    0 *

    1

    0 10

    1

    I

    A

    Mettmh for n.

    _hin ~.

    r

    A

    s

    I

    After Depletion

    ?

    A=

    Initial Water Saturation %

    P FIG, 6- OI L RELATI VE PERMEABI LITY VERSUS Sw ~

    . .

  • 8/11/2019 1art (1).PDF

    11/11

    4{

    .-

    J

    1 T

    I

    =-F

    10 20

    m

    ,

    1 1

    ~ Fontoinebteou %

    cl. C,. c,o

    / po

    $

    one:

    ~ Fontoinebleou

    Sondetone:

    Reeer tai r Oi l nc2

    o~ Limeetone n*2

    c, - c4. c~o

    ~m

    ~nttoi nebl eouondetone:

    L

    (+,

    I

    I

    ,

    )40s0s07080

    Swi (% W )

    FIG, 7 - EFFECT OF SW ON sGet