15a energy yield calculations

Upload: darko-duvnjak

Post on 14-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 15A Energy Yield Calculations

    1/16

    1

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    Some comments to results ofEnergy yield Calculations

    Peter Busche

    Deutsches Windenergie-Institut GmbH,DEWI Wilhelmshaven

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    Content

    Considerations on roughness and wind speed profiles

    Accuracy of the orographic model

    Handling of Weibull-data

    Wind farm calculations

    Reduction margins

  • 7/30/2019 15A Energy Yield Calculations

    2/16

    2

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    meteorologicallong term data

    distance: several 10 km

    meteorologicalcomputer model

    energy yield prognosis

    in situ windmeasurements

    long term correlation

    energy yield evaluation

    micro - siting - model

    meteorologicallong term data

    Methods of energy prognosis

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    Roughness values

    Class: 0 1 2 3 z0

    z0 [m] 0.0002 0.03 0.10 0.40 [m]

    3 1 0.001

    3 1 0.002

    3 1 0.003

    2 2 0.004

    2 1 1 0.006

    2 1 1 0.010

    2 2 0.009

    2 1 1 0.015

    2 2 0.025

    1 3 0.011

    1 2 1 0.017

    1 2 1 0.027

    1 1 2 0.024

    1 1 1 1 0.038

    1 1 2 0.059

    1 3 0.033

    1 2 1 0.052

    1 1 2 0.079

    1 3 0.117

    3 1 0.042

    3 1 0.064

    2 2 0.056

    2 1 1 0.086

    2 2 0.127

    1 3 0.077

    1 2 1 0.113

    1 1 2 0.163

    1 3 0.232

    3 1 0.146

    2 2 0.209

    1 3 0.292

  • 7/30/2019 15A Energy Yield Calculations

    3/16

    3

    Deutsches Windenergie - Institut GmbH http://www.dewi.deRef.: IEC 61400-1 ed 2; 3.65

    Wind profile

    ( )( )

    V z V zz/z

    z /zr

    r

    ( ) ( )ln

    ln=

    0

    0

    V z V zz

    zr

    r

    a

    ( ) ( )=

    where

    V(z) is the wind speed at height z

    z is the height above ground

    zr is a reference height above ground used for fi tting the profile

    zo is the roughness length

    is the wind shear (or power law) exponent

    Wind Profile

    Wind shear law

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    Determination of roughness from two wind speeds

    The roughness lengths can be derived from wind measurements at two heights, aswell: From the logarithmic wind profile, wind speed u for a given height:

    0

    ln*)(z

    z

    k

    uzu = (1)

    withz height above groundu* friction velocityk Krmn constant (0.40)z0 roughness length.

    one gets for two heights h1 and h2the relation

    =

    0

    1

    0

    2

    ln

    ln

    12

    z

    z

    z

    z

    uuhh (2).

    After some modifications it results for the roughness length:

    =

    12

    12)ln()ln(

    exp21

    0

    hh

    hh

    uu

    huhuz (3).

    For high measurement heights, the roughness gained in this way, might be far toohigh.

  • 7/30/2019 15A Energy Yield Calculations

    4/16

    4

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    Determination of roughness from turbulence

    Another possibility for the determination of the roughness lengths derives from theturbulence of the wind. The turbulence Iis the relative variation of the wind speed:

    uI

    u

    = (4)

    with the standard deviation of the wind uand the average of the windu . Usually, theeasy relationship

    =

    0

    ln

    1

    z

    zI (5)

    is assumed. Thus, for the roughness and known turbulence values, this means:

    =

    I

    zz

    1exp

    0 (6)

    From our experience, this formula leads to roughness', being slightly lower thanrealistic.

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    Prediction of wind speeds for different heights

    Results for the WAsP-calculations for the referring height

    10 m measured 98 m calculated 98 m measured

    data: measuring mast Falkenberg, period 2001 - 2002. Source: DWD

    measurements

  • 7/30/2019 15A Energy Yield Calculations

    5/16

    5

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    Askervein Hill

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    Experience at Exemplary Complex Terrain Site 1

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    1100

    1200

    1300

    1400

    1500

    16001700

    1800

    1900

    2000

  • 7/30/2019 15A Energy Yield Calculations

    6/16

    6

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    Measurement Masts at the Sites

    Site 1:

    measuringheights 11 m, 22 m

    measuring periodmore than one year

    orographic height1110 m

    Site 2:

    measuringheights 19 m, 39 m

    measuring periodmore than one year

    orographic height1240 m

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    Terrain (approx. 6 km x 6 km)

  • 7/30/2019 15A Energy Yield Calculations

    7/16

    7

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    N

    W E

    S

    Mast 1 measured (22 m height)

    N

    W E

    S

    Mast 2 measured (39 m height)

    N

    W E

    S

    Mast 1 calculated with WASP based on Mast 2 data

    wind atlas

    based on site 1

    wind atlas

    based on site 2

    mean wind speed [m/s] 5.9 6.4

    weibull A parameter [m/s] 6.6 7.2

    weibull k parameter [-] 2.23 1.86

    energy yield [MWh/y] 1063 1385

    energy yield relative 100 % 130 %

    Comparison of results based on the wind atlas data

    from site 1 and site 2, identical measuring period, fora common 600 kW wind turbine, 46 m hub height,

    located at site 1

    Measured and Calculated Wind Conditions

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    Experience at Exemplary Complex Terrain Site 2

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    1100

    1200

    1300

    1400

    1500

    16001700

    1800

    1900

    2000

  • 7/30/2019 15A Energy Yield Calculations

    8/16

    8

    Deutsches Windenergie - Institut GmbH http://www.dewi.deRight [km]

    North[km]

    2

    1

    3

    3.2

    3.4

    3.6

    3.8

    4

    4.2

    4.4

    4.64.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    6.4

    6.6

    6.8

    7

    7.2

    7.4

    7.6

    7.8

    8

    8.2

    8.4

    8.6

    Location of 2 High-Quality Wind Measurement

    Masts

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    calculated

    mea

    sured

    Mast 1 (50 m) Mast 2 (50 m)

    Measured and Calculated Wind Conditions

  • 7/30/2019 15A Energy Yield Calculations

    9/16

    9

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    Hufigkeitsverteilung Windgeschwindigkeit

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    0 5 10 15 20 25

    Windgeschwindigkeit v inNabenhhe [m/s]

    ZeittproJahr[h]

    Vm=7.0 m/s

    Rayleigh-Verteilung

    Summe:

    8760Stunden

    t(i) =275h

    Leistungskurve

    0

    100

    200

    300

    400

    500

    600

    0 5 10 15 20 25

    Windgeschwindigkeit v in Nabenhhe [m/s]

    elektr

    .Le

    istung

    P[kW]

    Jahresenergieertrag

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 5 10 15 20 25

    Windgeschwindigkeit v in Nabenhhe [m/s]

    Ja

    hresenerg

    ieertrag

    E[MWh]

    Summe:

    1440MWh

    E(i) = 95MWh

    Wind speed distribution

    Power curve

    Energy output distribution

    Determination of energy yield of a wind turbine

    Annual Energy Production

    AEP

    Annual average wind speed

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    Comparison of calculation methods (1)

    Wind turbine

    Nordex N-50P_Tab P_Tab_sec P_Weibull P_Weibull_sec

    Weibull/Tab

    (sgesamt)

    Weibull/Tab

    (sector)01_meas10 3'320 3'337 3'323 3'234 100% 97%

    04_meas10 2'059 2'069 2'289 2'058 111% 99%

    04_meas30 2'130 2'142 2'379 2'134 112% 100%

    04_meas2_10 1'992 1'997 2'153 2'010 108% 101%

    04_meas2_30 2'202 2'206 2'375 2'225 108% 101%

    07_Ca20m 1'862 1'872 1'955 1'835 105% 98%

    07_Ca40m 1'922 1'936 2'024 1'919 105% 99%

    08_10m 1'325 1'325 1366 1312 103% 99%

    08_40m 1'790 1'791 1'853 1'791 104% 100%

    JWE011 775 775 786 771 101% 99%

    JWE032 1'408 1'408 1'419 1'404 101% 100%

    JWE062 1'903 1'904 1'952 1'898 103% 100%

    JWE092 2'462 2'464 2'476 2'457 101% 100%

    JWE126 2'877 2'882 2'905 2'858 101% 99%

    Mean 2'002 2'008 2'090 1'993 104% 99%

    Standardev. 631 634 639 618 4% 1%

  • 7/30/2019 15A Energy Yield Calculations

    10/16

    10

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    Comparison of calculation methods (2)

    Wind turbine

    GE 1.5 SLP_Tab P_Tab_sec P_Weibull P_Weibull_sec

    Weibull/Tab

    (total)

    Weibull/Tab

    (sector)01_meas10 6'401 6'524 6'344 6'373 99% 98%

    04_meas10 4'414 4'454 4'754 4'516 108% 101%

    04_meas30 4'534 4'575 4'885 4'650 108% 102%

    04_meas2_10 4'442 4'469 4'796 4'532 108% 101%

    04_meas2_30 4'822 4'862 5'148 4'946 107% 102%

    07_Ca20m 3'806 3'864 3'964 3'857 104% 100%

    07_Ca40m 3'792 3'861 3'984 3'939 105% 102%

    08_10m 3'129 3'139 3255 3124 104% 100%

    08_40m 4'109 4'123 4'274 4'138 104% 100%

    JWE011 1'882 1'883 1'912 1'876 102% 100%

    JWE032 3'261 3'270 3'284 3'260 101% 100%

    JWE062 4'280 4'300 4'381 4'279 102% 100%JWE092 5'356 5'393 5'400 5'372 101% 100%

    JWE126 6'039 6'097 6'099 6'058 101% 99%

    Mean 4'305 4'344 4'463 4'351 104% 100%

    Standardev. 1'168 1'191 1'171 1'171 3% 1%

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    Comparison of calculation methods (3)

    Wind turbine NEG

    Micon NM1000/60

    Energy Yield

    [MWh]

    Weibull/Tab

    (sector)

    Wind distribution 2'079 100%

    WASP 2'022 97%

    Park model 2'061 99%

    Windfarmer, using TAB 2'080 100%

    Windfarmer, no TAB 2'030 98%

  • 7/30/2019 15A Energy Yield Calculations

    11/16

    11

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    Wind Farm Calculations

    Geometry

    Wind Direction

    Wind Speed

    Power Curve, Thrust Coefficient Curve

    Turbulence Intensity (depends on site andatmospheric stratification)

    Definition of Park Efficiency:

    =

    free

    park

    parkP

    P

    Deutsches Windenergie - Institut GmbH http://www.dewi.deQuelle: Beyer et.al.: Modelling Tools for Wind Farm Upgrading. Universitt Oldenburg, 1996

    Relatively goodaccordance tomeasurements

    Simple undexperienced Modell

    Normally no high

    accuracy require-ments for parkefficiency

    No clear improve-ments of the resultsby means of theAinslie-Model (valid

    for simple cases)

    RisRisRisRis----ParkmodellParkmodellParkmodellParkmodell

  • 7/30/2019 15A Energy Yield Calculations

    12/16

    12

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    AinslieAinslieAinslieAinslie----ModellModellModellModell

    Tow-dimensional axis-symmetrical numerical solutionof the equations of motion andcontinuity

    Turbulence closure with thehelp of eddy-viscosity model

    Incorporation of the ambientturbulence and preceedingwake turbulence

    Improved accuracy for high

    resolution value and in specialcases

    Implemented by:FLaP, Universitt OldenburgWindFarmer, Garrad Hassan

    Quelle: Lange et.al.: Improvement of the Wind Farm Model FLAPfor Offshore Applications. Universitt Oldenburg, 2002.

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    ComparisonComparisonComparisonComparison ofofofof RisRisRisRis---- andandandand AinslieAinslieAinslieAinslie----ModelModelModelModel

    Quelle:WindFarmerValidation Report.Garrad Hassan and Partners, 2000

    Here: Ris- andAinslie-Model fromWindFarmer,Garrad Hassan

    Ris-Model:correspondence of

    the integral valuefor normalsituations

    Ainslie-Model:Much bettercorrespondence ofthe velocity deficit

  • 7/30/2019 15A Energy Yield Calculations

    13/16

    13

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    RisRisRisRis----ParkmodellParkmodellParkmodellParkmodell

    Simple, semi-empiricalmodel

    Velocity deficit calculated insimple dependence fromthe rotor thrust

    Supposed open angle(slope) of the wake

    Linear wake-superposition

    u0 u

    Quelle: www.wasp.dk

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    NewNewNewNew VerificationsVerificationsVerificationsVerifications

    Quelle: Schlez et.al.: ENDOW: Improvement of Wake Models, 2002.

    ENDOW-Projekt:Verification /improvement foroffshore-conditions

    Special

    conditions, e.g.5-timesoverlapping ofwakes

    FLaP: lowerpictures Ainslie-Model activated

  • 7/30/2019 15A Energy Yield Calculations

    14/16

    14

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    WEA

    E66

    WMT

    StandortWEAWTM

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    NewNewNewNew VerificationsVerificationsVerificationsVerifications (DEWI, wind(DEWI, wind(DEWI, wind(DEWI, wind speedspeedspeedspeed))))

    Quelle: Schlez et.al.: ENDOW: Improvement of Wake Models, 2002.

    Meas and WF relative single wake velocities (V2/V1) vs Direction

    0

    0.5

    1

    1.5

    260 280 300 320 340

    Azimuth dire ction []

    V2

    /V1

    [-]

    Meas V2 / V1

    WF V2 / V1

    Meas and WF (V3(compound-wake) / V1_inc (WF-derived)) versus Direction

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    100 120 140 160 180

    Directi on []

    V3/V1[-]

    Meas WF

    Single wake situation [262.5, 337.5[

    Wake Mean = Mean

    WF(V2/V1) / Mean

    Meas(V2/V1)

    1.027

    Standard deviation of Wake

    Mean0.088

    WF'smaximal wind power

    over prediction8.3%

    WF'smax. WT power over

    prediction (100% availability,

    cp=16/27)

    4.9%

    Proportion of WF

    inaccuracy over measured

    mean wake velocity deficit

    11.7%

    Compound wake situation [107.5, 162.5[

    Wake Mean = Mean

    WF(V3/V1) / Mean

    Meas(V3/V1))

    1.025

    Standard deviation of Wake

    Mean0.124

    WF'smaximal wind power

    over prediction7.7%

    WF'smax. WT power over

    prediction (100% availability,

    cp=16/27)4.6%

    Proportion of WF

    inaccuracy over measured

    mean wake velocity deficit

    12.8%

  • 7/30/2019 15A Energy Yield Calculations

    15/16

    15

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    ConclusionConclusionConclusionConclusion ParkParkParkPark----ModelModelModelModel

    Starting Point

    High requirements for accuracy

    Relatively large wind farm

    High-resolution results required

    Conclusion

    Ainslie-Model appropriate

    FLaP or WindFarmer

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    Number Type Annual EnergyYield

    Free streamMWh/a

    Annual En-ergy Yield

    In wind farmMWh/a

    ParkEfficiency

    1 XXX 1677 1660 99.0%

    2 XXX 1813 1775 97.9%

    3 XXX 1846 1807 97.9%

    4 XXX 1784 1741 97.6%

    5 XXX 1637 1619 98.9%

    6 XXX 1669 1641 98.3%7 XXX 1765 1733 98.2%

    8 XXX 1656 1613 97.4%

    9 XXX 1704 1667 97.8%

    10 XXX 1793 1775 99.0%

    11 XXX 1939 1922 99.1%

    12 XXX 1848 1831 99.1%13 XXX 1665 1658 99.6%

    Sum: 22796 22442 98.4%

    Average energy yield per WT 1754 1726

    Sum less 3% losses of availability and 1% gridlosses:

    21544

    Average energy yield per WT 1683 1657 98.4%

    Wind farm configuration:

    Number of WTs: 13

    WT Type: XXXHub Height: 45m

    Total installed capacity: 8580kW

    Total annual energy yield: 21544

    MWh/aWind farm efficiency: 98.4%

    Technical availability losses: 3 %Electrical grid losses: 1 %

    Typical result of a energy yield prognosis

  • 7/30/2019 15A Energy Yield Calculations

    16/16

    Deutsches Windenergie - Institut GmbH http://www.dewi.de

    Reduction margins for wind farms (example)

    Resulting Energy Yield Commentar

    Calculated energy yield of farm 32'544 MWh calculation result

    Grid and interconnecting station 2.0% assumption

    Availability 3.0% assumption

    Planned Maintenance 0.3% assumption

    Grid availability 0.1% assumption

    Cut-out wind speed 0.0%included in calculation

    result

    Special operating modes 0.0% assumption

    Icing / rotor blade degradation 0.5% assumption

    Sum 5.9% 30'662 MWh

    Reduction Reason