162941

7
SELECTION OF SYSTEM NEUTRAL GROUNDING RESISTOR AND GROUND FAULT PROTECTION FOR INDUSTRIAL POWER SYSTEMS Copyright Material IEEE Paper No. PCIC-91-51 DR. LUKE YU. P.E. AND ROLF L. "RIKS, P.E. The Ralph M. Parsons Company 100 West Walnut Street Pasadena, CA 91124, U.S.A. (818) 440-2000 Abstract - This paper pertains primarily to low- voltage (LV) and medium-voltage (MV) industrial power distribution systems, below 15 kV. The method chosen for system neutral grounding is significant to system performance , operation , maintenance, safety, etc. The purpose of grounding is to create a firm potential reference point and to minimize the hazard to personnel and damage to the system when a line-to- ground fault occurs. Solidly grounded (SG) , low- resistance grounded (LRG) , and high-resistance grounded (HFG) systems are discussed and compared. Selection of neutral grounding resistor values and ground fault protection devices are discussed. Finally, the paper proposes that a modified high- resistance grounding (MHRG) with ground fault tripping may be the better practice in some industrial applications. I. INTRODUCTION System grounding and ground fault protection have been subjects of continuous interest for years and have been covered in many IEEE standards, the National Electrical Code (NEC) , and many technical publications 11-10 1 . System grounding is the practice of physically connecting a specific point of the electrical system (normally the neutral of a transformer or a generator) to the earth. The intent is to create a potential reference point for the electrical system. Some advantages of system grounding are : 1) Reduce life hazard by minimizing potential to earth 2) Reduce transient overvoltages 3) Reduce potential stress on cable insulation 4) Provide adequate system ground fault protection Recent practice has been to convert many ungrounded systems (such as delta-connected systems) t o grounded systems for these advantages. In practice, a zigzag-type or a distribution-type transformer may be used t o create a grounded neutral system [6]. In this paper, only those systems with available system neutrals are discussed. The current typical practice is shown in Table I. Obviously, from an operational viewpoint, there is a choice of only two responses when a ground fault is detected: (1) to trip and clear the fault, or (2) not to trip and maintain service continuity. For continuity of service (i.e., no trip), system grounding is of the HFX type. Otherwise, when the fault is to be cleared quickly, either SG o r LRG is used. Consultant Temple City, CA, U.S.A. (818 1 286-4913 TABLE I TYPICAL PRACTICES ~~ LV MV 2.4 and System Type 5600 V 4.16 kV 15 kV SG Trip Tripa Tripa LR G Not used Trip Trip HRG Alarm Alarm Not usedb is not usually applied in industrial applications. bHRG is not applicable to the 15-kV system to achieve service continuity because experience does not show a successful application for 13.8-kV systems [lo]. Ground fault protection is governed by the system grounding method used because the line-to-ground fault current determines the sensitivity and , therefore, the required relay type. 11. COMPARISON OF SYSTEM GROUNDING METHODS SG systems have the characteristics of the lowest cost, highest available current, highest propensity to personnel hazard and arcing damage, and lowest susceptibility to transient overvoltages. The SG system has been adopted for high-voltage (HV) utility transmission and distribution systems and is often used in LV systems where it is the only grounding mode when line-to-neutral loading is planned. It can accomodate the most levels of ground fault relaying coordination, and ample fault current is available to actuate overcurrent relays 12-4 1. Arcing faults are the most common type of ground faults in solidly grounded LV systems. Because of low current magnitude (typically, about 38% that of a bolted fault), the phase relays may not operate. However, arcing faults deliver a tremendous amount of energy in the form of heat and pressure, sufficient to melt bus and enclosure materials and produce large amounts of carbonized smoke that may damage other components in the vicinity. The amount of damage is directly proportional to the magnitude and duration of the fault. Studies show that the restrike voltage of an arc is about 375 V (peak). For a 277/480-V system, a line-to-ground voltage of 277 V with a 392-V p e a k causes repetitious restriking or arcing until the fault is cleared [ 11-14]. - 147 - 9l-CH3057-7/1/9 1/0000-0l47 $01 .OO E ' 199 IIEEE Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on June 15,2010 at 04:41:55 UTC from IEEE Xplore. Restrictions apply.

Upload: mohanraj-nidumolu

Post on 14-Apr-2015

24 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 162941

SELECTION OF SYSTEM NEUTRAL GROUNDING RESISTOR AND GROUND FAULT PROTECTION FOR INDUSTRIAL POWER SYSTEMS

Copyright Material IEEE Paper No. PCIC-91-51

DR. LUKE YU. P.E. AND ROLF L. " R I K S , P.E. The Ralph M. Parsons Company

100 West Walnut S t r e e t Pasadena, CA 91124, U.S.A.

(818) 440-2000 Abs t r ac t - This paper p e r t a i n s p r i m a r i l y t o low- v o l t a g e (LV) and medium-voltage (MV) i n d u s t r i a l power d i s t r i b u t i o n systems, below 1 5 kV. The method chosen f o r system n e u t r a l grounding is s i g n i f i c a n t t o system performance , o p e r a t i o n , maintenance, s a f e t y , e t c . The purpose o f grounding i s t o c r e a t e a f i rm p o t e n t i a l r e f e r e n c e p o i n t and t o minimize t h e hazard t o pe r sonne l and damage t o t h e system when a l i n e - t o - ground f a u l t occurs . S o l i d l y grounded ( S G ) , low- r e s i s t a n c e grounded (LRG) , and h igh - re s i s t ance grounded (HFG) systems are d i scussed and compared. S e l e c t i o n o f n e u t r a l grounding r e s i s t o r v a l u e s and ground f a u l t p r o t e c t i o n d e v i c e s are d i scussed . F i n a l l y , t h e paper proposes t h a t a modif ied high- r e s i s t a n c e grounding (MHRG) w i t h ground fault t r i p p i n g may be t h e b e t t e r p r a c t i c e i n some i n d u s t r i a l a p p l i c a t i o n s .

I. INTRODUCTION

System grounding and ground f a u l t p r o t e c t i o n have been s u b j e c t s o f cont inuous i n t e r e s t f o r y e a r s and have been covered i n many IEEE s t a n d a r d s , t h e Na t iona l Electrical Code (NEC) , and many t e c h n i c a l p u b l i c a t i o n s 11-10 1 .

System grounding is t h e p r a c t i c e o f p h y s i c a l l y connect ing a s p e c i f i c p o i n t o f t h e e l e c t r i c a l system (normally t h e n e u t r a l o f a t r ans fo rmer o r a g e n e r a t o r ) t o t h e e a r t h . The i n t e n t i s t o create a p o t e n t i a l r e f e r e n c e p o i n t f o r t h e e l e c t r i c a l system. Some advantages o f system grounding are :

1) Reduce l i f e hazard by minimizing p o t e n t i a l t o e a r t h

2 ) Reduce t r a n s i e n t ove rvo l t ages

3 ) Reduce p o t e n t i a l stress on c a b l e i n s u l a t i o n

4) Provide adequate system ground f a u l t p r o t e c t i o n

Recent p r a c t i c e has been t o conve r t many ungrounded systems ( such as del ta-connected systems) t o grounded systems f o r t h e s e advantages. In p r a c t i c e , a zigzag-type o r a d i s t r i b u t i o n - t y p e t r ans fo rmer may be used t o create a grounded n e u t r a l system [ 6 ] .

In t h i s pape r , o n l y t h o s e systems wi th a v a i l a b l e system n e u t r a l s are d i scussed . The c u r r e n t t y p i c a l p r a c t i c e is shown i n Table I.

Obviously, from an o p e r a t i o n a l v i ewpo in t , t h e r e is a cho ice o f on ly two responses when a ground f a u l t i s d e t e c t e d : (1) t o t r i p and clear t h e f a u l t , o r ( 2 ) no t t o t r i p and ma in ta in s e r v i c e c o n t i n u i t y .

For c o n t i n u i t y o f s e r v i c e ( i .e. , no t r i p ) , system grounding i s o f t h e HFX type . Otherwise, when t h e f a u l t i s t o be c l e a r e d qu ick ly , e i t h e r SG o r LRG is used.

Consul tant Temple C i t y , CA, U.S.A.

(818 1 286-4913

TABLE I TYPICAL PRACTICES

~~

LV MV

2.4 and System Type 5600 V 4.16 kV 1 5 kV

S G T r i p Tripa Tripa

LR G Not used T r i p T r i p

HRG Alarm A l a r m Not usedb

i s not u s u a l l y app l i ed i n i n d u s t r i a l a p p l i c a t i o n s .

bHRG i s not a p p l i c a b l e t o t h e 15-kV system t o ach ieve s e r v i c e c o n t i n u i t y because expe r i ence does not show a s u c c e s s f u l a p p l i c a t i o n f o r 13.8-kV systems [lo].

Ground f a u l t p r o t e c t i o n i s governed by t h e system grounding method used because t h e l ine- to-ground f a u l t c u r r e n t determines t h e s e n s i t i v i t y and , t h e r e f o r e , t h e r equ i r ed r e l a y type .

11. COMPARISON OF SYSTEM GROUNDING METHODS

SG systems have t h e c h a r a c t e r i s t i c s o f t h e lowest c o s t , h i g h e s t a v a i l a b l e c u r r e n t , h i g h e s t p ropens i ty t o pe r sonne l hazard and a r c i n g damage, and lowes t s u s c e p t i b i l i t y t o t r a n s i e n t ove rvo l t ages . The SG system has been adopted f o r high-vol tage ( H V ) u t i l i t y t r ansmiss ion and d i s t r i b u t i o n systems and i s o f t e n used i n LV systems where it i s t h e only grounding mode when l i n e - t o - n e u t r a l l oad ing i s planned. It can accomoda te t h e most l e v e l s o f ground f a u l t r e l a y i n g c o o r d i n a t i o n , and ample f a u l t c u r r e n t i s a v a i l a b l e t o a c t u a t e ove rcu r ren t r e l a y s 12-4 1 .

Arcing f a u l t s are t h e most common type o f ground f a u l t s i n s o l i d l y grounded LV systems. Because o f low c u r r e n t magnitude ( t y p i c a l l y , about 38% t h a t o f a b o l t e d f a u l t ) , t h e phase r e l a y s may not o p e r a t e . However, a r c i n g f a u l t s d e l i v e r a tremendous amount o f energy i n t h e form o f hea t and p r e s s u r e , s u f f i c i e n t t o m e l t bus and enc losu re materials and produce l a r g e amounts o f carbonized smoke that may damage o t h e r components i n t h e v i c i n i t y . The amount o f damage is d i r e c t l y p r o p o r t i o n a l t o t h e magnitude and d u r a t i o n o f t h e f a u l t . S tud ie s show t h a t t h e r e s t r i k e v o l t a g e o f an arc i s about 375 V ( p e a k ) . For a 277/480-V system, a line-to-ground v o l t a g e o f 277 V w i t h a 392-V peak causes r e p e t i t i o u s r e s t r i k i n g or a r c i n g u n t i l t h e f a u l t i s c l e a r e d [ 11-14].

- 147 - 9 l-CH3057-7/1/9 1/0000-0l47 $01 .OO E' 199 IIEEE

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on June 15,2010 at 04:41:55 UTC from IEEE Xplore. Restrictions apply.

Page 2: 162941

LRG h a s t h e characterist ics o f h ighe r c o s t , moderate ground f a u l t c u r r e n t , l i t t l e o r no p ropens i ty f o r a r c i n g damage, less f a u l t damage than SG systems, and l i m i t e d l e v e l s of t r a n s i e n t ove rvo l t ages . In LRG systems, t h e r e s i s t o r i s t y p i c a l l y r a t e d t o a l l o w 50 t o 800 amps o f ground f a u l t c u r r e n t . Th i s method is o f t e n used i n MV i n d u s t r i a l systems. Of pr imary concern when app ly ing t h i s method i s t h e need o f s u f f i c i e n t ground f a u l t c u r r e n t f o r o p e r a t i n g ground f a u l t r e l a y s i2-41.

For t h e s e same r e a s o n s , LRG should a l s o be cons ide red f o r 34.5- and 69-kv systems when t h e s e systems are brought i n t o i n d u s t r i a l p l a n t s r a t h e r t han simply adop t ing t h e u t i l i t y p r a c t i c e . For t h i s arrangement , t h e r e s i s t o r would be connected through a. s ingle-phase t r ans fo rmer . Both t h e r e s i s t o r and t h e t r ans fo rmer can b e r a t e d f o r a s h o r t t i m e .

HRG is used i n LV and MV systems (up t o 4.16 kV) where t h e r e i s a d e s i r e not t o t r i p f o r a ground f a u l t t o avoid an unscheduled outage. HRG systems t y p i c a l l y a l l o w less than 7 amps o f ground f a u l t c u r r e n t t o pas s . A t p r e s e n t , it is t y p i c a l p r a c t i c e not t o t r i p when app ly ing HRG. This method assumes t h a t t h e f a c i l i t y has competent maintenance pe r sonne l who can qu ick ly determine t h e l o c a t i o n o f t h e f a u l t ar,d then schedule an ou tage f o r r e p a i r . I n r e a l i t y , t h i s system i s no th ing more than + means o f d e t e c t i n g a ground f a u l t i n an o the rwise ungrounded system. Because o f t h e s m a l l amount o f ground c u r r e n t t h a t i s al lowed t o f low ( s l i g h t l y more than t h e sys t em ' s c a p a c i t i v e cha rg ing c u r r e n t ) , ground f a u l t damage with such a system i s obviously minimal. I f one phase is grounded, t h e l ine- to-ground v o l t a g e o f t h e o t h e r two phases w i l l be inc reased and t h e p o s s i b i l i t y of a second f a u l t , c o n s t i t u t i n g a phase-to-phase f a u l t and i n c u r r i n g major damage, i s heightened 12,141. The need f o r a qu ick r e p a i r i s u r g e n t .

111. SELECTION OF SYSTEM GROUNDING RESISTANCE

A lower ground r e s i s t o r v a l u e impl i e s h ighe r damage; conve r se ly , a h ighe r r e s i s t a n c e impl i e s less damage. A grounding r e s i s t o r should be s e l e c t e d t o minimize f a u l t damage and y e t keep ove rvo l t ages t o a t o l e r a b l e l e v e l , a s w e l l a s p rov id ing s u f f i c i e n t ground f a u l t c u r r e n t f o r r e l a y o p e r a t i o n .

When s e l e c t i n g t h e r e s i s t o r va lue :

Comply w i t h c r i t e r i a set f o r t h i n Appendix A t o l i m i t t r a n s i e n t o v e r v o l t a g e s t o less t h a n 2.5 p e r u n i t ( p u ) l ine- to-ground crest vo l t age .

Allow enough c u r r e n t t o f low so t h a t t h e ground f a u l t r e l a y s w i l l o p e r a t e r e l i a b l y ; however, h i g h e r r e s i s t a n c e ( i .e. , lower f a u l t c u r r e n t ) is d e s i r a b l e .

Achieve 90% winding p r o t e c t i o n of t h e p r o t e c t e d equipment.

S e l e c t e i t h e r a cont inuous duty-rated r e s i s t o r f o r t h e n o n t r i p scheme o r a short- t ime r a t e d one f o r a t r i p p i n g scheme such as LRG.

I n MV i n d u s t r i a l systems, t h e cho ice o f a 400-amp r e s i s t o r has become common ( s t a n d a r d p r a c t i c e by some). A c t u a l l y , t h e c u r r e n t v a l u e o f t h i s r e s i s t o r should be determined by t h e need f o r s u f f i c i e n t ground f a u l t c u r r e n t t o ach ieve s a t i s f a c t o r y r e l a y coordina- t i o n and p r o t e c t i o n , bu t t h i s v a l u e should be low t o minimize f a u l t damage. Fig. 1 shows two schemes w i t h

d i f f e r e n t r e s i s t o r r a t i n g s . It i l l u s t r a t e s t h a t h ighe r c u r r e n t r a t i n g s a r e e s s e n t i a l when more s t a g e s o f c o o r d i n a t i o n are requ i r ed . Fig. l ( b ) has t h e advantage o f less f a u l t damage.

( a ) 400-amp R e s i s t o r

T

1 ( b ) 200-amp R e s i s t o r

F ig . 1. Typical Ground F a u l t P r o t e c t i o n Scheme

- 148

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on June 15,2010 at 04:41:55 UTC from IEEE Xplore. Restrictions apply.

Page 3: 162941

I V . PROTECTION AND COORDINATION

A. Coordinat ion

F ig . 2 shows several t ime-current cu rves d e p i c t i n g a c c e p t a b l e ground f a u l t c o o r d i n a t i o n o f t h e scheme shown. Fig. 2 ( b ) i s t h e t r a d i t i o n a l time-and-current d i f f e r e n t i a t e d coord ina t ion scheme. Fig. 2 ( c ) shows coordinated t i m e d i f f e r e n t i a t i o n , w i t h a l l r e l a y s having t h e same c u r r e n t pickup s e t t i n g . A t f i r s t g l a n c e , F i g , 2 ( d ) appea r s t o b e miscoordinated i n c u r r e n t b u t coord ina ted i n time d i f f e r e n t i a t i o n . Because o f t h e magnitude o f t h e f a u l t c u r r e n t being determined by t h e c u r r e n t v a l u e o f t h e grounding r e s i s t o r ( I ) , a l l t h r e e schemes a r e accep tab le t o se rve t h e pcrpose.

IQ

B. Relays and S e t t i n g s

Two t y p e s o f r e l a y s are used i n ground f a u l t a p p l i c a t i o n : (1) t h e power system o r u t i l i t y t y p e such as t h e Westinghouse CO o r t h e General E l e c t r i c IFC, normally used i n a r e s i d u a l connect ion scheme, and ( 2 ) t h e ground f a u l t s enso rxGFS) t y p e , which is matched w i t h a window o r c o r e ba l ance t y p e o f c u r r e n t t r ans fo rmer t h a t e n c l o s e s a l l conductors o f t h e c i r c u i t . The c h a r a c t e r i s t i c s o f t h e s e two t y p e s o f r e l a y s a r e shown i n Fig. 3.

The power system type has a s a t i s f a c t o r y o p e r a t i n g r e l i a b i l i t y above 1.5 times i t s t a p s e t t i n g , as shown i n F ig . 3 ( a ) . It i s good p r a c t i c e t o ensure t h a t t h e ground f a u l t c u r r e n t allowed by t h e grounding r e s i s t o r w i l l be a t least one and a half o r twice t h e r e l a y t a p s e t t i n g .

I

Current - ( c ) Coordinat ion wi th Same Pickups

( a ) Scheme

Current - ( b ) Proper Coordinat ion

Current - ( d ) Acceptable Coordinat ion

Fig. 2. Acceptable Ground F a u l t P r o t e c t i o n Coordinat ions

- 149 -

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on June 15,2010 at 04:41:55 UTC from IEEE Xplore. Restrictions apply.

Page 4: 162941

Fig. 3. Comparison of Time-Current Curves

The GFS t y p e o p e r a t e s r e l i a b l y a t s l i g h t l y h ighe r t h a n i t s pickup s e t t i n g . Fig. 3 ( b ) shows t h e r e l a y t ime-current c h a r a c t e r i s t i c s o f t h e GFS. The GFS type can a l s o b e used i n a zone s e l e c t i v e scheme t h a t p rov ides b e t t e r p r o t e c t i o n by blocking upstream r e l a y o p e r a t i o n b u t r e q u i r e s w i r ing between t h e r e l a y s a t t h e v a r i o u s l e v e l s , which is not always f e a s i b l e f o r i n d u s t r i a l a p p l i c a t i o n s because o f t h e d i s t a n c e s involved.

App l i ca t ion o f t h e power system ground f a u l t r e l a y s i n t h e r e s i d u a l connect ion p r e s e n t s s e n s i t i v i t y concerns. This connect ion i s s u s c e p t i b l e t o misope ra t ion from phase unbalance such a s i s experienced du r ing t r ans fo rmer in rush o r motor starting. To avo id misope ra t ion , t h e common p r a c t i c e i s t o d i s a b l e t h e 50N ( i f so equipped) and set pickup c u r r e n t o f t h e 51N to a t least 10% of t h e c u r r e n t t r ans fo rmer (CT) r a t i n g [4,61. Unfor tuna te ly , t h i s connect ion cannot be used or p rope r ly coord ina ted with r e s i s t a n c e grounding u n l e s s t h e CT r a t i o s are low enough t o ensure s u f f i c i e n t c u r r e n t f o r o p e r a t i o n . This a s p e c t must be considered when s e l e c t i n g a grounding r e s i s t o r , because it is p o s s i b l e t h a t t h e r e s i d u a l connect ion may no t be a v i a b l e method o f ground f a u l t d e t e c t i o n i n some resis tance-grounded a p p l i c a t i o n s . F ig . 4 shows a t y p i c a l example o f coord ina t ion .

50015A

( a ) Scheme

20A 5 O A

2 0 0 A

516

51 N

Current - ( b ) Coordinat ion

Fig. 4. Coordinat ion o f Res idua l ly Connected Relay (51N)

- 150 -

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on June 15,2010 at 04:41:55 UTC from IEEE Xplore. Restrictions apply.

Page 5: 162941

C. EQuipment Winding P r o t e c t i o n

Normally, a 90% winding p r o t e c t i o n f o r t r a n s - formers or g e n e r a t o r s should be achieved. To accomplish t h i s , common p r a c t i c e is t o select a CT w i t h a pr imary c u r r e n t r a t i n g o f h a l f t h e n e u t r a l r e s i s t o r c u r r e n t r a t i n g and t hen t o s e t t h e r e l a y pickup v a l u e a t 10% o f t h e r e s i s t o r r a t i n g . This i s shown i n F ig . 1.

D. Relay s e n s i t i v i t y

Power system r e l a y s ( f o r use i n t h e r e s i d u a l connec t ion ) are a v a i l a b l e w i t h minimum pickup v a l u e s as low as 0.1 amp. However, t h i s low pickup va lue cannot a lways be used because o f t h e p o s s i b i l i t y o f misope ra t ion ( p r e v i o u s l y d i s c u s s e d ) . Thus, a pickup v a l u e o f 0.5 amp f o r 5 1 N r e l a y s i s assumed i n t h e fol lowing c a l c u l a t i o n . To ensure s a t i s f a c t o r y o p e r a t i o n , it w i l l r e q u i r e an o p e r a t i n g c u r r e n t o f a t least 1.5 t imes t h e minimum pickup v a l u e , i . e . , 0.75 amp, a t t h e secondary o f t h e CT. Normally, t h e CT r a t i o is chosen t o b e 1.35 t i m e s t h e maximum r a t e d load c u r r e n t . The re fo re , t h e minimum primary c u r r e n t f o r o p e r a t i o n is approximately 1.35 x 0.75/5 = 0.2 pu o f r a t e d load c u r r e n t . Th i s means t h a t i f a 5 l N i s a c c e p t a b l e , i t s s e n s i t i v i t y t o ground f a u l t s l i e s a t 9 minimum o f 20% o f t h e r a t e d load c u r r e n t t o t r i p r e l i a b l y . S i m i l a r l y , most LV power c i r c u i t b r e a k e r s a r e equipped w i t h an i n t e r n a l ground f a u l t s enso r normally set a t 0.2 pu o f t h e phase senso r r a t i n g ( t h e minimum s e t t i n g ) . These may o r may not coord ina te wi th o t h e r d e v i c e s depending on t h e senso r magnitude, similar t o t h e r e s i d u a l connect ion. The re fo re , a GFS r e l a y i s p r e f e r r e d when p o s s i b l e : it can be set t o a low pickup v a l u e r e g a r d l e s s o f t h e r a t e d load c u r r e n t . By comparison, t h e GFS can clear t h e f a u l t much more qu ick ly , t h e r e b y minimizing f a u l t damage.

Sometimes, ground f a u l t d i f f e r e n t i a l p r o t e c t i o n may be used f o r maximum s e n s i t i v i t y . The c o s t i s high and should be j u s t i f i e d . However, i n multigrounded systems , such p r o t e c t i o n must be used.

E. Summary

The fo l lowing l i s t summarizes t h e p r i n c i p l e s used i n t h e s e l e c t i o n o f t h e n e u t r a l grounding r e s i s t o r v a l u e and ground f a u l t p r o t e c t i o n dev ices :

1) The n e u t r a l grounding r e s i s t o r r a t i n g and ground f a u l t r e l a y s e t t i n g s are i n t e r r e l a t e d with t h e a p p l i c a t i o n g u i d e l i n e s s e t f o r t h above.

Concepts o f a c c e p t a b l e c o o r d i n a t i o n a r e shown i n Fig. 2.

2 )

3) The 51N d e v i c e ( r e s i d u a l l y connected) i s no t g e n e r a l l y a p p l i c a b l e t o LRG systems, except i n a f e w cases where t h e f eede r c u r r e n t and t h e CT r a t i o are low. The re fo re , t h e 5lGS should be used f o r res is tance-grounded systems t o t h e e x t e n t p o s s i b l e .

4 ) Lower r e s i s t o r c u r r e n t r a t i n g s w i l l minimize f a u l t damage.

V. PROPOSED MHRG SYSTEM

To ach ieve lower ground f a u l t c u r r e n t and r equ i r ed ground f a u l t p r o t e c t i o n , t h e a p p l i c a t i o n o f a MHRG system is proposed f o r LV and MV systems where equipment p r o t e c t i o n has a h ighe r p r i o r i t y than s e r v i c e c o n t i n u i t y .

In t h i s proposed scheme, t h e n e u t r a l grounding r e s i s t o r can be s i z e d i n a manner similar t o t h a t o f t h e HRG system p rev ious ly d i scussed . The GFS-type r e l a y i s recommended. To c o o r d i n a t e , a l l GFS r e l a y s can be set a t t h e same pickup s e t t i n g (2-amp primary c u r r e n t pickup i s used i n t h i s d i s c u s s i o n ; even lower s e n s i t i v i t i e s a r e a v a i l a b l e ) , and each r e l a y can be s e t t o a s e q u e n t i a l time delay. This scheme i s i l l u s t r a t e d i n F ig . 5.

( a ) Scheme

E i=

I

Current

( b ) Coordinat ion

Fig. 5 - MHRG Scheme and Coordinat ion

- 151 -

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on June 15,2010 at 04:41:55 UTC from IEEE Xplore. Restrictions apply.

Page 6: 162941

The fo l lowing l ist summarizes t h e s e l e c t i o n o f t h e n e u t r a l r e s i s t o r and a s s o c i a t e d CT and r e l a y f o r t h e proposed MHRG system:

1) The r e s i s t o r r a t i n g must no t b e less t h a n t h e system cha rg ing c u r r e n t ; 20 amps w i l l be adequate i n almost a l l LV and MV systems [ l s ] . The CT primary c u r r e n t r a t i n g should be h a l f t h e r e s i s t o r c u r r e n t r a t i n g ( i.e., l 0 / 5 amps) . The r e l a y i s set a t 1 amp ( i .e . , 2 amps a t t h e CT primary s i d e ) .

As shown i n Fig. 5 ( b ) , a l l r e l a y s a r e set a t t h e same c u r r e n t pickup wi th t h e p rope r t i m e d i f f e r e n t i - a t i o n between c o o r d i n a t i o n l e v e l s t o ach ieve good coord ina t ion .

2 )

3 )

The proposed scheme seems t o have no de t r imen ta l e f f e c t and compares f avorab ly wi th t h e o t h e r system grounding methods as shown i n Table I1 1121:

TABLE I1 GROUNDING SYSTEM COMPARISONS

No T r i p T r i p Charac t e r i s t i c UG HRG MHRG LRG SG

Trans i en t ove rvo l t age - F F F F

S e r v i c e c o n t i n u i t y F F - - - a f t e r ground f a u l t

Avoidance o f a r c i n g F F F F -

Damage F F- F+ - Fa - F Serving s ingle-phase - -

l oads

F = f avorab le F+ = more f avorab le F- = less f avorab le UG = ungrounded - - - not a p p l i c a b l e

aThe NEC and Occupat ional S a f e t y and Heal th Admin i s t r a t ion (OSHA) do not a l low single-phase load ing o f HRG systems (NEC 250-5 ex. 5d) o r t h e u t i l i t y may r e q u i r e s o l i d grounding o f 277/480-V s e r v i c e . The r e g u l a t i o n s must be reviewed be fo re implementing MHRG where t h e r e i s , t o be s ingle-phase l o a d s . Single-phase load ing is t e c h n i c a l l y f e a s i b l e because t h e f a u l t w i l l be c l e a r e d qu ick ly .

V I . CONCLUSION

A ground f a u l t can be damaging, and a t t e n t i o n should be g iven t o minimizing i t s e f f e c t . With t h e r u l e s s e t f o r t h i n t h i s paper , a sound p r o t e c t i o n p r a c t i c e can b e achieved by p rope r s i z i n g o f t h e grounding r e s i s t o r and s e l e c t i o n o f t h e a p p r o p r i a t e r e l a y s . The proposed MHRG scheme, w i t h i t s low c u r r e n t and s e l e c t i v e t r i p p i n g , has t h e advantage o f reduced damage when compared t o t h e LRG scheme under ground f a u l t cond i t ions . This scheme i s a p p l i c a b l e f o r LV and

MV systems where s e r v i c e c o n t i n u i t y du r ing a ground f a u l t i s not e s s e n t i a l . Where c o n t i n u i t y i s e s s e n t i a l , t h e HRG system should be used.

V I I . REFERENCES

111 Nat iona l E l e c t r i c a l Code - Nat iona l F i r e P r o t e c t i o n Assoc ia t ion , P u b l i c a t i o n 70.

121 E l e c t r i c a l Transmission and D i s t r i b u t i o n Reference Book, Westinghouse E l e c t r i c Corp., East P i t t s b u r g h , PA, 1964.

131 L.W. Manning, " I n d u s t r i a l Power Systems Grounding P r a c t i c e s ," presen ted a t t h e I n d u s t r i a l and Commercial Power Systems Technical Conference, P h i l a d e l p h i a , PA, October 1964.

14 1 Donald Beeman, I n d u s t r i a l Power Systems Handbook, McGraw-Hill Book Co., Inc ., N e w York, 1955.

15 1 I E E E Standard 241-1983, I E E E Recommended P r a c t i c e f o r E l e c t r i c Power Systems i n Commercial Bu i ld ings , The I n s t i t u t e o f E l e c t r i c a l and E l e c t r o n i c s Engineers , Inc .

16 1 I E E E Standard 142-1982, IEEE Recommended P r a c t i c e f o r Grounding of I n d u s t r i a l and Commercial Power Systems, The I n s t i t u t e o f E l e c t r i c a l and E l e c t r o n i c s Engineers , Inc.

17 I I E E E Standard 141-1986, I E E E Recommended P r a c t i c e f o r E l e c t r i c Power D i s t r i b u t i o n f o r I n d u s t r i a l P l a n t s , The I n s t i t u t e o f E l e c t r i c a l and E l e c t r o n i c s Engineers , Inc.

181 I E E E Standard 242-1986, IEEE Recommended P r a c t i c e f o r P ro tec t ion and Coordinat ion of I n d u s t r i a l and Commercial Power Systems, The I n s t i t u t e o f E l e c t r i c a l and E l e c t r o n i c s Engineers , Inc .

[91 ANSI c62.92-1987, I E E E Guide f o r t he App l i ca t ion o f Neutral Grounding i n E l e c t r i c a l U t i l i t y Systems, P a r t I - I n t r o d u c t i o n , American Nat ional S t anda rds I n s t i t u t e .

[lo] J.R. Dunki-Jacobs, " S t a t e o f t h e A r t o f Grounding and Ground F a u l t P ro tec t ion" , p re sen ted a t t h e I E E E 24th Annual Petroleum and Chemical I n d u s t r y Conference, Da l l a s , TX, September 12-14, 1977.

Ill] J . R . Dunki-Jacobs, "The E f f e c t s o f Arcing Ground F a u l t s on Low Voltage System Design ," IEEE Transac t ions on Indus t ry and General A p p l i c a t i o n s , Vol. I A - 8 , No. 3, May/June 1972.

1121 GET-6098, The Impact o f Arcing Ground F a u l t s on Low Voltage System Design, General E l e c t r i c Co.

1131 Harris I. Stanback, Jr., "P red ic t ing Damage from 2778 S i n g l e Phase t o Ground Arcing Fau l t s , " I E E E Transac t ions on I n d u s t r i a l App l i ca t ions , Vol. 1~-18, No. 13, July/August 1977.

[ 141 J .R. Dunki-Jacobs, "The R e a l i t y of High Res i s t ance Grounding ," presen ted a t t h e IEEE 23rd Annual Petroleum and Chemical Indus t ry Conference, P h i l a d e l p h i a , PA, August 30-September 1, 1976.

115 1 PRSC-4E, System Neutral Grounding and Ground F a u l t P r o t e c t i o n Guide, Westinghouse I n d u s t r i a l a n d Commercial Power Systems App l i ca t ions S e r i e s , February 1986.

- 152 -

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on June 15,2010 at 04:41:55 UTC from IEEE Xplore. Restrictions apply.

Page 7: 162941

APPENDIX A DETERMINATION OF TRANSIENT OVERVOLTAGE

To l i m i t t r a n s i e n t o v e r v o l t a g e s t o 250% o f t h e normal l i n e - t o - n e u t r a l crest v o l t a g e , t h e fol lowing cr i ter ia should be observed 12,3 ,9 ] :

Grounding System Parameter R e s t r a i n t

LRG R o / X o 2.0 and Xo/X, 5 20.0

HRG Rg I xc

Where Ro = ze ro sequence r e s i s t a n c e Xo = ze ro sequence r eac t ance X1 = p o s i t i v e sequence r e a c t a n c e R = system n e u t r a l r e s i s t a n c e X: = system c a p a c i t i v e r e a c t a n c e

( a l l i n t h e same u n i t s )

- 153 -

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on June 15,2010 at 04:41:55 UTC from IEEE Xplore. Restrictions apply.