[188]comparison of fuzzy reasoning methods

31
FuZZy Sets and Systems 8 (1982) 253-283 North-Holland Publishing Company 253 COMPARISON OF FUZZY REASONING METHODS* Masaharu MIZUMOTO Information Science Center, Osaka Electro-Communication University, Neyagawa, Osaka 572, Japan Hans-Jfirgen ZIMMERMANN Lehrstuhl fiir Unternehmensforschung, RWTH Aachen, IV. Germany Received March 1981 Revised June 1981 L.A. Zadeh, E.H. Mamdani, and M. Mizumoto et al. have proposed methods for fuzzy reasoning in which the antecedent involves a fuzzy conditional proposition 'If x is A then y is B,' with A and B being fuzzy concepts. Mizumoto et al. have investigated the properties of their methods in the case of 'generalized modus ponens'. This paper deals with the properties of their methods in the case of 'generalized modus tollens', and investigates the other new fuzzy reasoning methods obtained by introducing the implication rules of many valued logic s)~tems. Finally, the properties of syllogism and contrapositive are investigated under each fuzzy reasoning method. Keywords: Fuzzy reasoning, Fuzzy conditional inference, Generalized modus ponens, Generalized modus tollens, Syllogism, Contrapositive. 1. Introduction In our daily life we often make inferences whose antecedents and consequences contain fuzzy concepts. Such an inference can not be made adequately by the methods which are based either on classical two valued logic or on many valued logic. In order to make such an inference, Zadeh [1] suggested an inference rule called 'compositional rule of inference'. Using this inference rule, he, Mamdani [2] and Mizumoto et al. [3-6] suggested several methods for fuzzy reasoning in which the antecedent contains a conditional proposition with fuzzy concepts: Antl: IfxisAthenyisB Ant 2: xisA' (1) Cons': y is B' * This work was attained with the assistance of the Alexander yon Humboldt Foundation. 0165-0114/82/0000-0000/$02.75 1982 North-Holland

Upload: vlady120489

Post on 17-Aug-2015

231 views

Category:

Documents


3 download

DESCRIPTION

logica difusa

TRANSCRIPT

FuZZy SetsandSystems8(1982)253-283 North-Holland PublishingCompany 253 COMP ARI S ONOFF UZZYREAS ONI NGMETHODS *Ma s a h a r u MI Z UMOT O InformationScienceCenter,OsakaElectro-CommunicationUniversity,Neyagawa,Osaka572, Japan Ha n s - J f i r g e n Z I MME R MANN LehrstuhlfiirUnternehmensforschung,RWTHAachen,IV.Germany ReceivedMarch1981 Revised June1981 L.A.Zadeh,E.H.Mamdani,andM.Mizumotoetal.haveproposedmethodsforfuzzy reasoning in whichtheantecedentinvolvesafuzzyconditional proposition ' If xis Athenyis B,' withAandBbeingfuzzyconcepts.Mizumotoetal.haveinvestigated theproperties of theirmethodsinthecaseof'generalized modusponens' . Thispaperdealswiththepropertiesoftheirmethodsinthecaseof'generalizedmodus tollens' , andinvestigatestheothernewfuzzyreasoningmethodsobtainedbyintroducing the implicationrulesofmanyvaluedlogics)~tems.Finally,thepropertiesofsyllogismand contrapositive areinvestigated undereachfuzzyreasoningmethod. Keywords:Fuzzyreasoning,Fuzzyconditionalinference,Generalizedmodusponens, Generalized modustollens, Syllogism,Contrapositive. 1.Introduction I no u r d a i l y l i f ewe o f t e n ma k e i n f e r e n c e s wh o s e a n t e c e d e n t s a n d c o n s e q u e n c e scont ai nf uz z yc o n c e p t s . Su c h ani n f e r e n c e c a nn o t b e ma d e a d e q u a t e l y b y t h eme t hods wh i c h a r e b a s e d e i t h e r o n cl as s i cal t wov a l u e d l ogi c o r o n ma n y v a l u e dlogic. I no r d e r t oma k e s uc hani n f e r e n c e , Z a d e h [ 1] s u g g e s t e d a ni n f e r e n c e r u l ecal l ed' c o mp o s i t i o n a l r u l e of i n f e r e n c e ' . Us i n g t hi s i n f e r e n c e r ul e , he , Ma md a n i[2]a ndMi z u mo t o e t al . [ 3 - 6 ] s u g g e s t e d s e v e r a l me t h o d s f or f uz z yr e a s o n i n g i n whi cht h e a n t e c e d e n t c o n t a i n s ac o n d i t i o n a l p r o p o s i t i o n wi t hf uz z yc o n c e p t s :An t l : I f x i s At h e n y i s BAn t 2: x i s A' (1) Cons' : yisB '* ThisworkwasattainedwiththeassistanceoftheAlexander yonHumboldtFoundation. 0 1 6 5 - 0 1 1 4 / 8 2 / 0 0 0 0 - 0 0 0 0 / $ 0 2 . 7 5 91982No r t h - Ho l l a n d254M. Mizumoto, H.-J. Zimmennann whereA, A' , B, B' arefuzzy concept s. Anexampl eofthefuzzy reasoni ngisthe following. Ant 1:Ifat omat oisredt hent het omat oisripe Ant 2:Thi st omat oisveryred(2) Cons:Thi st omat oisveryripe In[4-6]wehavepoi nt edout t hat fort het ypeoffuzzy reasoni ngin(1)called ' general i zedmodusponens' , t heconsequencesi nferredbyZadeh' s andMam-dani ' smet hodsarenot alwaysreasonabl eandsuggest edseveralnewmet hodsR~, Rg,R~,Rsg,Rg,andRgg whichcoincidewi t hour i nt ui t i onwi t hrespecttoseveral criteria.Ascont i nuat i onofour studies, thispaper investigatesthepropert i esoftheir fuzzy reasoni ngmet hodsinthecaseof' general i zedmodustollens' . Mor eover , by i nt roduci ngt hei mpl i cat i onrulesofmanyval uedlogicsyst ems[7-9], wediscuss thenewlyobt ai nedfuzzyreasoni ngmet hodsint hecasesofgeneral i zedmodus ponensandgeneral i zedmodustollens.Fi nal l y, wediscussthepropert i esof syllogismandcont raposi t i veunder eachfuzzyreasoni ngmet hod.2.Fuzzy reasoningmethods Weshallfirstconsi dert hefollowingformofi nferenceinwhichafuzzy condi t i onal proposi t i oniscont ai ned.Ant 1:I f x i s At heny i s B Ant 2:x i s A' (3) Cons:yisB'wherexandyaret henamesofobj ect s, andA, A' , BandB' arefuzzy Concepts r epr esent edbyfuzzysetsinuniversesofdi scourseU,U,VandV,respectively.Thisformofi nferencemaybevi ewedasageneralizedmod, s ponenswhich reducestomodusponenswhenA' = AandB' = B.Mor eover , thefollowing formofi nferenceisalsopossiblewhichalsocont ai nsa fuzzycondi t i onal proposi t i on.Ant 1:I f x i s At heny i s B Ant 2:y i s B' (4) Cons: xisA'Thi si nferencecanbeconsi deredasageneralizedmodustollenswhichreducesto modustollenswhenB'=notBandA' =, ot A.TheAnt 1oft heform" I f xisAt henyisB" in(3)and(4)mayrepresent a certainrel at i onshi pbet weenAandB.Fr omthispoi nt ofview,severalmet hods wereproposedforthisformoffuzzycondi t i onal proposi t i on: ' IfxisAt hen) isB' .Comparison o[ [uzzy reasoning methods2 5 5Let AandBbefuzzy set sinUandV,respect i vel y, whi charer e pr e s e nt e das A = ~ t x a ( u ) / u , B = ~ t t u ( v ) / v (5) andletx , U, f-I,--1and9becart esi anpr oduc t , uni on, i nt er sect i on, c ompl e -ment andb o u n d e d - s u mf or fuzzyset s, respect i vel y. The nt hefol l owi ngfuzzy relationsinUxVcanbeder i vedf r omt hefuzzycondi t i onal pr opos i t i on" I f xis At henyisB " inAn t 1of (3)and(4).Th e fuzzyr el at i onsR,,,andR, wer e pr oposedbyZa d e h [1],RcbyMa md a n i [2],andR~,Rg,R,g,Ugg, Rg~andR~sare byMi zumot oet al.[3-6].R, , = ( A xB)U ( - h AxV) [(I~A(tt)AtXI3(V))V(I--I.tA(tt))/(tt, V).( 6 )" O x VR,~ = ( - hAxV ) ~ ( U x B )[1 ^ ( 1 - t x a ( u ) + t . t u ( v ) ) / ( u , v).(7) 9i ox VRr= A x B= ~u~, , , (u)^uB(v)l(u,v).(8) where R s = A x V = ) , U x BS =I u[m,(u)~u .(v)]/Cu. v ) .m, (u)V m,(v)= {lo~A( u) u . ( v ) .(9) where R g = A x V O U g = Iu[ ~ ( . ) ~u . ( v l ] l ( u , v), 1IxA ( u ) ~< gu ( v ) ,~( u)7u. ( v) =~.(v)U~(U)>U.(V). R~g = ( A xVOU x B ) N ( T A xV~Ux--1B) sg = I o [ ~ A ( u ) 9u B ( v ) ] ^ [ 1 - ~ A ( u ) ~ 1 - u B ( v ) ] / ( . , v). (10) (11) Rgg=( AV~U x B ) N ( " n A xV~U x ~ B )gg =I u [~A (u) - * Uu ( v ) ] ^ [ 1 - UA(u) g--> 1 - gu (v)]/(u, v). (12) 256M. Mizumoto,H.-I.Zi mmennann R~,= ( A xV~U x B ) N ( - 1 A xVOU x ~ B )gs =L [~A(u) g-~ p.D(V)]A[1--/ZA(U)--~,1--I.tB(V)]I(u,V).(13) R~= ( A xV~U x B ) f q ( ' - n A xV~U x ~ B )S$ =Iu[/.&~Cu)--)/..tBCv)]A[I--/.tA(U)T) 1-/ . t B(v)]/ (u, v).(14) s Not et hat t heimplicationsa- ~banda--~ baret hei mpl i cat i onrul esin' St andard g sequence' Ssand' GSdel i ansequence' G~,respect i vel y[7].R a isbasedonthe i mpl i cat i onrul einLukasi ewi cz' slogicL~. Inaddi t i ont ot heabovefuzzy rel at i ons(6)-(14), it isalsopossiblet odefi nenew fuzzyrel at i onsfort heproposi t i on" I f xisAt henyisB" byi nt r oduci ngthe i mpl i cat i onrul esofmanyval uedlogic systems[7-9]. Thesei mpl i cat i onrul esand t hei mpl i cat i onrul esusedin(6),(7),(9)and(10)arediscussedindet ai l in[7-9]. Int hefollowingweshalldiscusss omenewfuzzyrelations.R b = ( ~ A x V ) U ( U x B )=[(1--/XA(U))V~t~(V)/(U,V).(15] a ux vR a = A 2 1 5I u [p.A(u) a-~ ~n(v)]/ (u, v), (16 wher e 1~A(U) , B ( o ) .wher e RA =AxV~UxB A =J~x,,,[~A(u) .---, ~B(v)]/Cu, v), (17 /"tA (I'l) ~~B(I)) = [/"J"A(") ~/IB ('0)] A [1 - - l-tB(I)) "~' 1 -P,A(u)] I"m, ( 0l - , ~, ( u)1 A ~ A p. A( u) >O, 1 - - / . t B( U)>O,=Vi A( u ) 1- / z B( v),1IZA(U)----O or 1 - - m] ( v ) =O.R , = A x V ~ , U x B=L ~ x [~A(u)~~ ( O ] / ( u , v ) ,(1~ where where where Comparisonof fl~zzyreasoning methods 257 /XA(U) .---> /~B (V) =1 -- ~A (U) +/~A (U)~ZB(V). R, z=AXV~UxB -u[[ w A ( u ) y . ~ .( v ) ] / ( u ,v), (19) tLa (U) - ~tLB (V) =(/XA(U) ^/XB (V)) V (1 -- tLA (U) A 1 -- tLB(V)) V (tLB(V) ^1 --/xa (u)) =( 1 -t x a ( u ) vl ab ( v ) ) ^(txa ( u ) v1- - / x a ( u ) )^(gB (v) v1 -- ~B (v)). Rr n=Ax V~UxB [] = s o [ [ t ~ , ( u ) - j t ~ ( v ) ] / ( u , v ) ,(20) {~~ A( u ) < l or/ ZB(V)=I,OA(U)-~~B(V)=/~A(U)=i , OB( V) - -2 270 M. Mizumoto,H.-J.Zimmennann 11 9lab= ' 7I . \ 0101 F i g . 3 . T h e w a y o f o b t a i n i n g B[ , a n d A[ , : ( a ) ~s~ a t / x A . = I x 2 ; ( b ) P-Af, a t gs' =1 -Ix 2 .Ther ef or e, weobt ai n {3 - ~ 3 - x / 52' g " ' =3 -',/5 /-tsP.s ~ - ~ ,whichleadst o 3-4"5 /aBe'=2.vp.s. Thesamemet hodisapplicabletoA"= A, moreorlessA, andnot A.(ii)Thecaseof RbatB ' =notveryB TheconsequenceA~,whichisobt ai nedbyt aki ng t hecomposi t i onofRbandB'asin(26)-(29), isgivenby A' b=Rbo B'=[ ( TAxV ) U( U B' .Themember shi pfunct i onofA~,atB' = not veryB(35)is /x&, =V{( 1 -P-A ) V P-B] A (1 -- p2)}(46) t~ byomi t t i ng' (u)' and' (v)' . Theexpressi onin(46) [(1 - / ~A)vtaB]A (1 --/X 2)(471 at/xa =0 . 2 ( ~ ( x / 5 - - 1 ) / 2 = 0 . 6 1 8 0 . . . ) isshownbyt heline''inFig.3(b whichcomesfromt herightfigureofFig.l(x). Themaxi mumval ueofthislin~ becomes0.8( =1-0. 2). Wh e n / xa=0.7( ~ ( x/ 5- 1)/2),(47)isi ndi cat edbyt helin~ ' - . - . ' anditsmaxi mumvalueis( x/ 5- 1) / 2. ThuswehaveingeneralI , / g - 11 - / xa/xA 4 . 2 - - ~.LAI~ T Namely, ~ " ~ b ' = Comparison o[ [uzzyreasoning methods x/ - 5- 1v(1 _~A). 2 271 Thesamewayisappl i cabl et oB' = not B, not mor eorlessB, andB. Example. Usi ngTabl es1and2andFig.2,weshallpr es ent asi mpl eexampl eoffuzzyr easoni nginFig.4.Fig.4(a)showsf uzzyset sAandB, andFig.4(b) includesfuzzy sets' not A ' , ' not ver yA ' , . . . . ' u n k n o w n ' inor der t ocompar ewi t h thei nf er enceresul t sof Fig.4(c)-(j ).Int hef or msof f uzzycondi t i onal i nf er ences(3)and(4),itseemsaccor di ngt o ouri nt ui t i onst hat t herel at i onsbet weenA' inAnt 2andB' inConsoft he generalizedmodus ponens (3)ought t obesatisfiedasshowninTabl e3.Similarly,therel at i onsbet weenB' inAnt 2andA' inConsof t hegener al i zedmodustollens(4)ought t obesatisfiedasinTabl e4. Rel at i onIinTabl e3cor r espondst ot hemodus ponens. Rel at i onI1-2hasa consequence di f f er entf r omt hat of Rel at i onI I - 1, but if t her eisnot ast r ongcausal relationbet ween" x isA" and" y isB" int hepr oposi t i on" I f xisAt henyis B", t hesat i sfact i onof Rel at i onI I - 2willbeper mi t t ed. Rel at i onIV-1assertst hatwhenxisnot A , a nyi nf or mat i onabout yisnot conveyedf r omAnt 1.Th esatisfactionof Rel at i onI V- 2isde ma nde dwhent hef uzzy pr oposi t i on" I f xisA thenyisB" means t aci t l yt hepr oposi t i on" I f xisAt henyisBelseyisnot B " .Althoughthisr el at i onmaynot beaccept edinor di nar ylogic,inour dai l ylifewe oftenencount er t hesi t uat i oninwhi chthisr el at i oncanhol d. Rel at i onVcor r e-spondst omodus tollens. Rel at i onVI I I isdi scussedasint hecaseof Rel at i onIV.InTabl e5,t hesat i sfact i on(0)or fai l ure(x)of eachcri t eri oninTabl es3and4 undereachf uzzyr easoni ngme t hodisi ndi cat edbyusi ngt hecons equenceresul t s of Tabl es1and2. Under t hesecri t eri aitisf oundt hat RmandRaar enei t her ver y sui t abl ef or t he fuzzycondi t i onal i nf er enceint hecaseof gener al i zedmodust ol l ensnor int he caseofgener al i zedmodus ponens. Rcisnot bad. R~,Rg,R~g. . . . . R~ar e satisfactory.Rb . . . . . Rrnar enot ver ygood.PA 12 1 jPB o 34 Fig. 4(a).Fuzzysets Aand B. 272 . 5 1 . 5 3~ .5 M. Mizumoto,H.-J.Zimmennann unknown not very A - - ~ ~ A F//~-~ess A/ //not more or I12 U unknown 34 Fi g. 4(b). not A, notvery A, notmore or lessA, not B,very B,moreor lessB,a ndunknown. ~ B '/ / ~ B S . B w. / ~ B ~ g , B ~ s , B ~ s34 iL~aB, 0v 34 Fi g. 4(c). I nf e r e nc e r e s ul t s at A' =A.laB , ~ ' ~ ' B ~ B~'~2,~gs 34 . 5 34 Fi g. 4(d). I nf e r e nc e r e s ul t s at A' =very A.qaB , / / \.\ B~g,B~s,Bw / / o- \ \o 34 lab, . . . . . . . . .34 Fi g. 4(e). I nf e r e nc e r es ul t s at A' =more or lessA.PB' i .5 i PA' .5 0 .5 . 5 Compar i s onof[ u z z y reasoni ngmet hods 273 Bfi, Bfi,Bfi,B~,Bb,BA,B~ ,B~, ',~," ~Bwt z \ B 2 s /' , .34 ~ A '1 .5 0 Aft~ A ~ , A ~ A DFAA TA" rA~ ~ A . ~ A f i / *--_ A ~"~/~ iJ , ~ s , A w12 Fig. 4(0.Inference results at A'=notA ; (g) at B'=B. A ,A wA~,A~.A~g, A~s,AD,A~_ ~ 12 ~ A '1 .5 O Aft" ~ A / ~ , A ~. S / / / s 9r! 12 Fig. 4(h).Inference results atB'=not B.~ A ' ~ A 'I A~,A~g,A~s ~ . ~ - - AV~ - l" ' / ~ " ~ .4.fi,Aii 9 5s J/ A/ 9i A f g , A f s / ",,Aftst 9~.~I i21 Fig. 4(i).Inference results atB' = not veryB.o 9 ~----- AA U ,}~A' ~A~,A~g,A~s.5 3 - EA~ , AwN%A~..U0 12 VA' s9 /~-~ A As# 9 ~ JI2 Fig. 4(j).Inference results atB'=not mor eor less B.2 7 4I~LMi z umot o, H. - J . Zi nnne r mann T a b l e 3 . R e l a t i o n s b e t we e n An t 2a n d C o n s u n d e r An t 1f o r t h eg e n e r a l i z e d mo d u s p o n e n s i n( 3)xi sA' ( An t 2) yi sB ' ( Co n s )R e l a t i o n Ixi sAyi sB ( mo d u s p o n e n s )R e l a t i o n I I - 1 xi sv e r y Ayi sver yB R e l a t i o n 1I - 2xi sv e r y Ayi sB R e l a t i o n I I I - 1 xi smor e orl essAyi smor e orl essB R e l a t i o n 1 I I - 2 xi smor e orl essAyi sB R e l a t i o n I V- I xi snot Ayi sunk nown R e l a t i o n I V- 2 xi snot Ayi snot B T a b l e 4 . R e l a t i o n s b e t we e n An t 2a n d C o n s u n d e r An t 1f o r t h eg e n e r a l i z e d mo d u s t o l l e n s i n( 4)yi sB ' ( An t 2) xi sA' ( Co n s )y i s n o t B xi snot AR e l a t i o n V ( mo d u s t o l l e n s )R e l a t i o n VIR e l a t i o n VI IR e l a t i o n VI I I - 1R e l a t i o n VI I I - 2yi snot v e r y Bxi snot v e r y A yi snot mor e orl essBxi snot mor e orl essA yi sBxi sunk nown yi sBxi sA T a b l e 5. S a t i s f a c t i o n o f e a c h R e l a t i o n i nT a b l e s 3a n d 4u n d e r e a c h me t h o dAn t 2Cons RmRol ~R, R, R, , R**R, , R. . RbRz~RAR . R.~5m ABxx0000000xxxxxx Rel at i onI ( modus ponens )Rel at i onI t - 1 Rel at i onI1-2 Rel at i onIII-1 Rel at i onI I I - 2 Rel at i onI V- 1 Rel at i onI V- 2 ~' e r yAr e r y / 3 xxx0x0xx0xxxxxx v e r y ABxx0x0x00xxxxxxx moreormoreorxxx000000xxxxx lessAlessB nl or e or Bxx0xxxxxxxxxxxx lessA notAunknown0000xx00000 notAnotBxxxxx0000xxxxxx Rel at i onVnotBnotA000 ( modus t ol l ens) Rel at i onVInotveryBnotveryAxxx0x0xx0xxxxx Rel at i onVl l not nmrenotmorex0x00xx orlessBorl e s s A Rel at i onVI I I - I Bunknownx00000000 Rel at i onVI I I - 2BAxx0xxxx00xxxxxx Comparison of fuzzy reasoning methods 4.Syllogismandcontrapositiveundereachfuzzyreasoningmethod 275 Inthissectionweshallinvestigatetwointerestingconceptsof'syllogism'and ' contrapositive' undereachfuzzyreasoningme t hodobtainedinSection2. LetP~,P2andP3befuzzyconditionalpropositionssuchas P~:IfxisAthenyisB, Pa:IfyisBthenzisC, P3:IfxisAthenzisC, whereA, BandCarefuzzy setsinU,VandW,respectively.Iftheproposition P3isdeducedfromthepropositionsP~andP2,i.e.thefollowingholds: PI:I f x i s Atheny i s B P2:IfyisBthenzisC(48) P3:I f x i s AthenzisC thenitissaidthatthesyllogismholds. LetR( A, B),R(B, C)andR( A, C)befuzzyrelationsinUx V,Vx Wand U xIV,respectively,whichareobt ai nedfromthepropositionsP~,P2andP3, respectively.Ifthefollowingequalityholds,thesyllogismholds: R( A, B) o R(B, C) = R( A, C).(49) Thatistosay, PI:IfxisAthenyisB~R( A, B)P2:IfyisBthenzisC--~R(B, C)(50) P3:I f x isAthenzisC~--R( A, B) oR( B, C)where' o' isthemax-mi ncompositionofR( A, B)andR(B, C),andthemember -shipfunctionofR( A, B) o R(B, C)isgivenby P-a(a.m~W)=V[P-R(A.m(U, V)^ ttn~B.C~(V, W)].(51) I) Now weshallobtainR( A, B)oR(B, C)undereachfuzzy reasoningmet hodand thenshow whet her thesyllogismholdsornot. Weshallbeginwiththemet hodR~. Thefuzzy relationsRa(A, B)andR, ( B, C) areobtainedfrompropositionsP~andP2byusing(7): R,,(A,B) = ("hAxV ) ~ ( UxB),R. ( 8 , C) =( ~ BW) @( VC).Thus,thecompositionofR,~(A, B)andR,~(B, C)willbe R,~(A,B) o Ra(B,C)= [ ( ~ AV ) ~ ( UB)] o [(-riBW) ~ ( V C)] 2 7 6 M. Mizumoto, t i . - 1 . Zimmerlnann anditsmember shi pfunct i onbecomesasfollows. tzRo(A,~)o~n.C)('I,W) =V{[1 ^(1 -Ix^ (u) +~D (v))] A [ 1 ^(1 -- f t ,(V) +~c(W)]} D = V { ( i ) ^ ( i i ) } . ( 5 2 )I) Thefunct i on(i),i.e.1 ^ ( 1 - txA(u)+ ~ ( v ) ) , canbedepi ct edbyusingt hepar ame-t ert-L^(U)asinFig.5(a)andt hefunct i on(ii),1 ^( 1 - ~t , ( v) +~ c ( W) ) , isshownby usingt hepar amet er t . t c ( w) asinFig.5(b).ThesefiguresbaseonFig.l(ii).From thesefigures,t hefunct i on(i )^(i i )in(52)wi t hbot hpar amet er sp. A(u)=aand t x c ( w) =cwillbeshownbyt hebr okenline' . . . . 'inFig.5(c)anditsmaxi mum value(byvi rt ueof(52))is0.5 +(1 -a+c ) / 2 . Ont heot her hand, if t hepar amet ertxA(u)ist akent obea' asinFig.5(c),t hemaxi mumval ueofitsline' - . - . 'becomes1.Ther ef or e, ingeneral , forany par amet er saandc,t hemaxi mumvalue of(i)A(ii)isshownt obe1 ^ ( 0 . 5 + ( 1 - a + c ) 1 2 ) . Ther ef or e, t hemembershi p funct i on/~R,(A,B~.Ro(~.c(U, W)of(52)becomes:/xR,~A.B)~W) =1 ^(0.5 +(1 --/XA (U)+tZc (W))12). ~6(~)= .i .2 .3 .4 .5 .6 .7 , 8.9 a 1 bVc (w)= o1 liA(u)=a' ~ A ( u ) = aC 1~c(W)=C ,] ~ B ( v )1 Fi g. 5. T h e wa y o f o b t a i n i n g ( 5 2 ) ; ( a ) 1 , ' , ( 1 - p . A ( l l ) + p s ( v ) ) ; ( b) l ^ ( 1 - p n ( v ) + / X c ( W ) ) ; ( c) l ~(1 - / xA ( u )+~ s ( v ) )^(1 -~B ( v )+~ c ( W) ) .Comparisono[ fuzzy reasoningmethods277 Fromthisresult,wecanhave R,~(A, B) o R, ( B, C) [1A(0.5 +(1--#A(U)+I.tC(W))/2)/(U , W) JU'W 7~ Ra(A, C ) ( = Iu1 A (1 --1 "tA (It)q -I'g c(W ))/(ll'iV )).(53) Hence,wecanconcludethatthefuzzy reasoningmet hodR. doe s notsatisfythe syllogism. Similarly,wecanobtainR ( A , B ) o R ( B , C ) underotherfuzzyreasoning methodsandweshalllisttheminthefollowing. R,,,(A, B) o R. , ( B, C) [0-5 V (/-tA(/~) A/-tC(W)) V (1 -wA(u))/(u,w) JtJ xW 7s R m ( A ,C ) ( = IU x w( ~ A ( l i ) A I - t c ( W ) ) V ( 1 - - ~ A ( l t ) ) / ( I I ,W )) . (54) Re(A,B) o Rc(B,C) = ~uxw/~A (U) ^ttc(W)/(U,W) =R~(A,C).(55) R~(A, B) o R~(B,C) =[p,A(U)~t-tc(W)/(U, W) al l x~,V =R,( A, C) . ( 56)Rg(A,B) oRg(B,C)=IultA(u) ~tZc(W)/(u' w) = Rg(A, C).(57) R, g(A,B) o R,~(B,C) Ju[g,,,,(u) - ~~c(W)]^ [ 1 - ~A(u) ~1 - p,c(W)]/(u, W)= R, g(A, C).(58) Rgg(A, B) o Rgg(B, C) =[[tzA(u) g-->tXc(W)]^[1-t-t~,(u) g-~ 1 - t-tcCw)]/(u, w) Ju =Rgg(A,C).(59) Rg, ( A, B)o Rg~(B,C) =[[t xA(u)g-->~ c ( W) ] ^ [ 1 - t x A ( u ) ~ 1 - tlc(W)]/(u,w) Ju =Rg, ( A, C). ( 60)278 wh e r ewh e r eh i. l~lizumoto,H .-J.Zimmennann R~(A,B) oR~(B,C) I~[~A(u) ~gc(W)]^[1 -~A(u) ~1 -gc(w)]/(u,w) =n~,( A, C) .Rb( A, B) o Rb(B, C) f0. 5 v( 1 - ~ . ( u ) ) v t ~c( w) / ( u, w)at /x ~,v Rb(A,C ) ( = I U x W ( 1 - - b C A ( l l ) ) V i . t c ( W ) / ( I I ,W ) ) .RA(A, B) o R,,(B,C) = [[ ~ ( " ) 7 ~,~(w)]/(., w) at /~,v , Ra , A. C ) ( =Iu[~A(U'a--'~"c(W)]/(U'W))' 1 ~( . )t~c(W), I1m~ (u)