19870018450_1987018450

Upload: pratikmevada

Post on 06-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 19870018450_1987018450

    1/18

    NASA Technical Memorandum 100187IAF-87-491

    Monolithic Microwave Integrated Circuit(MMIC) Technology for SpaceCommunications Applications

    Denis J . Connolly, Kul B. Bhasin,and Robert R . RomanofskyLewis Research CenterCleveland, Ohio

    Prepared for the38th International Astronautical Federation CongressBrighton, United Kingdom, October 9- 17, 1987

    (kASA-'It!-lOO 87) LICNCLITHIC LICEOEAVE N87-27883S E A C E CCBRIJNICA'XXCNS IIEPLICA'IIC hS ( N A S A )I N T E G R A T E D C l E C C l l (IYEIC) I I C h h C L C G Y P G 318 p Avail: N31S HC A02/EE A01 CSCL 09C UnclasG3/32 0094532

  • 8/3/2019 19870018450_1987018450

    2/18

    MONOLITHIC MICROWAVE I N T E G R A T E D C I R C U I T ( M M I C ) TECHNOLOGYFO R SPACE COMMUNICATIONS APPLICATIONS

    Den is J . C o n n o l l y , K u l B. Bhasin, and Rob ert R . RomanofskyN a t i o n a l A e r o n a u t i c s an d Space A d m i n i s t r a t i o nLewi s Research CenterC leve land, Oh io 44135

    SUMMARYF u t u r e co mm un ic ati on s s a t e l l i t e s a r e l i k e l y t o use g a l l i u m a r s e n i d e(GaAs) m o n o l i t h i c m ic ro wa ve i n t e g r a t e d - c i r c u i t ( M M I C ) t e c hn o l og y i n m o st , i fno t a l l , commun ica t ions pay loa d subsys tems. Mu l t ip le -scann ing -beam an tennasystems a r e expec ted to use GaAs MMIC's t o i nc r ea s e f u n c t i o n a l c a p a b i l i t y , t oreduce vo lume, we igh t , and co s t , and to g r e a t l y i mp ro ve sy ste m r e l i a b i l i t y .R F an d I F matr ix sw i tch techno logy based on GaAs M M I C ' s i s a l s o b e i ng d e ve l-oped f o r these reasons . M M I C techno logy , i c l u d i n g g i g a b i t - r a te GaAs d i g i a li n t e g ra t e d c i r c u i t s , o f f e r s s u b s ta n t i a l a dv an ta ge s i n po we r c on s u mpt i o n an d

    w e i gh t o v e r s i l i c o n t e c h n o l o g ie s for high - thr oug hpu t , on-board baseband proce s-sor systems. For t h e more d i s t a n t f u t u r e p se ud om or ph ic i n d i u m g a l l i u mar se n id e ( InGaAs) and o t he r advanced 111-V m a te r ia l s o f f e r t h e p o s s i b i l i t y o fMMIC su bs ys te ms w e l l up i n t o t h e m i l l i m e t e r w a v e l en g th r e g i o n . A l l o f t h e s et e c h n o l o g y e le m en ts a r e i n N A S A ' s M M I C p ro gram. T h e i r s t a tu s w i l l be rev iewedi n t h i s p ap er .I. N T R O D U C T I O N

    S tu d ie s c o n d u c te d b y N A S A i n t h e l a t e 1 9 7 0 ' s showed t h a t t h e d emand f o ro r b i t a l l o c a t i o ns and fr eq ue nc y a l l oc a t io n s f o r f i x e d s a t e l l i t e s e rv i ce w i l le xc ee d t h e o r b i t and s pe c t ru m c a p a c i t y ( a t t h e C an d K u b an ds ) b y t h e e a r l y1 9 9 0 ' s ( r e f s . 1 an d 2). N A S A ' s approach to address ing these p rob lems was t odeve lop new techno log ies( 1 1 To open the Ka band( 2 ) To us e m u l t i pl e - b ea m a nt en na s t o o b t a i n t h e b e n e f i t s o f many- fo ld( 3 ) To u se o n b o ard p ro c e s s in g and m u l t i p l e s c a n n in g beams t o addressf requency reuse" cu stome r p rem is e s' ' t r a f f i c so t h a t l a r g e , c om pl ex Ka-band s a t e l l i t e sw o ul d be e c o n o m i c a l l y v i a b l e i n t h e 1 9 9O 's , n o t w i t h s t a n d i n g ad va nc es i no p t i c a l - f i b e r - b a s e d c o m pe t in g s ys te ms for t ru n k in g t r a f f i c

    The expe r im en t a l Advanced Communica t ions Techno logy S a t e l l i t e ( A C T S ) i se x p e c te d t o comp le te the p lanned deve lopmen t .S ec on d- ge ne ra ti on o p e r a t i o n a l s a t e l l i t e s t h a t a p p l y t h e c o n ce p ts p r o ve nb y A C T S c an e x h i b i t g r e a t l y i m pr o ve d p e rf o rm a n c e an d e co no mi cs b y c a p i t a l i z i n go n t h e l o n g e r r an ge m o n o l i t h i c m icrow av e i n t e g r a t e d c i r c u i t ( M M I C ) t e c h n o l o g yd ev elop men ts r e c e n t l y i n i t i a t e d ( r e f . 3 ) . These inc lude( 1 ) 20-GHz t r a n s m i t t e r mo d ules and 30-GHz re c e i v e r mod ules w i t h d i g i t a l l yaddressed amp1 i ude and phase con t ro l( 2 ) M a t r i x s wi tc he s a t b o t h 20 GHz and i n t e r m e d i a t e f r e q u e n c i e s( 3 ) GaAs d i g i t a l i n t e g r a t e d - c i r c u i t ( I C ) modules for h igh -speed ,low-power baseband pro ce sso r components( 4 ) O p t i c a l f i b e r / M M I C m o n o l i t h i c i n t e r f a c e s

  • 8/3/2019 19870018450_1987018450

    3/18

    A l l of t he se t e c h n o l o g y e l em e n ts a r e i n N A S A ' s M M I C program. They w i l lbe a dd re ss ed r e s p e c t i v e l y i n s e c t i o n s I1 t o V I , f o l l o w e d b y c o n c l u d i n g r e m a r k son t h e i r s t a t u s and p o t e n t i a l . For t h e more d i s t a n t f u t u r e I n G a A s a n d o t h e radvanced 111-V m a te r i a l s o f f e r t h e p o s s i b i l i t y o f M M I C s ub sy st em s w e l l u p i n t ot h e m i l l i m e t e r waveleng th re g i on . Pseudorm orph ic InGaAs grown i n GaAs sub-s t r a t e s c o u l d be i m p le m en t ed o n e x i s t i n g GaAs M M I C l i n e s w i t h o n l y t h e c hangeo f two o r t h r e e p r oc e s s s t e p s . G e ne ra l i d e a s c o n c e r n i n g t h e i m p a c t o f MMIC'sa r e a l s o d i s c us s ed .11. GaAs M M I C TECHNOLOGY - -STATUS

    GaAs M M I C ' s a re i n c re a s i n g l y becoming a p r a c t i c a l r e a l i t ~ . ~ , S h e i r u sei s b e i n g e xt en de d t o m i l l i m e t e r - w a v e f r e q u e n c i e s ( r e f . 6). The d r i v i n g f a c t o rbeh ind the deve lopmen t of t h i s t e c hn o l og y h as b ee n b a t c h p r o c e s s i n g , l e a d i n gt o low c o s t , h ig h p er fo rm a nc e, s ma ll s i z e , and r e p r o d u c i b i l i t y s i m i l a r t o t h a tfor s i l i c o n i n te g r a t ed c i r c u i t s .s e m i - i n s u l a t i n g GaAs s u b s t r a t e s , GaAs c r y s t a l an d e p i t a x i a l f i l m g ro w th t e c h -n iques , th e deve lopmen t o f t h e GaAs m e ta l- s em i co n du ct o r f i e l d - e f f e c t t r a n s i s -tor ( M E S F E T ) , and M E S F E T c om p ut er -a id ed c i r c u i t d e s i g n ha ve p r o v i d e da d d i t i o n a l i m p e t u s f o r t h i s r a p i d g ro wth i n t h e l a s t s ev er a l y e a rs .

    The e x c e l l e n t m ic r ow a ve p r o p e r t i e s o f

    A GaAs M M I C c o n s i s t s o f s e v e ra l a c t i v e a n d p a s s i v e c omp on en ts . Theact ive components are GaAs M E S F E T ' s a n d S c h o t t k y b a r r i e r d i o d e s .p a s s i v e components a r e t h i n - f i l m r e s i s t o r s , m e t a l - i n s u l a t o r - m e t a l o v e r l a yc a p a c i t o r s , i n t e r d i g i t a t e d c a p a c i t o r s , a nd s p i r a l i n d u c t o r s . Lumped- o rd i s t r i b u t e d - e l e m e n t c i r c u i t r y i s used.c u i t e l em e n t co n n ec t io n s , a nd t h r o u g h - s u b s t r a t e h o l e s a r e u se d f o r groundi erconnec t i ns .

    The majorP l a t e d a i r b r i d g es a r e u sed fo r c i r -

    The a c t i v e l a y e r s i n GaAs M E S F E T ' s f o r M M I C ' s are commonly formed by i o ni m p l a n t a t i o n and c h e m ic a l v a po r d e p o s i t i o n ( C V D ) . M o l e c u l a r b e a m e p i t a x y ,o rg a n o -m e ta l l i c c h e m ica l v a po r d e p o s i t i o n , a nd v a po r-ph a se e p i t a x y a re exam-p l e s o f C V D techn iques . These t e c h n iq u e s a re a l s o p r o v id i n g new microw a ved e v i c e s t r u c t u r e s b a s e d o n t h e p r o p e r t i e s o f h e t e r o j u n c t i o n s . H i g h - e l e c t r o n -m o b i l i t y t r a n s i s t o r s a r e e me rg in g as a p r o m i s i n g s t r u c t u r e and w i l l s o o n f i n dt h e i r way i n t o h i gh - pe r fo r ma n ce M MIC's ( r e f s 7 and 8).T h e l e v e l o f micro wa ve d e v i c e s a nd p a s s i v e c ompo ne nt i n t e g r a t i o n h as b ee ns t e a d i l y i nc re a si n g i n t he l a s t f e w y e a r s , as shown i n f i g u r e 1 for MMIC'sdeve loped i n th e 20/30-GHz band. However, s ev er a l as pe ct s o f t h e t e c h n o l o g ys t i l l need t o mature t o p r od u ce l o w -c o s t, r e l i a b l e M MI C's for s y s t e m a p p l i c a -t i o n s . Im provem ents i n m a t e r i a l q u a l i t y , a cc ur ac y i n c i r c u i t m o de l i ng , f a s t e ra n d e a s ie r t e c h n iq u e s for c i r c u i t c h a r a c t e r i z a t i o n , and advances i n c i r c u i tp a c k a g i n g a r e r e q u i r e d . To a l a rg e e x te n t t h e s e impro ve men ts w i l l b e b ro u g h ta b o u t b y e f f o r t s f un de d u n d e r t h e DoD M I M I C program.NASA w i l l be t o see t h a t t h e r e s u l t s o f t h i s p r og ra m a r e a p p l i e d t o the compo-n e n t s d i s c u ss e d b el ow , t h u s s p e e d in g t h e i r i n s e r t i o n i n t o s pa ce c om m u ni ca t io n s

    sys e m s .A s i g n i f i c a n t t a s k for

    111. GaAs M M I C TECHNOLOGY FO R S C A N N I N G - B E A M , PHASED-ARRAY ANTENNASA b lo c k d i a g ra m of c o mmu n ic a t io n s p a y lo a d f o r f u t u r e 20/30-GHz advancedc om mu ni ca tio ns s a t e l l i t e s i s shown i n f i g u r e 2 . T h i s p a y l o a d c o n t a i n sphased-a r ray an tennas and baseband p ro ces s in g and sw i tc h i ng .i s under deve lopmen t i n each of t h e s e a re a s .f o r use i n scann ing-beam, phased-a r ray an tennas a r e d is cus sed he re .

    M M I C t e c h n o l o g yS e v e r a l t y p e s o f M M I C modules

    2

  • 8/3/2019 19870018450_1987018450

    4/18

    A . 20-GHz M M I C T r a n s m i t t e r M o d u l eR o c k w e l l I n t e r n a t i o n a l , u n d e r NASA c o n t r a c t , h as d ev el o pe d a f u l l y mono-l i t h i c 20-GHz t r a n s m i t t e r m odu le o n a G a A s s u b s t r a t e .for t h e s e d ev i ce s a r e g i v e n i n Ta b le I , and t h e m o du le i s shown i n f i g u r e 3 .The t e c h n o lo g y g o a l sThe modu le cons is ts of f i v e c asc ad ed , s i n g l e - b i t , s w i t c h e d - l i n e ph as es h i f t e r s , e mp lo yi ng f i e l d - e f f e c t t r a n s i s t o r (FET) d e vi c e s fo r s w i t c h e s . T h e

    phase s h i f t e r s , w i t h phase b i t s of 11.25", 22.5", 45", go", and 180 ", can bee a s i l y i d e n t i f i e d i n f i g u r e 3 . F E T ' s i n s er ie s -s h un t c o n f i g u r a t i o n s a r eemployed t o e f f e c t a s i n g l e - p o l e , d ou bl e- th ro w s w i t c h ( S P D T ) . The se r i es ands h u n t F E T ga te w id ths a re 290 and 190 mm, r e s p e c t i v e l y . Two o f each o f t h e s eFET's a re employed i n each SPDT sw i tch . A l l F E T g a t e s a r e 1 mm l o n g . At w o- s ta g e b u f f e r ampl i f i e r f o l l o w s t h e p h a s e s h i f t e r s to compensate fo r t h e i ri n s e r t i o n lo s s , and a f i n a l t hr ee -s ta ge power a m p l i f i e r p r o v i d e s t h e r e q u i r e do u t p u t p ow er . The m od ul e r e p r e s e n t s t h e h i g h e s t l e v e l of component and func-t i o n i n t e g ra t i o n f o r c i r c u i t s o p e r a t i n g n ea r 2 0 GHz. The t o t a l a c t i v e d e v i c ec o u n t i s 73 (F E T' s a nd d io d e s ) ; t h e p a s s i v e d e v i c e s n u mb e r a p p ro x ima te l y 75.F i g u r e 3 shows t h e d i g i t a l - t o - a n a l o g ( D / A ) c o n v e r te r e mp lo y e d a s t h ei n t e r f a c e between th e t r a n s i s t o r - t r a n s i s t o r l o g i c i n p u t s i g n a l s a nd th e s w i t c h

    c o n t r o l f o r t h e 20-GHz p ha se s h i f t e r . E x p e r ime n ta l d a t a fo r f i v e phases h i f t e r s t a t es a r e p r es e nt e d i n f i g u re 4 . The c i r c u i t r e pr e s en t s th e f i r s tm o n o l i t h i c i n t e g r a t i o n o f d i g i t a l f u n c t i o n s w i t h m icrowave c i r c u i t f u n c t io n sabove the X b a n d ( r e f . 9).B. 20-GHz Var iab le -Power Amp l i f ie r

    T e x a s I n s t r u me n ts i s d e v e l o p i n g , o n NASA c o n t r a c t , a 20-GHz variable-powera m p l i f i e r ( V P A ) f o r po we r l e v e l c o n t r o l i n a ph a s ed - a rr a y a n te n n a f e e d( r e f . 10). The t e c h n o l o g y g o a l s f o r t h e V P A a re g i v en i n t a b l e I, n d t h ea m p l i f i e r i s shown i n f i g u r e 5.T h e o b j e c t i v e o f t h e VPA development i s t o p ro v id e an a m p l i f i e r t h a t i se l e c t r o n i c a l l y s w i tc h ab l e to a ny o ne o f f i v e o u t p u t p ow er l e v e l s : 500, 125,50, 12.5 , and 0 mW. The e f f i c i e n c y va r i e s from 15 p e r c e n t a t 500 mW t o6 p e r c e n t a t 1 2 .5 mW. The V P A c o n s i s t s of a f o u r - s ta g e , d u a l - g a te F E T a m p l i -f i e r and a D / A c o n v e r t e r o n a 3.05- by 6.45-mm GaAs c h i p . The D / A c o n v e r t e rc o n t r o l s t h e o u t p u t power l e v e l b y p r o v i d i n g t h e r e q u i r e d b i a s v o l t a g e t o t h esecond gate o f t h e d u a l - g a te FET i n ea ch s ta g e .F E T has sever a l advantage s. The FET ga in can be changed ov er a la rg e dynamicrange (20 to 40 dB). Over most o f t h i s r a ng e th e t r a n s m i s s io n phase s h i f t i sl e s s t h a n 5 p e rc e n t a n d t h e F E T i n p u t / o u t p u t im pe da nc es a r e e s s e n t i a l l y con-s t a n t , p r o v i d i n g a g a i n- v e rs u s -f r eq u e nc y - re s p on s e c u r v e w i t h a n e a r l y c o n s t a n ts h a p e ( f i g . 6 ) .

    Power c o n t r o l w i t h a du a l - g at e

    The VPA module employs four s tages o f a m p l i f i c a t i o n . The i n i t i a ls i n g l e - g a t e a m p l i f i e r m od ule h as a c hi e ve d an o u t p u t p o wer o f 630 mW w i th 2 5 -d Bga in and 21 pe r ce n t power -added e f f i c ie nc y . The fou r -s tage , dua l -g a te ampl i-f i e r ( i n f i g . 5) has demons t ra ted an ou tp u t power o f 250 mW w i t h 15-dB g a in .The c h i p s i z e i s 6 .4 5 b y 3 .0 5 mm. The fo ur sta ge s of a m p l i f i c a t i o n em ploy at o t a l g a t e p e r i p h e r y o f 2 .7 mm. The f i n a l - s t a g e p ow er c omb in es t h e o u tp u t o f1 1 F E T ' s (0.5-mm g ate s) w i t h 1.5 mm of g a t e p e r i p h e r y .

    3

  • 8/3/2019 19870018450_1987018450

    5/18

    B o th t h e s i n g l e - a nd d u a l - g a t e a m p l i f i e r v e r s i o n s w e r e t h e f i r s t r e p o r t e d20-GHz amp l i f i e rs to m o n o l i t h i c a l l y i n t e g r a t e l a r g e - p e r ip h e r y pow er F E T' s.T o t a l g a t e p e r ip h e r i e s of 2.7 mm of 0.5-mm-gate F E T ' s w e r e used .Texas Ins t ruments has now de l i ve red 1 73 2 0 GHz v a r i a b l e p ow er a m p l i f i -e r s . F i f t y h a v e b e e n r i g o r o u s l y t e s t e d .dynam ic range i n excess o f 20 dB , has been ach ie ved o ve r a 1 GHz bandw id th .P e r f or m a n c e a t t h e u p pe r e n d o f t h e 1 7 . 7 t o 20. 0 GHz band i s somewhat deg ra-d ed . G a i n c o n t r o l was a c h ie v e d p r i m a r i l y b y v a r y i n g b i a s o n t h e f i r s t g a t e s

    o f t h e f o u r stage a m p l i f i e r i n l i e u o f t h e s e c o n d g a t e T T L c o n t r o l w h i c h p r o -v i d e d o n l y m a rg i na l dyn am ic c o n t r o l . The c h a r a c t e r i z a t i o n h as i n d i c a t e d goodc h i p t o c h i p r e p e a t a b i l i t y b u t a p p r e c i a b le w a fe r t o w a f e r v a r i a t i o n s .t e s t s were per formed u s i ng a waveguide prob e t e s t f i x t u r e d ev el op ed b y G E( f i g . 7 ) an d a n HP-8510 a u t o m a t i c n e t w o r k a n a l y z e r . F u t u r e t e s t s w i l l i n c l u d ede-embedding p ro ce du re s u t i l i z i n g a r i d g e g u id e t e s t f i x t u r e and c h i p l e v e lc a l i b r a t i o n s ta nd ar ds . C u r r e n t mea sured r e s u l t s i n c l u d e f i x t u r e e f f e c t s w h ic ha c c o u n t fo r n e a r l y 3 dB o f i n s e r t i o n l o s s .

    G a i n a p p r o a c h i n g 20 dB, w i t h a

    A l l

    I n a r e l a t e d e f f o r t a h ig h- po we r, h i g h - e f f i c i e n c y m o n o l i t h i c power a m p li -f i e r for t he 19- t o 21-GHz band i s b e i n g d e v e l o p e d b y T ex as I n s t r u m e n t s f o ro t h e r ad va nc ed c om mu ni ca ti on s a p p l i c a t i o n s . The o b j e c t i v e s a r e 2 0 - p er c e nte f f i c i e n c y a nd 15-dB g a i n w i t h a p ow er o u t p u t o f 2 .5 W a t s a t u r a t io n .Two a p pr oa ch e s a r e b e i n g c o n s i d e r e d t o m ee t t h e se o b j e c t i v e s , aTheh r e e - s t a g e a m p l i f i e r and a p ow er-co mb in ed d i s t r i b u t e d a m p l i f i e r .t h r e e - s t a g e a m p l i f i e r ( f i g . 8 ) h as a c h i e v e d 2.5-W o u t p u t po we r w i t h 18-dB g a i nand 1 6 -p e rc e nt e f f i c i e n c y a t 1 8 GHz. The a m p l i f i e r ' s t o t a l g a t e p e r i p h e r y o f9.6 mm o f 0.5-mm-gate FET 's p roduced th e h i gh es t re po r t ed o u t p u t power f rom as i n g l e c h i p (2 W ) . The a m p l i f i e r g a i n was 12 dB w i t h a 20-p erce nt power-addede f f i c i e n c y .

    C . 30-GHz M o no l i th i c R ece ive r ModuleS e v e ra l g r ou ps ha ve f a b r i c a t e d a nd t e s t e d GaAs m o n o l i t h i c r e c e i v e r s i nt h e X b a n d ( r e f . 1 1 ) a n d t h e K band ( r e f . 1 2 ). However, f u l l y m o n o l i t h i cr e c e i v e r s w i t h v a r i a b l e p hase s h i f t i n g and g a i n f u n c t i o n s fo r a p p l i c a t i o n i np h a se d -a r ra y s a t e l l i t e r e c e i v e r s h ave n o t b ee n d e m o n s tr a t ed . To a c h i e v e t h i so b j e c t i v e , a n e f f o r t has been under taken t o i n t e g r a t e a l ow -n o is e a m p l i f i e r , av a r i a b l e phase s h i f t e r , a m i x e r , a n d a n i n t e r m e d i a t e - f r e q u e n c y ( I F ) a m p l i f i e ron a s ing le GaAs M M I C c h i p f o r o p e r a t i o n i n t h e 27.5- t o 30-GHz band.t e c h n o l o g y g o a l s for t h i s 30-GHz M M I C r e c e i v e r mo du le a r e shown i n t a b l e 11.TheTwo approaches have been taken t o a c h i e v e t h e d e s i r e d p e r fo r m a n ce . Thef i r s t a pp ro a ch has a ph ase s h i f t e r a nd a v a r i a b l e - g a i n c o n t r o l a t t h e r e c e i v e rf r e q u e n c y. The r e c e i v e r m od ule u n d er t h i s a p p ro a ch ( f i g . 9 ( a ) > i s b e i n g d e v e l -o pe d a t H o ne yw e ll P h y s i c a l S c i e n c e s C e n t e r u n d e r NASA c o n t r a c t . The s ec on da p pr oa c h u s es a la n g e c o u p l e r a n d a p a i r o f GaAs Sch o t t ky d iod es t o form an

    a na lo g phase s h i f t e r t h a t o p er a te s a t t h e l o c a l o s c i l l a t i o n f r eq u e nc y ( 23 .5 t o26 GHz). The v a r i a b l e - g a i n c o n t r o l i s a c h ie v e d a t t h e i n t e rm e d i a t e - f r e q u e n c ys tag e . Th is approach ( f i g . 9 ( b ) ) has been taken by Hughes Tor ra nce ResearchCente r under NASA c o n t r a c t . W i th t h e f i r s t approach Honeywel l has comp le teda l l f o u r su b-m odu le s. A 3 0 - G H z v a r i a b l e - p h a s e - s h i f t M M I C su bm od ule i s r e p o r -t e d i n re f e re n c e 13 and a v a r i a b l e - g a i n - c o n t r o l a m p l i f i e r m od ule i n r ef e r e nc e14.o f i n t e r c o n n e c t e d s ub mo du le s. An i n t e r c o n n e c t e d r e c e i v e m od ul e, d e l i v e r e d b yH o n ey w e ll , i s shown i n f i g u r e 10. G a in c o n t r o l d a t a a nd p ha se c o n t r o l d a t aH o ne y we ll has d e l i v e r e d t h r e e r e c e i v e r s , e a ch c o m p r is e d o f a comple te s e t

    4

  • 8/3/2019 19870018450_1987018450

    6/18

    a r e s hown i n f i g u r e s 1 1 a nd 12 r e s p e c t i v e l y . A maximum RF t o I F g a i n o f 12 dBhas been ach ie ved w i t h a dynam ic range o f 13 dB.b an d c e n t e r , was o b t a i n e d o v e r t h e f i v e g a i n s e t t i n g s .A phase enve lope o f + l o " a tA t w o - st a g e l o w - n o i s e a m p l i f i e r ( LNA) w i t h 1 4- d6 g a i n an d 7-dB n o i s e f i g -u r e has been demon s t ra ted under the second approach by Hughes ( r e f . 15 ) . Thel o w- n oi se a m p l i f i e r i s shown i n f i g u r e 1 3. An I F a m p l i f i e r ( f i g . 141, a m i x er( f i g . 1 51 , a nd a p ha se s h i f t e r m od ule ( F i g . 1 6) h av e a l s o b ee n f a b r i c a t e d .

    The I F amp1 i f i e r h as 13-dB g a i n w i t h 30-dB co n t r o l range . The m i xe r and phases h i f t e r h ave c o n ve r s io n l o s s and i n s e r t i o n l o s s o f 10.5 and 11.6 d6r e s p e c t i v e l y ( r e f . 1 6) .I V . MONOLITHIC OPTICAL I N T E G R A T E D CONTROL CIRCUITRY FO R GaAs MMIC'sI t i s b ec om in g a p p a r e n t t h a t u s i n g c o n v e n t i o n a l m ic ro w av e t r a n s m i s s i o nl i n e c o mp on en ts for s i g na l d i s t r i b u t i o n i n a phased a r r a y r e s u l t s i n a complexs ig n a l d i s t r i b u t i o n system. Fur thermore us ing a wavegu ide for m i l l i m e t e r - w a v ef r e q u e n c i e s a dd s w e i g h t a nd b u l k .F i b e r o p t i c t e c h n o l o g y may p r o v i d e a n a ns we r t o t h e M M I C p h a s e d - a r r a y s i g -n a l d i s t r i b u t i o n p ro b le m ( r e f . 1 7 ). O p t i c a l f i b e r can be used t o t r a n s m i t

    b o t h a n al og and d i g i t a l s i g n a l s . I t has o t h e r a d v a n ta g e s - s ma ll s i z e , l i g h tw e ig h t, f l e x i b i l i t y , and l a r g e b an dw id th . O p t i c a l wa ve le ng th d i v i s i o n m u l t i -p l e x i n g, w hic h a l lo w s d i s t r i b u t i o n o f d i v e r s e s i g n a l s s i m u l t a n e o u s l y o n a s i n -g l e f i b e r , w i l l f u r t h e r re du ce s i g na l d i s t r i b u t i o n c om p le x it y . S in ce s h o r tl i n k s a r e i n v o l v e d i n th e ph ase d-a rra y s i g n a l d i s t r i b u t i o n n e tw o rk , t h e s ho r-t e r 8 5 0 - t o 900-nm wavelength w i l l s u f f i c e . A l s o , GaAs-based o p t o e l e c t r o n i cd e v i c e s , r e q u i r e d to p r o v i d e t h e i n t e r f a c e betwee n t h e o p t i c a l f i b e r a nd t h eGaAs MMIC's, o p e r a te i n t h i s r e g i o n . The o p t i c a l e l e c t r o n i c i n t e g r a t e d c i r -c u i t s ( O E I C ) r e q u i r e d t o i n t e r f a c e w i t h GaAs MM IC 's h av e n o t y e t b ee n i n t e -g r a t e d o n a s i n g l e c h i p .p a t i b l e f a b r i c a t i o n te ch niq ue s.T h e i r f e a s i b i l i t y d ep en ds o n t h e d ev el op m en t o f com-I n an a c t i v e , s o l i d - s t a t e phased a r r a y b ased o n a f i b e r o p t i c n e tw o rk ano p t i c a l f i b e r from t h e c e n t r a l p r oc e ss in g u n i t w i l l be connec ted t o t h e M M I Cmodule fo r t h e p ha se an d g a i n c o n t r o l f u n c t i o n s . The RF i n p u t or I F o u t p u t t ot h e M M I C ' s w i l l be connec ted to t h e b ase ba nd p ro c e ss o r b y an o p t i c a l f i b e r i ff e a s i b l e .I mp le me nt in g th es e o p t i c a l f i b e r l i n k s for an M M I C p ha se d- ar ra y s i g n a l d i s t r i -b u t i o n n e t wo rk w i l l r e q u i r e i n t eg r a te d o p t i c a l t r a n s m i t t e r s and r e c e i v e r s onGaAs su b st ra te s. As an example an M M I C t r a n s m i t t e r module w i t h o p t i c a l i n t e -g r a t e d f e e d c i r c u i t r y i s shown i n c on ce pt ua l dia gr am ( f i g . 1 7) . I n t e r f a c e sfor p h a s e a n d a m p l i t u d e c o n t r o l of a t r a n s m i t t e r mo du le r e q u i r e t r a n s m i s s i o no f t h e d i g i t a l s i g n a l b y o p t i c a l f i b e r . The i n p u t s i g n a l to t he t r a n s m i t t e rmodule w i l l r e q u i r e RF o p t i c a l l i n k s . D e s ig n a nd com pon en t c o n s i d e r a t i o n s f o rt h e s e c o n n e c t io n s a r e d e s c r i b e d h e r e .

    I t may be poss ib le t o combine the two l i n k s on a s i n g l e f i b e r .

    O p t i c a l i n t e n s i t y m o d ul a ti o n te ch niq ue s, e i t h e r d i r e c t o r i n d i r e c t depend-i n g on t h e f re qu en cy l i m i t a t i o n of t h e v a r i o u s o p t i c a l c om po n en ts , c a n b e u s edfor d i s t r i b u t i n g t h e R F s i g n a l t o t h e M M I C . The ma j o r c o n s i d e r a t i o n s i n u s i n go p t i c a l f i b e r f o r d i s t r i b u t i n g t he RF s ig n a l a r e i n s e r t i o n l o s s , s t a b i l i t y ,d yn am ic r a n g e , a nd s i g n a l - t o - n o i s e r a t i o . The m a j o r a d v a n ta g e i s t h a t a s i n -g l e f i b e r can c a r r y m u l t i p l e s i g n a ls .D i r e c t l a s e r m o d u la t io n t o 30 GHz (u s i n g a GaAs IA lGaAs sem icon duc to rl a s e r ) h a s b ee n d e m o n s tr a t e d ( r e f . 1 8 ).

    5

  • 8/3/2019 19870018450_1987018450

    7/18

    A t r a v e l i n g w av e- mo du la to r w i t h b a n dw i d th i n e xc es s of 20 GHz on a GaAss u b s t r a t e o p e r a t i n g a t 1 . 3 m i c r o n s w a v e l e n g t h h a s b ee n d e m o n s t r a t e d b y Wange t a l . ( r e f . 19).P h a s e a n d a m p l i t u d e c o n t r o l o f GaAs MMIC's can be ach ie ved v i a a s in g l ef i b e r from t h e a r r a y pr o c es s or r a t h e r t h an t h e s e v e r a l e l e c t r i c a l c o n n e c t i o n sn e e d e d c u r r e n t l y .s e r i e s a nd by u t i l i z i n g a p h o t o r e c e i v e r an d d e m u l t i p l e x e r c ha ng ed t o t h e

    d e s i r e d p a r a l l e l s i g n a l s . The N A S A L ew is R es ea rc h C e n t e r ha s t a k e n t h e i n i t i a -t i v e i n d e v e lo p i ng an i n t e g r a t e d p h o t o r e c e i v e r o n a GaAs s u b s t r a t e t h a t w i l ld e m o n st r a te t h e c o n t r o l o f t h e p h a s e a n d g a i n f u n c t i o n s of a M M I C . A GaAs pho-t o r e ce i v e r c i r c u i t o p e ra t in g u p t o 2 G b i t s / s e c a nd a l s o e m p l o y i n g a 1 :1 6 d em ul -t i p l e x c h i p on a GaAs s u b s t r a t e t e s t e d w i t h a c l o c k s pee d up t o 2.7 GHz hasb ee n d e mo ns tr at ed . F u l l m o n o l i t h i c i n t e g r a t i o n h as b ee n i n i t i a t e d . When t h eb a s i c o p t i c a l d e vi ce s an d c i r c u i t s t ec h no lo g y r e q u i r e d t o c o n t r o l G a A s M M I C sup to 20 G Hz becomes a v a i l a b l e , a n o p t i c a l l y c o n t r o l l e d GaAs M M I C p h a s e d a r r a yan tenna w i l l b e e v a l u a t e d .

    The c o n t r o l s i g n a l s c an be b r o u g h t t o t h e M M I C c h i p i n

    V . MONOLITHIC GaAs I F S W I T C H M A T R I XAn I F s w i tc h m a t r i x f o r o nb oa rd s a t e l l i t e s i g na l p r o ce s s in g i s b e i n g

    d e s i g n e d , f a b r i c a t e d o n a s i n g l e GaAs c h i p , a nd e v a l u a t e d b y M i c ro w a v eM o n o l i t h i c s , I n c . , f o r N A S A . F E T s w i t c h e s a r e u s e d f o r s i g n a l s t e e r i n g . FETb u f f e r a m p l i f i e r s p r o v i d e an o v e r a l l i n s e r t i o n l oss o f z e r o dB, a l l o w i n gt w o - d i m e n s i o n a l c a s c a d i n g t o form v e r y l a r g e a r r a y s ( up t o 100 b y 10 01 , a l s ow i t h 0-dB i n s e r t i o n l o s s . S w i t c h i n g i s o b t a i n e d b y a p r o p r i e t a r y c r o s s p o i n te l e m e n t d e s i g n t e c h n i q u e .A m o n o l i t h i c G a A s I F s w i t c h a r r a y (100 by 100) w i l l w eig h o n l y 17 l b i n

    A d d i t i o n a l b e n e f i t s o f 6 0 - d B i s o l a -2 0 0 i n . 3 .i n a p p r o xi m a t el y 12 000 i n . 3 o f volume.t i o n b etw ee n i n p u t and o u t p u t l e ns es and h ig h e r r e l i a b i l i t y a r e a l s oa n t i c i p a t e d .For c om p ar is on , a h y b r i d c r o s s p o i n t s w i t c h m a t r i x w i l l w e ig h 5 00 l b

    V I . GaAs SERIAL-PARALLEL I N T E R F A C E MODULEBe ca use o f an a n t i c i p a t e d g r o wt h i n t h e volu me o f commun ica t ions , onboardd a t a p r o c e s s i n g i s a key a rea o f development fo r advanced communicat ions sys -t e m s . H i g h - s p e e d , l o w - p o w e r , p a r a l l e l - t o - s e r i a l ( P I S ) a n d s e r i a l - t o - p a r a l l e l( S i p ) c o n v e r t e r s a r e b e i n g d e ve l op e d o n a GaAs s u b s t r a t e i n o r d e r t o i n t e r f a c eonboard h igh-speed p roce ssors t o l a r g e v o l u m e s o f o n b o a r d s o l i d - s t a t e memory.G a l l i u m ar s en i d e c o n v e r t e r s - 1-16, 1-32, a nd 1-64 S I P and 16-1, 32-1, and64-1 P / S - are under deve lopment . To d a t e , 1 6 : l m u l t i p l e x e r s a nd 1 : 16 d e m u l t i -p l e x e r s w i t h enhancement/deplet ion-mode, d i r e c t - c o u p l e d M E S F E T l o g i c h a v e b e e nf a b r i c a t e d b y H o n e y w e l l 's P h y s i c a l S c ie n ce C e n t e r .a nd 1: 16 w e re d e si g ne d , e a ch w i t h T T L - c om p a t i bl e i n p u t a n d o u t p u t p o r t s . One

    d e s i g n of t h e 1 6 : l an d 1 :1 6 o p e r a t e d a t 2 0 0 MHz w i t h 2 5 t o 30 mW p e r c h i p . Af a s t e r d e s i g n o p e r a t e d a t 45 0 MHz w i t h 5 0 mW p e r c h i p .Two v e r s i o n s o f t h e 1 6 : l

    I n t h e s e mo dules l o w po we r was o b t a i n e d b y m u l t i p l e x i n g or d e m u l t i p l e x i n gi n two s e p a r a t e s t a g e s .low-sp eed 4 : l m u l t i p l e x e r s a r e f e d i n t o a s i n g l e h ig h- sp ee d 4 : l m u l t i p l e x e r .S i m p ly , t h e 1 :1 6 i s i mp le m en te d as a h i gh - sp e e d 1 : 4 d e m u l t i p l e x o p e r a t i o n an df o u r lo w- sp ee d 1:4 d e m u l t i p l e x o p e r a t i o n s .For t h e 1 6 : l m u l t i p l e x e r t h e o u t p u t s of f o u r

    Thus o n l y f o u r r e g i s t e r s a r e

  • 8/3/2019 19870018450_1987018450

    8/18

    required t o clock at t he maximum data rate.ule characteristics will greatly reduce the power required for this functionfrom that required with curre ntly available electronic c ouple logic technology.These S I P and P /S interface mod-

    VII. CONCLUDING REMARKSDevelopments in gallium arsenide (GaAs) monolithic micro wave integrated

    circuit (MMIC) tec hnology presented i n this paper have shown that high levelsof device and component integration are feasible up t o 30 GHz.ments have als o demonstrated integration of substantial power capabili ty andintegration of digital and microwave functions.These develop-

    It is not overly optimist ic t o extrapolate the ultimate ca pabili ties ofthis technology t o higher frequencies, perhaps to 100 GHz. Passive componentstend t o become smaller with increasing frequency. At 30 GHz they are not evenclose t o the limits of availa ble microfabrication techniques. Active compo-nents presently limit the frequency range of MMIC's , but GaAs field-effecttransi stor (FET) operati on has already been demonstrated at 70 GHz. Recently,for 0.25 pm InGaAs pseudomorphic HEMT, power efficie ncy of 28 percent and gainof 5.7 at 60 GH z has been achieved (ref. 20).techno logies like high-electron-mobility transistors promise t o substan tiallyextend the frequency range available with MMIC's. NASA Lewis Research Centeris taking an initiative t o develop 30 t o 7 0 GHz MMIC transmitter technologyusing InGaAs pseudomorphic HEMT.ally enable the manufacture of very low-cost millime ter-wavel ength componen ts.Potential applications in consumer, industrial, and military products couldconstit ute an enormous market for these components.

    MMIC-compatible active device

    It is clear that MMIC technology will eventu-

    An important concept t o focus longer ter m technolog y developments in sat-ell ite communica tions is global interconnectivity thro ugh hierarchical switch-ing satellite networks (ref. 20). Key system tec hno logi es will include multi-beam antennas, switching and processing, low-cost user terminals, and laserintersat ellite links. All of these technologies except laser intersatellitelinks may be substantially affected by incorporation of MMI C components. Cur-rent developments in the NASA MMI C program are in the feasibil ity demonstra-tion stage, where the circuit yield is expected t o be small and unpredictableand where there are substantial chip-to-chip variation s in the device perform-ance parameters. Emphasis will shift to maturing t hese devices t o the pointwhe re the technology could support proof-of-concept system or sub sys tem devel-opments (ref. 2 1 ) . It is hoped that the MMIC program funded by the Depar tmentof Defense will stimulate development of MMIC fabrication capability in theUnited St ates and greatly reduc e the NASA investment necessary t o develo pMMIC-based satellite comm uni cat ion s components.

    7

  • 8/3/2019 19870018450_1987018450

    9/18

    REFERENCES

    1.

    2 .

    3 .

    4.

    5.

    6.

    7.

    8 .

    9.

    10 .

    11.

    12.

    13.

    14.

    8

    J.N. S i v o , " Ad va nc ed Co m m un i ca t io n s S a t e l l i t e Sy st em s, " I E E E J. S e l e c t e dAreas i n Commun ica tion, Vol. S A C - 1 , pp. 580-588, 1983.W.A. Pol ey , J .F. Lekan, J.A. Salzman, an d S.M. Stev ens on, "A Compar isono f D o me st ic S a t e l l i t e Co mm u ni ca ti on s F o r e c a s t t o t he Year 2000 , " NASATM-83516, 1983.G . A n z i c , T.J. Kascak, A . N . Downey, D.C. L i u , and D.J . Co nn ol ly ,"Mic rowave Mono1i h i c I n t e g r a t e d C i r c u i t D e v e l o p m e n t for F u t u r eSpaceborne Phased Ar ray Antennas ," i n 1 0 t h A I A A C o m m u n i c a t i o n s S a t e l l i t eSystems Con fere nce, New York: A I A A , 1984, pp. 43-53.R . A . P u ce l , e d. , M o n o l i t h i c M ic ro wa ve I n t e g r a t e d C i r c u i t s , New York:I E E E Press , 1985.J . F rey and K . B . B h a si n , e d s ., M ic ro wa ve I n t e g r a t e d C i r c u i t s , 2 nd e d.Dedham, MA: Ar e t ch House, 1985 .A . Chu, W.E. C o u r t ne y , a nd L . J. Mahoney, " M o n o l i t h i c C i r c u i t s fo rM i 1 1 metre-Wave Systems , I ' Microwave J. , Vol . 26, pp. 28-48, 1983.U.K. M ishra, S . C . P a l m a t e e r , P . C . Chao, P . M . S m i t h , a n d J.C.M. Hwang,"Mic rowave Per formance o f 0.25-pm G at e L e n g t h H i g h E l e c t r o n M o b i l i t yT r a n s i s t o r s , " IEEE E l e c t r o n D e v ic e L e t t . , Vol . EDL-6, p p. 142-14 5, 1985.M. S c h o l l e y , J. Berenz , A . Nicho ls , K . Nakano , R . S a w i r es , a n d 3 . A b e l l ,"36.0-40.0 GHz HEMT Low-Noise A m p l i f i e r , " i n 1985 I E E E MTT-SIn te rna t iona l M ic rowave Sympos ium D iges t , New York: I E E E , 1985, pp.555-558.A . Gupta, G. K a e l i n , R. S t i n e , S . Hus ton , K . Ip , W . P e t e r s o n , M. Mikasa ,and I. e t r o f f , " A 2 0 GHz 5 - B i t P ha se S h i f t T r a n s m i t M o du l e w i t h 1 6 dBG a i n ," i n 1984 I E E E GaAs I C Sympos ium Technica l D iges t , New York: I E E E ,P . S a u n i e r , H.Q. Tserng, B. Kim, and G. H. W e s t p h a l , " M o n o l i t h i c GaAsDual-Gate FE T V a r i a b l e Po wer A m p l i f i e r M o du le ," i n I E E E 1985 Microwave-a nd M il l im e t e r -W a v e M o n o l i t h i c C i r c u i t Sym posium D i g e s t , New York: I E E E ,1984, p p . 197-200.

    1985, pp. 1-3.S . Mori, K . Kamei , K. Shibata, M. Tatematsu, K. Mish ima, and S . Okano,"GaAs Mono l i th i c M I C ' s f o r D i r e c t B ro ad ca s t S t a t e l l i t e R e ce iv er s, " I E E ETra ns . M ic ro crav e Theory Tech . , v o l . MTT-31, pp. 1089-1095 (1983 ) .A . Chu, W.E. C o u r t n e y , a n d R.W. Sudbury," A 31-GHz M o n o l i t h i c GaAsM i x er / P r e a m p l i f i e r c i r c u i t for R e c e i v e r A p p l i c a t i o n s , " I E E E T r a n s .E le c t ro n Dev ices , vo l . ED-28, pp . 149-154 (1981) .V . Sokolov, J.J . Geddes, A . C o nt o la t i s , P.E. Bauhahn, and C . Chao, " AKa-Band GaAs Mo n o l i th i c Phase S h i f t e r , " I E E E T r a n s . M i c r o w a v e T h e o ry.Tech Vol . MTT-31, pp . 107 7-10 83, 1 983.3. Geddes, V . Soko lov , and T . C o n t o l a t i s , "Ka-Band M o n o l i t h i c G a i nC o n t r o l A m p l if i er , " E l e c t r o n . L e t t . , Vo l . 22, pp. 503-504, 1986.

  • 8/3/2019 19870018450_1987018450

    10/18

    15.

    16.

    17.

    18.

    19.

    20.

    21.

    L.C.T. Liu, P. Riemenschneider , S .K . Wang, and H . Kanber , "A 30 GHzM o n o l i th i c Two-S tage Low N o i s e A m p l i f i e r , " i n 1985 I E E E GaAs I C SymposiumT e c h n i c a l D i q e s t , N e w York: I E E E , 1985, pp. 7-10.L.C.T. Liu, C . S . L i n , J.R. K e s s l e r , a n d S . K . Wang," A 30 G H z M o n o l i t h i cR e c e i v e r , " I E E E 1 98 6 M ic ro wa ve - and M i l l i m e t e r - W a v e M o n o l i t h i c C i r c u i tSymposium Di g es t, New York: I E E E , 1986, pp. 41-44.K . B. Bhas in , G. A n z i c , R . R . Kunath, and D . J . C o n n o l l y , " O p t i c a lTechn iques t o Feed and Contro l GaAs M M I C Modules f o r Phased Ar ray AntennaA p p l i c a t i o n s , " P r o c . A I A A , 1 1 t h A nn ua l C o m m u n i ca t io n s S a t e l l i t e Sy ste msCon fer enc e, pp. 506-514, San Diego, CA , 1986. A l s o i n N A S A TM-87218.K . Uomi, T. Mishima, and N . Chinone, " U l t r a h i g h R e l a x a t i o n O s c i l l a t i o nFrequency (up to 30 GHz) of h i gh ly p -doped GaAs/GaAlAs M u l t i p l e QuantumWel l Lasers , App l . Phys . Le t t . 51 , pp . 78-80 (1987) .S . Y . Wang, S. M . L i n , a n d Y. M. Houng, "GaAs Trave l ing -Wave P o l a r i z a t i o nE l e c t r o - o p t i c W ave guid e M o d ul a t or w i t h b a n d w i d th i n e xc e ss o f 20 GHz a t1 .3 m, "Appl . Phys. L e t t . 51, pp. 83-85 (1987 ) .R . L ove 11 and C.L. C u ci a , " Gl ob a l I n t e r c o n n e c t i v i t y i n t h e N e x t TwoDecades - A S c e n a r i o , " A I A A 1 1 t h A nn ua l C om mu ni ca ti on s S a t e l l i t e Sys temsConfe rence , New York: A I A A , 1986, pp. 39-49.E . Maynard, "DOD M ic ro w av e and M i l li m e t er - W a ve M o n o l i t h i c I n t e g r a t e dC i rc u ; t s ( M I M I C ) Program," I E E E 1986 Microwave- and M i 11 mete r iWaveM o n o l i t h i c C i r c u i t Symposium D i g e s t , New York: I E E E , 1986, pp. 1-4.

    TABLE I. - TECHNOLOGY GOALS FO R M M I C COMPONENTSRF band, GHzR F power ou tput , WGain, dBP has e b i t s , degP has e c on t r o lAmp1 i u d e c o n t r o lE f f i c i e n c y , p e r c e n tMechan ica l , d e s i g nC h i p s i z e , mm

    V a r i a b l e p h a s e s h i f t e r Cons tant -ga i nampl i i r17.7 t o 20.2

    16200 by

    Va r i ab1 e-powerampl i f rI17.7 t o 20.20 t o 0. 5 ( v a r i a b l e ) '20 m ax . ( v a r i a b l e )

    Four -b i t d i g i t a l i n p ut15/6*Monol i h i c3.05 by 6.45a15 per cen t a t maximum ga in . The am p l i f i e r w as des igned t o p r o v id e m in im a l e f f i c i e n c y

    d e g r ad a t io n a t 1ower ga in 1eve1 s.

    9

  • 8/3/2019 19870018450_1987018450

    11/18

    TABLE 11. - TECHNOLOGY GOALS FO R 30-Ghz R E C E I V E R~

    R F band, GHz. . . . . . . . . . . . . . .N o is e f i g u r e a t room t em pera t u r e , dB . .RF/ IF ga in , dB . . . . . . . . . . . . . .G a in c on t r o l , dB . . . . . . . . A t l e a s tModule power consu mpti on, mWI n o f f s t a t e . . . . . . . . . . . . . . .

    I F ce nt er frequen cy, GHz . . . . . . . . .I n a l l s t at e s e xc ep t o f f . . . . . . . . .Phase and ga in cont ro l . . . . . . . . . .Mechanical design . . . . . . . . . . . .C h i p s i z e , m . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . 2 7 . 5 t o 3 0. . . . . . . . . . . . . . . . 4 t o 8. . . . . . . . . . . . . 5 ( 7 f o r LN A ). . 30 a t h i g h e s t l e v e l o f g a i n c o n t r o ls i x l e v e l s ( 30 , 27 , 24 , 20, 17, and o f f ). . . . . . . . . . . . . . . . . . 25 0. . . . . . . . . . . . . . . . . . 25. . . . . . . . . . . . . . Mono1i h i c. . . F i ve - and f o u r - b i t d i g i t a l i n p u t. . . . . . . . . . . . . . . . 1 2 b y 7

    TABLE 111. - TECHNOLOGY GOALS FO R GaAs OPTICAL INTEGRATED C I R C U I TO p t i c a l i n p u t . . . . . . . . . . . . -Gbps o p t i c a l s i g n a l o n m u l ti m o d e f i b e r( 50- pn c o r e d iam e t e r )E l e c t r i c a l i n p u tF o r o p t i c a l r e c e i v e r . . . . . . . . . . . . . . . . . . . . . . . . . +5 V dcF or vo l ta g e i n t e r f a c e c i r c u i t s . . . . . . . . . . . . . . . . . . .T i m i n g i n p u t . . . . . . . . . . . . . . . . . 1-V minimum pu ls e ampl i tud e a tR ec e i v e r pe r f onnance . . . . . . . . . S e n s i t i v i t y h i g h e r t h a n -30 dB w i t h b i t

    F o r r e c e i v e r a nd c o n t r o l l o g i c . . . . . . . . . . . . . . . . . . . .

  • 8/3/2019 19870018450_1987018450

    12/18

    SCANNINGBEAMS (2 )

    0 2 0 -G H z R O N O L I T H I C T R A N M I T T E R

    0 3 0 -G H Z R O N O L I T H I C R E C E IV E RMODULE

    MODULEO P EN S W B O L S D E N O T E A C T I V E D E V I C E O N LYSOLID SYMBOLS DENOTE BOTH ACTIVE AND

    PASSIVE COMPONENTS1000c55o1975 1980 1985 1990 1995TECHNOLOGY READINESS DATE

    F I G U R E 1. - LEVEL OF M O N O L I T H I C I N T E G R A T I O N OFMICROWAVE DEVICES AND P ASS IVE COMPONENTS ONGaAs SUBSTRATE.

    BASEBANDPROCESSOR

    SCANNINGBEAMS (2 )

    ORDERWIREF I G U R E 2. - COM UNIC ATIO NS PAYLOAD FOR EXPERIMENTAL F LIG HT SYSTEM BASED ON PHA SED-ARRAY ANTENNA AND BASEBAND PROCESSING TECHNOLOGY,

    F I G U R E 3 . - 2 0 -G H z W N O L I T H I C P H A S E S H I F T E R M OD U LE (4.8X6.4X0.127rn).

    11

  • 8/3/2019 19870018450_1987018450

    13/18

    B I T ,BAND CENTER

    17.5 18.0 18.5 19.0 19.5 20.0 20.5FREQUENCY, GHz

    F I G U R E 4. - PHASE SH I FT VERSUS FREQUENCY FCR F I V E PHASESHIFT ER STAT ES FOR 20-GHZ VARIABLE-PHASE-SHIFTERMODULE.

    F I G U R E 5. - M I C C H I P FO R 20 -G H z V AR IA BL E-P OW ER N P L I F I E R .

    12

  • 8/3/2019 19870018450_1987018450

    14/18

    'G22or V

    * om

    EU-loFpri

    -2018.0 18.5 19.0 19.5 20.0FREQUENCY, GHzF I G U R E 6. - MEASURED GAIN VERSUS FREQUENCY RESPONSE

    O F V AR IA BL E- PO W ER W L I F I E R . R F I N P U T: 0 dBn.DRA IN V O L T A G E : 5.5 V . DRA IN CURRE NT: 300 HA.F IRS T G A T E V O L T A G E : 0.73 V. SECOND GAI N VOLTAGE

    F IG URE 7. - 2 0 - G Hz T E S T F IX T URE F O R CHA RA CT E RIZ ING P A CKA G E DMMICs. T H E T R A N S I T I O N TO M ICRO S T RIP IS A CCO M P L ISHE D US IN GE - P L ANE W A M G UID P RO B E S.

    F IG URE 7. - 2 0 - G Hz T E S T F IX T URE F O R CHA RA CT E RIZ ING P A CKA G E DMMICs. T H E T R A N S I T I O N TO M ICRO S T RIP IS A CCO M P L ISHE D US IN GE - P L ANE W A M G UID P RO B E S.

    ( V G 2 ) IS V A R I E D A S S H O W .

    F I G U R E 6. - DUA L - S T A G E A M P L IF IE R .

    ~~~

    13

  • 8/3/2019 19870018450_1987018450

    15/18

    RF

    L O G I C IN.+-~~ I 7 I' MMC * N , * IN 12 MM

    (A ) HONEYWELL APPROACH.

    - 7F G A INCONTROLIXER --- I 1 e*O I S EA M P L I F I E R F I V E - B I TP H A S ES H I F T E R - S C I L L A T O R-m

    * I F OUT

    IL O G IC I N R E F .4 N i

    (B ) HUGHES APPROACH.F I G U R E 9. - BLOCK DIAGRAMS OF F U L L Y I N T E G R A T E D 3 0 -G H z R E C E I V E R

    MMlC CONCEPTS.

    14

    C-87-5086

    F I G U R E 10. - 3 0 -G H z I N T E R CO N N E C T E D R E C E I V E M O D U LE C O N S I S T I N G OF THE LOW-N O I S E A M P L I F I E R , G A I N CO N TR O L A M P L I F I E R , A N D P H A S E S H I F T E R S U B M O D U LE .S HO WN A R E T H E TH R E E C H I P S , F I N L I N E T R A N S I S IO N S , O F F C H I P B I A S F I L T E R S ,AN D WR-Z8 WAVEGUIDE HOUSING.

  • 8/3/2019 19870018450_1987018450

    16/18

    -2027.5 28.0 28.5 29. 0 29.5 3 0 . 0GH z

    F I G U R E 11. - F I V E G A I N S T A T E S O F T H E I NT E RC O N NE C T EDRECEIVE MODULE AT ZERO PHASE SH IFT . BI A S ON THESECOND GATE OF EACH STAGE WAS VAR IED DISCRE ETLYFROM 0 TO -0.75 V.

    27.5 28.0 28.5 29 .0 29.5 30.0GH r

    F I G U R E 12. - D I F F E R E N T I A L I N S E R T I O N P H A S E FOR 16 PHASES T A T E S OF THE INTERCONNECTED RECEIVE MODULE AT MA XI -MUM GAIN.

    i '

    MM

    -'? /MMF I G U R E 1 3 . - 27.5- TO 30-GHZ MO NOLITHIC LOW-NOISE AMP LIF IER

    O U T P U II

    I " I 7 IFROMM i X L R 1 1 MM

    * 1 '3 Mt4 -F IG U R E 1'4. - 2- 10 6 - 6 H ~ N T E R M E D IA T E -F RE Q U C N C Y A M P L I F I E R .

    15

  • 8/3/2019 19870018450_1987018450

    17/18

    F I G U R E 16. - 2 3 . 5 -G H z P H A S E S H I F T E R .

    DETECTORDATA CLOCKS Y N C H R O N I Z A T I O N

    D R I V E RPA MP L I F I E R D E MU L T I P L E X E R

    Ga As MODULATORi

    WIDE BANDPHOTO

    GaA l A s LASER - ETECTORGaAs POWER

    SPL I TTER1

    D I G T A LG A I NCONTROLC 1RCU I

    PHASES H I F T E RAN DC0NT R0LC I R C U I T S

    \\' F POWERI N

    F I G U R E 17 . - B L O C K C I R C U I T D I A G R A M OF O P T I C A L / M M I C I N T t R F A C E .

    TWO-STAGEBUFFERA M P I I F ER

    THREE-STAGEBUFFERA M P L I F I E R bUTF

  • 8/3/2019 19870018450_1987018450

    18/18

    Report Documentation Page1. Report No. NASA TH-100187I F -87-491

    2. Government Accession No.

    7. Author@)

    17. Key Words (S uggested by Author@))Monol ithic Microwave Integra ted CircuitSatellite CommunicationsPhased arrays

    Denis J. Connolly, K u l B . Bhasin, andRobert R . Romanofsky

    18. Distribution StatementUnclassified - UnlimitedSubject Category 32

    9. Performing Organization Name and AddressNational Aeronautics and Spa ce Administ rationLewis Research CenterClevela nd, Oh io 44135-3191

    2. Sponsoring Agency N ame and Address

    19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pagesUnc ass f ed Uncl assi fied 17

    National Aeronautics and Space AdministrationWash ingt on, D.C. 20546-0001

    22. Price'A02

    5. Supplementary No tes

    3. Recipient's Catalog No.

    5. Report Date

    6. Performing Organization Code

    8. Performing Organization Report ho .E-3763

    10. Work Unit No.506-44-21

    11. Contract or Grant No.

    13. Type of Report and Period Covered

    Technical Memorandum14. Sponsoring Agency C ode

    Prepared for the 38th International Astronautical Federation Congress,Brighton, United Kingdom, October 9-17, 1987.

    6. AbstractFuture communications satellites are likely t o use gallium arsen ide (GaAs)monolit hic microwave integrated-circuit (MMIC) tech nolog y in most, if not all,communica tions payload subsystems. Multiple-scanning-beam antenna systems ar eexpected to use GaAs MMIC's to increase functional capability, to re duce vol-ume, weight, and cost, and t o greatly impr ove system reliability. RF and IFmatrix switch technology based on GaAs MMIC's is also being developed fo rthe se reasons. MMIC technolog y, i ncluding gigabi t-rate GaAs digital inte gra-ted circuits, offers substantial advantages in power consumption and weightover silicon technologies for high-throughput, on-board baseband processor sys-tems. For th e more distant future pseudomorphic indium gallium arsenide(InGaAs) and other advanced 111-V mat erials offer the possibility of MMIC sub-systems well up into the millimeter wavelength region.nology elements are in NASA's MMIC program.this paper.

    All of thes e tech-Their status will be reviewed in

    I I I