158.132.155.107158.132.155.107/posh97/private/research/thesis-patrick-wong/the…  · web viewin...

238
University of Western Sydney In Conjunction with The Hong Kong Polytechnic University Total Productive Maintenance and effectiveness of Occupational Health and Safety Management Systems By WONG Kam Loi

Upload: others

Post on 07-Apr-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

University of Western Sydney

In Conjunction with

The Hong Kong Polytechnic University

Total Productive Maintenance and

effectiveness of

Occupational Health and Safety Management Systems

By

WONG Kam Loi

A report submitted as partial fulfillment of the requirements forMaster of Applied Science (Safety Management)

December, 2001

Page 2: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Declaration of Originality

The following work has been completed by the author as coursework research project

report in the Master of Applied Science (Safety Management) at the University of

Western Sydney in conjunction with The Hong Kong Polytechnic University under

the supervision of Mr. Gary Ma.

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material that has previously published or written

by another person nor material which to a substantial extent has been accepted for the

award of any other degree or diploma of a University or other institute of higher

learning, except where due acknowledgement has been made in the text.

Signed ___________________ Date ___________________

WONG Kam Loi

ii

Page 3: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Acknowledgements

I would first like to thank my project supervisor, Mr. Gary Ma, for his thoughtful

comments and guidance throughout the last year. He patiently gave me his time and

encouragement, and unselfishly shared with me his experience.

I would also like to thank the companies who participated in the survey for the

research. I thank them for their genuine concern on employee safety.

iii

Page 4: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Abstract

Many manufacturing organizations already have occupational health and safety

(OHS) management systems in place but for most of them, high standards of safety

performance still cannot be assured. The success of an OHS management system

depends on whether the organization has implemented the system proactively, which

in turn is related to the safety culture of the organization.

The project commenced with the identification of safety culture factors that can

improve safety performance and can be enhanced by Total Productive Maintenance

(TPM). TPM is a maintenance system which promotes productive maintenance but it

also contributes to a positive safety culture through management incentive,

management commitment, participation of management and workers, communication,

education and training, working conditions and procedures, morale and job

satisfaction, and attitude and risk perception.

Questionnaires were designed based on the safety culture factors identified. These

were then sent to companies with or without TPM to collect the opinions of workers

on safety culture. T-test method was used to compare the results obtained from the

two different sample groups, to verify the effectiveness of TPM on safety culture.

Finally a framework of TPM activities was developed for manufacturing

organizations to improve safety performance.

iv

Page 5: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Table of Contents

Page

List of Tables xi

List of Figures xii

Glossary of Terms xiii

Chapter 1 Introduction 1

1.1 The problem addressed 1

1.2 Proposed approach to improve the effectiveness of OHS management 3

systems

1.3 Aim and objectives 4

1.4 Hypothesis 4

Chapter 2 Literature Review 5

2.1 Effects of Safety culture on safety performance 5

2.1.1 Definitions of safety culture and safety climate 5

2.1.2 Relationships among safety culture, climate and management 9

2.1.3 Proactive safety management and safety performance 11

2.2 Factors of a proactive safety culture 14

2.2.1 'Management incentive' is essential for good safety performance 16

2.2.2 'Management commitment' is essential for good safety performance 17

2.2.3 'Participation of management and workers' is essential for 18

good safety performance

2.2.4 'Communication' is essential for good safety performance 20

2.2.5 'Education and training' is essential for good safety performance 21

2.2.6 'Working conditions and procedures' is essential for good safety 22

performance

v

Page 6: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

2.2.7 'Morale and job satisfaction' is essential for good safety performance 22

2.2.8 'Attitude and risk perception' is essential for good safety 23

performance

2.3 Introduction to TPM 25

2.3.1 A brief history of maintenance management 26

2.3.2 The development of TPM 28

2.3.3 TPM principles 30

2.3.4 TPM structure 31

2.3.5 Autonomous maintenance 32

2.3.6 Steps in developing a TPM system 34

2.3.7 Obstacles in implementing TPM 36

2.3.8 Factors for success implementation of TPM 37

2.4 Investigate TPM's effectiveness to enhance safety culture 39

2.4.1 Implement TPM is already a good incentive for management 39

2.4.2 Management commitment is important in TPM 41

2.4.3 TPM encourages participation of management and workers 42

2.4.4 TPM enhances communication 42

2.4.5 TPM encourages education and training 43

2.4.6 TPM improves working conditions and procedures 43

2.4.7 TPM improves morale and job satisfaction 45

2.4.8 TPM improves attitude and risk perception 46

2.5 A way to effective OHS management through TPM 48

2.6 Assessing safety culture 50

2.6.1 Criteria for assessing safety culture 50

2.6.2 Methods to assess safety culture 55

2.6.3 Reliability analysis of safety culture survey 57

2.6.4 The t-test 58

2.7 Chapter summary 58

vi

Page 7: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Chapter 3 Research Method 59

Chapter 4 Research questions 61

4.1 Design of questionnaires 61

4.2 The ABC Company 62

4.3 Distribution of questionnaires 63

Chapter 5 Result 65

5.1 Replies received 65

5.2 Average score of questionnaires A & B 65

5.3 Results on each safety culture factor 68

5.3.1 Results on management incentive 69

5.3.2 Results on management commitment 69

5.3.3 Results on participation of management and workers 70

5.3.4 Results on communication 70

5.3.5 Results on education and training 71

5.3.6 Results on improve working conditions and procedures 71

5.3.7 Results on morale and job satisfaction 72

5.3.8 Results on attitude and risk perception 72

5.4 Reliability analysis 73

5.5 Testing of the hypothesis 73

Chapter 6 Discussion 76

6.1 Discussion on the research method and questionnaire design 76

6.2 Discussion on the results of questionnaire B from ABC Company 77

6.2.1 Management incentive (Questions 4 and 16) 78

6.2.2 Management commitment (Questions 5 and 6) 78

vii

Page 8: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

6.2.3 Participation of management and workers (Questions 12 and 20) 78

6.2.4 Communication (Questions 13, 14, 18 and 19) 79

6.2.5 Education and training (Questions 7, 8 and 9) 79

6.2.6 Improve working conditions and procedures 79

(Questions 10, 11 and 15)

6.2.7 Morale and job satisfaction (Questions 17 and 21) 80

6.2.8 Attitude and risk perception (Questions 22 and 23) 80

Chapter 7 Develop a framework of TPM activities 81

7.1 Organize to enhance communication 81

7.1.1 Set up a TPM committee 81

7.1.2 Manage small group activities 84

7.1.3 Conduct step audit for training and mutual learning 85

7.2 Make equipment and workplace safe 85

7.2.1 Clean and inspect (step 1 of autonomous maintenance) 85

7.2.2 Eliminate problem sources (step 2 of autonomous maintenance) 86

7.2.3 Draw up cleaning and lubrication standards (step 3 of 86

autonomous maintenance)

7.2.4 Planned maintenance and predict failure 86

7.2.5 Implement 5S 86

7.3 Develop safety conscious people 87

7.3.1 Conduct general inspections (step 4 of autonomous maintenance) 87

7.3.2 Carry out visual workplace management (step 6 of autonomous 87

maintenance)

7.3.3 Link safety education and training to skill training 88

7.3.4 One-point lesson 88

7.3.5 On-the-job coaching to each individual 89

7.3.6 Self audit 89

viii

Page 9: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

7.4 Commitment and support of management 89

7.4.1 Address sources of human error 89

7.4.2 Develop an education and training program 90

7.4.3 Draw up a budget for safety 90

7.4.4 Involve senior management in auditing team activities 90

7.4.5 Devise a program of accident prevention training 90

7.4.6 Conduct autonomous inspection (step 6 of autonomous 91

maintenance)

7.4.7 Carry out consistent autonomous management (step 7 of 91

autonomous maintenance)

7.4.8 Develop an early equipment management program 91

7.5 Discussion on the framework of TPM activities developed 92

Chapter 8 Conclusion 93

Chapter 9 Recommendations 95

References 96

ix

Page 10: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Appendices

Appendix A The twelve steps of TPM development 106Appendix B A 12-stage Western approach for TPM development 107Appendix C Calculation of OEE 108Appendix D The 5S System 109Appendix E A sample of one-point lesson 110Appendix F Samples of F-tag for operator and maintenance 111Appendix G Output of Reliability analysis of questionnaire result 112

from ABC Company - All the 20 questionsAppendix H Output of Reliability Analysis of questionnaire result 114

from ABC Company- Management IncentiveAppendix I Output of Reliability Analysis of questionnaire result 115

from ABC Company- Management CommitmentAppendix J Output of Reliability Analysis of questionnaire result 116

from ABC Company - Participation of Managementand Workers

Appendix K Output of Reliability Analysis of questionnaire result 117from ABC Company - Communication

Appendix L Output of Reliability Analysis of questionnaire result 118from ABC Company - Education and Training

Appendix M Output of Reliability Analysis of questionnaire result 119from ABC Company - Improve working conditionsand procedures

Appendix N Output of Reliability Analysis of questionnaire result 120from ABC Company - Morale and Job Satisfaction

Appendix O Output of Reliability Analysis of questionnaire result 121from ABC Company - Attitude and Risk Perception

Appendix P Questionnaire set A - for management 122Appendix Q Questionnaire set B - for workers 125Appendix R Questionnaire set B - for worker (Chinese version) 128

x

Page 11: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

List of Tables

PageTable 1: Industrial Accidents in Manufacturing Industry (1996-2000) 1Table 2: Definitions of safety culture 7Table 3: Definitions of safety climate 8Table 4: Three levels of safety culture 9Table 5: Themes of conflicting risk judgments of immediate effect 25

injury linked OHS risksTable 6: Pillars of TPM in different generations 29Table 7: The six big losses 31Table 8: The seven steps of Autonomous Maintenance 33Table 9: The twelve steps of TPM development 34Table 10: Development of a TPM system - a case study in China 35Table 11: Factors for assessing safety culture 54Table 12: Questions in eight domains 62Table 13: Numbers of questionnaire sent and received 65Table 14: Average score of questionnaire A 66Table 15: Average score of questionnaire B 67Table 16: Results on Management Incentive 69Table 17: Results on Management Commitment 69Table 18: Results on Participation of Management and Workers 70Table 19: Results on Communication 70Table 20: Results on Education and Training 71Table 21: Results on Working Conditions and Procedures 71Table 22: Results on Morale and Job Satisfaction 72Table 23: Results on Attitude and Risk Perception 72Table 24: Summary of Cronbach's Alpha values for each domain 73Table 25: Output of t-test 74

xi

Page 12: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

List of Figures

Page

Figure 1: Accident rate in manufacturing industries (1996-2000) 2

Figure 2: Proposed solution to the problem statement 4

Figure 3: Relationship among safety culture, climate and management 10

Figure 4: A strategic (top-down) approach to safety 12

Figure 5: Berends' (1995) safety culture model 15

Figure 6: Proposed organizational structure of TPM 32

Figure 7: Cause and effect diagram - a generic model of factors 37

affecting successful implementation of TPM

Figure 8: A TPM approach to effective OHS management 49

Figure 9: Methods of assessing employee perceptions 55

Figure 10: Flow Chart of Research Method 59

Figure 11: Average score on all 20 questions 68

Figure 12: Average score on Management Incentive 69

Figure 13: Average score on Management Commitment 69

Figure 14: Average score on Participation of Management and Workers 70

Figure 15: Average score on Communication 70

Figure 16: Average score on Education and Training 71

Figure 17: Average score on Working Condition and procedure 71

Figure 18: Average score on Morale and Job Satisfaction 72

Figure 19: Average score on Attitude and Risk Perception 72

Figure 20: Framework of TPM activities for safety management 82

Figure 21: Proposed organization chart for TPM pilot installation 83in ABC Company

Figure 22: Link safety education and training to skill training 88

xii

Page 13: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Glossary of Terms

Audit: A systematic and whenever possible, independent examination to determine

whether activities and related results conform to planned arrangements and whether

these arrangements are implemented effectively and are suitable to achieve the

organization's policy and objectives. (BS8800:1996, p.4)

Autonomous Maintenance: Autonomous means independent. Autonomous

maintenance refers to activities designed to involve operators in maintaining their own

equipment.

Continuous Improvement: The continuous improvement of processes and systems,

which forms the basis for continuous improvement in cost, quality, safety, schedule,

or flexibility.

Hazard: A source or a situation with a potential for harm in terms of human injury or

ill-health, damage to property, damage to the environment, or a combination of these.

Just-in-time means not just 'zero inventory, but rather all activities which combine to

make just in time to produce the right product at the right time. Just-in-time technique

is a mean to achieve a competitive advantage, through more effective supply chain

management, led to a new perspective in conceiving the relationship between

manufacturers and suppliers.

Risk: The combination of the likelihood and consequence of a specified hazardous

event occurring.

xiii

Page 14: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Risk perception includes both the probability and severity of injury. It influences

how people perceive the risk of a given product or activity.

Total Productive maintenance (TPM) is a system of maintenance covering the entire

life of the equipment in every division, including planning, manufacturing,

maintenance, and all other divisions, involving everyone from the top executives to

the shop floor workers and promoting productive maintenance through morale-

building management and small group activities in an effort to maximize equipment

efficiency (Nakajima 1988).

Total Quality Management highlighted the opportunities offered by the dimension

of quality, not only to reduce production costs but also to improve all outward

oriented performance and mainly that related to the firm's turnover and market share.

Acronyms:

CTPM: The Center for TPM (Australasia)

HKPC: Hong Kong Productivity Council

HKSAR: Hong Kong Special Administration Region

HSE: Health & Safety Executive

JIPE: Japan Institute of Plant Engineers

JIT: Just In Time

OEE: Overall Equipment Effectiveness

OHS: Occupational Health and Safety

TPM: Total Productive Maintenance

TQC: Total Quality Control

TQM: Total Quality management

xiv

Page 15: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Chapter 1

Introduction

1.1 The problem addressed

The current approaches to occupational health and safety (OHS) management

including BS 8800:1996, AS/NZS4804:1997, OHSAS 18001:1999 and AS4801:2000

have been introduced into Hong Kong. The government has also put continuous

efforts to reduce industrial accidents. Yet a high accident rate is still a feature of

manufacturing industries, as shown in the last five years statistics compiled by the

Labor Department (2001) of the HKSAR (see Table 1).

Year 1996 1997 1998 1999 2000

No. of Accidents 7205 7196 6334 5499 5436

No. of Fatalities 9 4 2 2 3

Employment 335177 306510 263714 247830 232039

Accident rate /

1000 workers 21.50 23.48 24.02 22.19 23.43

Fatality rate /

1000 workers 0.027 0.013 0.008 0.008 0.013

Table 1: Industrial Accidents in Manufacturing Industry (1996-2000)

It can be observed from the accident rate (see Figure 1, data from Table 1) that though

OHS management systems have been introduced, the safety performance of

1

Page 16: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

manufacturing industry has not been improved since 1996.

Figure 1: Accident Rate in Manufacturing Industry (1996-2000)

Even though there are OHS management systems in place, however, for many

managers, there are insufficient economic incentives to improve safety. For them,

safety is not and cannot be first. Instead, what is first is profit, mission, productivity or

the strength of growth of their businesses (Michaud 1995). Even if safety does pay, by

reducing the cost of insurance, compensation and man-days loss, employers are often

not aware of this. Indeed they frequently believe that it does not pay. A number of

major UK studies have found that the perception that health and safety improvements

are a "cost" rather than an investment is a significant de-motivating factor amongst

management (HSE 1998). An example is Hopkins (1995) who does not agree that

there are sufficient economic incentives for employers to improve safety. He argues

that emphasizing 'safety pays' is not effective in gaining management attention.

Instead, more emphasis is placed on health and safety now by management due to

pressure from regulators, commercial pressure and higher employee expectations.

On the other hand, for many employees, managing safety and health is the

responsibility of the management only. They seldom take an active part in

2

Page 17: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

participating in safety and health activities. They have little interest in protecting the

3

Page 18: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

property of their employers or in the safety of their fellow employees or in the safety

record of their organizations. Some of them even think that reporting a health and

safety concern will cause them to be regarded as a troublemaker.

Thus, the problem statement of this dissertation is:

Nowadays, many organizations already have OHS management systems in place.

However, high standard of health and safety still cannot be assured.

1.2 Proposed approach to improve the effectiveness of OHS management systems

Companies with OHS management systems in place still seem to have difficulties to

have improvement in safety performance. One of the reasons is the lacking of means

or methods to establish a positive safety culture. This can be supported by Kennedy &

Kirwan (1998, p.250) who said, "Safety management at least in theory, appears to be

competently equipped to handle accident prevention. However, the way that a safety

management system exists on paper is not necessarily the way that it exists in reality,

i.e. actual shop floor or even board room practices may not follow the espoused

policies explicitly and implicitly laid out in official company documents. This is

where the concepts of safety climate and safety culture come into the picture, as they

represent the work environment and underlying perceptions, attitudes, and habitual

practices of the workforce at all its various levels."

The proposed solution to the problem statement in this dissertation is through the

Total Productive Maintenance (TPM, definition refers to section 2.3) activities, both

the management and workers will adapt a proactive approach towards safety. A

positive safety culture and hence high effectiveness of OHS management systems can

4

Page 19: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

then be achieved (see Figure 2).

Figure 2: Proposed solution to the problem statement

1.3 Aim and objectives

The aim of this dissertation is:

To establish a framework of TPM activities to improve the effectiveness of the OHS

management systems.

The objectives of this dissertation are:

1. To identify factors of safety culture on safety performance

2. To investigate TPM's effectiveness to enhance safety culture

3. To develop a TPM safety framework

1.4 Hypothesis

The hypothesis of this dissertation is:

A manufacturing company with TPM in place has a more positive safety culture than

one not implementing TPM.

Chapter 2

High Effectiveness of OHS Management System

Proactive approach towards safety

TPM activities

Positive safety culture

5

Page 20: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Literature Review

This chapter reviews the academic literature relevant to safety culture, TPM and

effectiveness of OHS management systems. The objectives of the chapter are to

identify factors of safety culture on safety performance and to identify TPM's effect

on safety performance. These are achieved through the below steps:

2.1 to identify the effects of safety culture on safety performance

2.2 to identify factors of a positive safety culture

2.3 to explain and describe TPM

2.4 to identify the relationship between TPM and the safety culture factors identified

2.5 to identify a way to effective OHS management through TPM

2.1 Effects of safety culture on safety performance

2.1.1 Definitions of safety culture and safety climate

Safety culture is the way an organization's norms, beliefs and attitudes to minimize

exposure of employees to conditions considered to be dangerous. The goal is to

develop an organizational norm in which employees are aware of the risks associated

with their job and are continually on the lookout for potential hazards. Safety culture

is a process, not a program; it takes time to develop and requires a collective effort

(Vredenburgh 1998).

Definitions of safety culture and safety climate from different institutions and scholars

are tabulated in Tables 2 and 3. However, all definitions that attempt to capture the

essence of safety culture, as described by Lee & Harrison (2000), are bound to be

6

Page 21: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

inadequate because its many manifestations are extensive, complex and intangible.

Nevertheless, two critical attributes may help to fill out the picture. First, in a healthy

culture, the avoidance of accident and injury by all available means is the

responsibility of every person in the organization. Second, the integration of role

behaviors and the consolidation of social norms create a common set of expectations,

a 'way of life' that transcends individual members. A culture is much more than the

sum of its parts.

Confusion between the terms 'culture' and 'climate' means that they have been used

interchangeably. Some researchers (Glendon & Stanton 2000) distinguished between

safety culture and safety climate while attempts had also been made to derive

composite models. It is not the intention of this paper to go into the concepts of safety

climate and culture in depth. However it is worth mentioning them for easy

understanding of the literature review in the paper. Cooper (1998) described that

safety culture was much boarder than safety climate as it referred to the whole,

whereas safety climate referred solely to people's perception of, and attitudes towards,

safety. Gonzalez-Roma, Peiro, Lloret and Zornoza (1999) explained that safety culture

embodied values, beliefs and assumptions while safety climate was a descriptive

measure reflecting the workforce's perceptions of the organizational atmosphere.

Sutherland, Makin & Cox (2000, p.34) also explained that climate was a term that

applied to the sum of individual perceptions of the organization; while culture, on the

other hand was a group phenomenon, the expression of strongly held norms,

consisting of shared beliefs and values. It was possible for organizations did not have

such strong organizational norms. Thus, whilst all organizations had a safety climate,

not all had a safety culture. For simplicity, safety climate could be regarded as the

7

Page 22: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

surface features of the safety culture discerned from the workforce's attitudes and

perceptions at a given point in time (Flin, Mearns, O'Connor & Bryden 2000).

International Safety Advisory Group (1991)

That assembly of characteristics and attitudes in organizations and individuals which establishes that, as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance

Ostrom et al. (1993)

The concept that the organization's beliefs and attitudes, manifested in actions, policies, and procedures, affect its safety performance.

Health and Safety Commission (1993)

The product of individual and group values, attitudes, competencies, and patterns of behavior that determine the commitment to, and the style and proficiency of, an organization's health and safety programs.

Pidgeon & O'Leary (1994, p.32)

The set of beliefs, norms, attitudes, roles and social and technical practices within an organization which are concerned with minimizing the exposure of individuals both within and outside an organization to conditions which are considered to be danger.

Geller (1994) In a total safety culture, everyone feels responsible for safety pursues it on a daily basis.

Institution of Occupational Safety and Health (1994)

1. Those aspects of culture that affect safety. 2. Shared attitudes, values, beliefs and practices concerning safety

and the necessity for effective controls.3. The product of individual and group values, attitudes,

competencies and patterns of behavior that determine the commitment to, and the style and proficiency of, an organization's safety program.

Berends (1996)

The collective mental programming towards safety of a group of organization members

Lee (1996) The safety culture of an organization is the product of individual and group values, attitudes, perceptions, competences, and patterns of behavior that determine the commitment to, and the style and proficiency of, and organization's health and safety management.

Table 2: Definitions of safety culture

8

Page 23: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Zohar (1980) A summary concept describing the safety ethic in an organization or

workplace which is reflected in employees' beliefs about safety and is

thought to predict the way employees behave with respect to safety in

that workplace. The model of safety climate of Zohar covers workers

perceptions of: the importance of safety training, management

attitudes towards safety, effects of safe conduct on promotion, level of

risk at workplace, effects of work pace on safety, status of safety

officer, effects of safe conduct on social status and status of safety

committee.

Glennon

(1982)

Employees' perception s of the many characteristics of their

organization that have a direct impact upon their behavior to reduce or

eliminate danger.

Brown and

Holmes

(1986)

A set of perceptions or beliefs held by an individual and/or group

about a particular entity

Cooper and

Philips (1994)

Safety climate is concerned with the shared perceptions and beliefs

that workers hold regarding safety in their work place.

Niskanen

(1994)

Safety climate refers to a set of attributes that can be perceived about

particular work organizations and which may be induced by the

policies and practices that those organizations impose upon their

workers and supervisors.

Coyle et al.

(1995)

The objective measurement of attitudes and perceptions toward

occupational health and safety issues.

Cabrera et al.

(1997)

The shared perceptions of organizational members about their work

environment and, more precisely, about their organizational safety

9

Page 24: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

policies.

Neal et al.

(2000)

Individual perceptions of the value of safety in the work environment.

Importance components of safety climate include management values,

management and organizational practices, communication, and

employee involvement in workplace health and safety.

Table 3: Definitions of safety climate

2.1.2 Relationship among safety culture, climate and management

Ashby & Diacon (1996) postulate that the primary motivations associated with OHS

management are those of regulatory compliance and avoidance of legal liabilities.

However, Mohamed (1999) argues that zero-accident cannot be guaranteed by

legislation alone. If management is only forced to implement an OHS management

system due to regulatory pressure, it cannot be expected that the management system

will be operated proactively. What is needed, in addition to legislation, is a change in

corporate culture with regard to safety (Butler 1989).

Thus, HSE (1999) classified safety culture into three levels (Table 4).

Compliance

Driven

(Level 1)

Regulatory frameworks are translated into internal procedures and

compliance is assured largely by close supervision. The aim is primarily

to stay out of trouble with the regulator and senior management.

Managed

Safety

(Level 2)

These safety management systems generally include mechanisms for

policy definition, allocating responsibilities, implementing systems and

measuring performance in some way. The organization can thus move

beyond external prescription and set its own targets and standards.

10

Page 25: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Constructive

Intolerance

(Level 3)

Introduced a culture that devolves responsibility to the team level and

here tended to be more emphasis on local ownership of health and safety

issues, and on developing risk awareness. The aim is to encourage

'constructive intolerance' of unsafe or potentially unsafe conditions,

coupled with a commitment to take responsibility for either dealing with

the hazard or ensuring that it is dealt with. Simply speaking, "don't

accept unsafe conditions and don't take no for an answer". This ties in

well with the requirement for continuous improvement.

Table 4: Three levels of safety culture (HSE 1999)

11

Page 26: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Level 1 are those companies whose safety goals are to comply with regulation. Level

2 are those companies having safety management systems in place. Level 3 are those

companies implement systems proactively and strategy for continuous improvement.

Kennedy & Kirwan (1998, p.251) had summarized the relationship among safety

management, climate and culture (see Figure 3). According to their findings, safety

culture was a sub-element of the overall organizational culture. It was an abstract

concept which was underpinned by the amalgamation of individual and group

perceptions, thought processes, feelings and behavior which in turn gave rise to the

particular way of doing things in the organization. The safety climate and the safety

management were at lower levels of abstraction and were considered to be a

manifestation of the overall safety culture. The safety climate was, therefore, a more

tangible expression of the safety culture in the form of symbolic and political aspects

of the organization. These factors in turn would characterize and influence the

deployment and effectiveness of the safety management resources, policies, practices

and procedures.

Environment Safety ManagementPractices

Safety Climate

Safety Culture

OrganizationalCulture

Figure 3: Relationship among safety culture, climate and management

2

Increasingly abstractand intangible concepts

12

Page 27: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

2.1.3 Proactive safety culture and safety performance

Covey (1991) identified proactive as one of the seven habits of high effective people.

He explained proactive as the power, freedom, and ability to choose responses to

whatever happened to people, based on their values. According to Covey, when

people are proactive, they tend not to blame people or circumstances for what happens

to them. Proactive and reactive produce different outcomes. Proactive produces

results; reactive produces excuses, or explanations. The strength of proactive is not a

pushy sort of strength. It is internal strength, the strength of integrity, or the simple

commitment to value or principle. This can also be applied to OHS management.

When someone is proactive, he will not budged from his principle. When an accident

occurs, he will not blame others or find excuses. He believes what happens has

resulted from what he has chosen and hence he will develop control measures to

prevent accidents from happening.

HSE (1996a) postulates that the most effective way of preventing accidents and ill

health at work is to manage the business in such a way as to encourage all staff to

develop a positive culture towards health and safety. A good safety culture and an

involvement in safety that goes through the organizational hierarchy, from top down

to the workers, is essential for successful OHS (Seppala 1995).

A strategic (top down) model to safety developed by Gleendon & Stanton (2000,

p.205) clearly pictured the relationship of safety management system and safety

culture described above (see Figure 4):

13

Page 28: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Figure 4: A strategic (top-down) approach to safety (Glendon & Stanton 2000)

The success of an OHS management system depends on whether everyone in the

organization is involved and whether a proactive approach has been adopted (Health

and Safety Factbook 1998). Recent studies by Halme (1992), Seppala (1992) and

Varonen & Mattila (2000) all concluded that the better the safety culture, the lower

was the accident rate. This can be further supported by a case study on the injury rate

of hospital employees done by Vredenburgh (1998). He concluded that while most of

the participating hospitals implemented the reactive practices, what differentiated the

hospitals with low injury rates was that they also employed proactive measures to

prevent accidents.

As described above, effective implementation of an OHS management system

depends on the safety culture of the organization. There are many other studies which

support this argument:

Brabazon, Tipping & Jones (2000) said, "There is general agreement that an

Safety Management System

Performance Measurement

Safety Culture

Risk Assessment and Control

Human Resource Management

Proactive: audits, etc. Reactive:

accidents, etc.

Attitudes Behaviors Norms and Values

Training and Development

Personal Responsibilities

14

Page 29: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

effective and proactive safety culture is essential to improve safety."

Saari (1990) suggested, "After a certain point technology cannot achieve further

improvement in safety, rather, organizational and cultural factors may be

important - yet these have not been widely explored."

Kennedy & Kirwan (1998) postulates that safety culture underpins safety

management, which in turn determines work practices and system configuration.

Krause (1993) also argues that employee behavior is a direct result of

management system and is the final common pathway of most incidents.

Management system in turn is influenced by the organization culture which has a

substantial influence on, inter alia, priorities and the allocation of resources to

health and safety effort.

Seppala (1995) concluded in a recent study that a good safety culture and an

involvement in safety that went through the organizational hierarchy, from top

down to the workers, was essential for successful occupational safety and health.

A training program helps the personnel to carry out various preventive activities

effectively. It also helps establish a positive attitude towards safety and integrates

safety with the production and quality goals.

15

Page 30: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

2.2 Factors of a proactive safety culture

The above section described the relationship between a proactive safety culture and

effectiveness of OHS management system. In this section, the factors for a proactive

safety culture would be investigated.

A model of safety climate produced by Seppala (1992) consisted of three factors:

organizational responsibility for safety

workers' concern about safety and

workers' indifference towards safety

Grote & Kunzler (2000) also described some examples of indicators used to assess an

organization's safety culture, including:

management commitment to safety

safety training and motivation

safety committees and safety rules

record keeping on accidents

sufficient inspection and communication

adequate operation and maintenance procedures

well-designed and functioning technical equipment, and

good house keeping.

Another model of safety culture model developed by Berends (1995) showed the

factors of norms and beliefs of safety culture, as shown in Figure 5.

16

Page 31: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Figure 5: Berends' (1995) safety culture model

communication

supportinteractionalNORMS

individualpassive

active

causes ofaccidents

results of safeworking

Human nature

evaluation ofsituational

controllability of safety

controllabilityby individual

BELIEFS

design ofenvironment

controllingbehavior

dealing withsafety problems

organizational

17

Page 32: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Among the factors contribute to safety culture, some can be found in TPM. In this

section, the effects of eight safety culture factors, which can be enhanced by TPM (to

be verified in the Section 2.4) were described.

The eight safety culture factors identified were:

1. management incentive

2. management commitment

3. participation of management and worker

4. communication

5. education and training

6. working conditions and procedures

7. morale and job satisfaction

8. attitude and risk perception

In the below sections 2.2.1 to 2.2.8, it would be verified that these 8 safety culture

factors were important for good safety performance.

2.2.1 'Management incentive' is essential for good safety performance

Managers are influenced by a variety of motives, among them economic incentives,

fear of legal consequences, moral commitment and concern for their own reputations.

These are numerous ways in which these motives can lead to action to improve OHS.

But none of this is automatic. These motives will come into play only if management's

attention is drawn to the relevant information (Hopkins 1995).

Management's motive cannot be driven by legislation alone. A recent study (Brabazon

et al. 2000) reported that senior management had not considered the risk of

18

Page 33: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

prosecution to be high. The number of regulatory visits carried out was perceived to

be very low and so the likelihood of an inspector finding a non compliance, and this

leading to a successful prosecution was seen as acceptable in some cases.

Furthermore, there was a temptation to introduce more paperwork as evidence to

defend directors against prosecution.

It is perceived that (Brabazon et al. 2000) senior managers do not fully exploit their

potential to improve health and safety. The lack of commitment is due to the poor

understanding of links between good health and safety performance and business

performance. The need for financial efficiencies is the main drive for change.

Thus, management incentive is essential for good safety performance. Lack of

incentives leading to management commitment becomes lip service to improve health

and safety performance, but not a genuine commitment to action (HSE 1997). It is not

surprising that the management commitment is very often low in many organizations

as described in the next section.

2.2.2 'Management commitment' is essential for good safety performance

Management commitment is the key factor of safety culture. Dedobbeleer & Beland

(1998) found evidence for only two core factors in a review of safety climate surveys,

one of which they called management commitment (another was risk perception

mentioned below). Cheyne, Cox, Oliver & Thomas (1998) also reported management

commitment as a prime factor in their predictive model of safety behaviors, giving

some support to the primacy of this factor. In a study to compare plants with high and

low injury rates by Koh (1995), it was noted that the most important workforce factor

19

Page 34: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

which accounted for the difference in safety performance was greater management

commitment and involvement in the total safety programme. Management

commitment as the most critical element in a successful safety program can further be

supported by various studies such as Cohen (1997), Zohar (1980) and Isla & Diaz

(1997).

However, in many cases, management commitment is low (Brabazon et al. 2000),

implying a need to convince them of the importance of health and safety performance

to the future prosperity of their company. Brabazon et al. (2000) also argue that there

are thought to be still considerable operational obstacles which cause poor health and

safety performance, most notably a lack of resources.

It can be concluded that management support is crucial to ensure the success of OHS

promotion programs. Furthermore, the commitment of top management to develop the

safety program and joint regulation mechanisms appears to be an effective way for

senior managers to impact indirectly on workers' safety initiatives behavior by

influencing positively supervisory participative management of safety and workgroup

cohesiveness (Simard & Marchand 1995), as discussed in the next section.

2.2.3 'Participation of management and workers' is essential for good safety

performance

Besides making commitment, management participation is also essential. This can be

supported by Wentz (1998) who argues that to promote OHS, management should

encourage and support safety by setting a good safety example; effectively managing

health and safety programmes, attending health and safety meetings, performing

20

Page 35: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

inspections, investigating near miss accidents and reviewing safety performance at all

levels.

Participation of workers is important as well. The way forward for successful OHS

management as described by Health and Safety Factbook (1998), is to involve

everyone in the organization, including both the management and workers, using a

proactive approach to identify hazards and to control those risks that are not tolerable.

"Employee's participation is important" can be supported by a research in the

chemical industry carried out by HSE (2001). The study concluded that companies

that were seeking to make their safety management systems more effective regarded

involving their employees as the preferred way of improving safety performance.

They were not driven by regulatory demands alone. They reported a reduction in

adversarial management-employee relations, better morale and an improved image in

the eyes of clients and the general public. They maintained that the benefits of

employee involvement outweighed the costs incurred. These views were shared by

employees, trade unions and management alike.

Worker participation has many advantages. Hopkins (1995) pointed out that a policy

of worker participation, involving workers in decision making about their work, a

policy perhaps of self-directed work groups would make employees feel encourage to

come forward with suggestions, which in turn would eliminate many little

inefficiencies which were built into jobs-prooly-designed tasks, procedures which

were not well connected and so on.

21

Page 36: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Another advantage of worker participation as described by HSE (1997) is that it

supports risk control by encouraging workers' ownership of health and safety policies.

It establishes an understanding that the organization as a whole, and people working

in it, benefit from good health and safety performance. Pooling knowledge and

experience through participation, commitment and involvement means that health and

safety becomes everybody's business.

Brabazon et al. (2000) also pointed out that workforce participation needed an open

environment in which people could offer ideas, including when something had gone

badly, without the possibility of blame. Thus the degree of worker participation was

affected by the effectiveness and means of communication.

In conclusion, good management of health and safety can only be achieved with the

co-operation of the workforce. It is vital that the employees know what is expected of

them and are aware of any risks to their health and safety that may arise at work and

any safe systems of work that are applied (HSE 1995).

2.2.4 'Communication' is essential for good safety performance

The first people to realize something may be going seriously wrong in an organization

are usually those who work there. However, a recent study by HSE (1999) found out

that employees often did not voice such concerns or they voiced them in a wrong way.

Sometimes they thought that because it was only a suspicion they should not bother

anyone about it. Or they might think speaking up would be disloyal to their

colleagues. Often they feared they would lose their job or be victimized. This study

argued that a good safety culture was "one where the mental attitude of both workers

22

Page 37: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

and management is such that when a risk to health and safety is perceived, it will be

reported promptly to the designated people. They, in turn, will investigate it and

remove or reduce any unwarranted risk."

Merritt & Helmreich (1996, p.11) also said, "An organization needs to encourage and

reward vigilance and inquiry from all its members, seeking to mend the system rather

than killing the messenger."

Thus the channels for communication are important. Management feedback on the

reports and the manner of feedback so that the employee can understand are also

important; otherwise employees will be discouraged from further reporting of their

concern on OHS. The study by HSE (1999) also pointed out "almost all organizations

using a form acknowledge receipt of a report by means of a tear off slip or something

similar. Feedback is vital, to maintain enthusiasm for a scheme, to disseminate the

lessons learned, to stimulate other reports, and as a quality check. However, where the

output from reporting schemes tended to be high-level statistical analyses aimed

solely at management, employees would quickly lose faith in the procedure."

2.2.5 'Education and training' is essential for good safety performance

The main priority for education and training so far as safety is concerned is the

creation of a safety culture. Training is by definition an ongoing process continually

reviewed and modified to take account of changing conditions, past experience and

new developments. Safety must be inextricably woven into the entire tapestry of

training procedures. Training should and must tighten safety awareness, and the

intelligent understanding of possible hazards; thence how these may be minimized by

23

Page 38: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

good practice (HSE 1990). Upon employees are educated and trained to create safety

culture in their organizations, can the safety performance be assured.

2.2.6 'Working conditions and procedures' is essential for good safety

performance

In a recent case study, Varonen & Mattila (2000) found that the safety climate

correlated both with the safety level of the work environment and with the safety

practices of the company, and the correlation between the safety climate and the

safety of the 'work environment' was stronger.

Glennon (1982) also identified 'procedures' as one of the most frequently themes used

by other researchers in his review of safety culture. Flin et al. (2000) suggested that

procedure was an issue that might merit inclusion in safety climate measures.

2.2.7 'Morale and job satisfaction' is essential for good safety performance

'Morale and job satisfaction' is an essential factor for good safety performance can be

supported by a recent HSE funded study based on approximately 1.5 million

observations of people's everyday safety behavior over the course of a year (Cooper

1998, p.82). Cooper concluded that people with higher morale and job satisfaction

would have better safety performance. Cooper believed that it was because autonomy

or job control affected people's experienced responsibility, that was, the extent to

which people felt personally responsible for the outcomes of their performance.

24

Page 39: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

2.2.8 'Attitude and risk perception' is essential for good safety performance

'Attitude and risk perception' is an essential factor for good safety performance.

Phelps (1999, p.32) said, "A casual attitude can often result in a casualty." Goetsch

(1998, p.139) also said, "Employee perceptions concerning the state of the work

environment can affect both morale and performance."

Employees' attitude is important for safety can be supported by the study of Marcus

(1988) on 24 nuclear power stations in United State of America. Marcus concluded

that those plants where the attitudes of employees favored control, responsibility and a

generally proactive attitude towards safety had three times fewer 'error events' and a

generally better safety record. In another study by Isla & Diaz (1997), it was found

that those enterprises with higher scores on the climate scale also had a more positive

safety attitude.

Risk perception is important for safety performance. This can be supported by a study

on risk perception and safety on offshore petroleum platforms carried out by Rundmo

(1995, p.1). Rundmo concluded that the higher the perceived risk, the more

dissatisfied with safety status, the more accidents and near accidents they experienced.

According to Rundmo (2000), risk perception might affect risk behavior and also the

probability of accidents and health injuries. Risk perception was composed of a

subjective assessment of the probability of experiencing an accident or a health injury

caused by exposure to a risk source as well as emotions related to the source.

Accordingly, Sjoberg (1993) suggested that an individual's experience of risk could be

separated into one cognitive component and one emotional or affective component.

25

Page 40: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Holmes, Gifford & Triggs (1998) also defined two factors in workers' perceptions of

their safety climate. One was the demonstration of management commitment to OHS

through actions and attitudes. The second factor was workers' involvement in OHS

and the authors speculated that employee perceptions of risk and its control related to

their views about responsibility for risk and its control.

Dedobbeleer & Beland (1998) considered risk perception as a fundamental

component of safety climate and speculated that it was closely linked to the concept

of workers' involvement or responsibility for safety, one of their two identified safety

climate dimensions (another was management commitment mentioned above).

Risk perception is not only related to employees, but also related to managers and

employers. In a case study of perceptions and understandings of risk and its control in

OHS among employers and employees of an Australian small, blue-collar business

industry, carried out by Holmes et al. (1998), the findings showed that accounts of risk

perceptions in the workplace that focused on employees could have limited

implications for the practice of management and promotion of OHS. These accounts

were incomplete without a concurrent examination of employers' and managers' risk

perceptions.

However, in another study by Holmes, Triggs, Gifford & Dawkins (1997), employers

and employees had different themes of risk judgments, as shown in Table 5 below:

26

Page 41: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Categories of themes Themes

1. Employers' themes risk is a function of economic factors

individual attitudes are the source of risk

2. Employees' themes 'part of the job' - acceptance of risk in work

environment

3. Shared themes risk is a function of occurrence frequency

Table 5: Themes of conflicting risk judgments of

immediate effect injury linked OHS risks (Holmes et al. 1997)

The study of Holmes et al. (1997) found that many employers revealed that risk in

OHS meant the effect of occupational injuries on work productivity and business

finances. In contrast, employees regarded occupational injury risk as a normal feature

of the work environment and an acceptable 'part of the job'. They described

occurrence frequency in the context of their own working environment and experience

rather than a statistical aggregate of other people and trades. Thus, the risk perception

of employer and employee affects the safety culture of an organization.

2.3 Introduction to TPM

It is important to present the basic concepts of TPM before attempting to explain how

TPM is related to safety culture. This section provides an introduction to TPM.

In 1971, as described by Nakajima (1988, p.10), the Japan Institute of Plant Engineers

(JIPE) developed the TPM and defined TPM as a system of maintenance covering the

27

Page 42: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

entire life of the equipment in every division, including planning, manufacturing,

maintenance, and all other divisions, involving everyone from the top executives to

the shop floor workers and promoting productive maintenance through morale-

building management and small group activities in an effort to maximize equipment

efficiency.

TPM, together with Total Quality Management (TQM) and Just-in-time (JIT) are the

three most important activities surrounding the kaizen approach (Yamashina 2000),

which is a continuous improvement concept and widely recognized as a strategic

weapon to achieve world-class manufacturing (Cigolini & Turco 1997).

In order to achieve world-class performance, more and more companies are replacing

their reactive, fire-fighting strategies for maintenance with proactive strategies like

preventive and predictive maintenance and aggressive strategies like TPM to improve

productivity and quality (Swansion 2001). Another factor in achieving world-class

manufacturing can be said to be its approach to health and safety issues. As TPM

improves machine performance, reduces machine breakdown, improves working

condition and procedures, encourages total participation of management and workers,

requires continuous improvement and commitments to training and resources, TPM is

believed to improve safety as well, as will be verified in the sections below.

2.3.1 A brief history of maintenance management

Traditionally, repairs and maintenance of equipment are the responsibility of the

maintenance departments. The production workers, who usually are the first people to

realize something may be going wrong in machines, are not involved with the care

28

Page 43: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

and maintenance of the machines since the performance of the machines is generally

regarded as the responsibility of others.

The objective of maintenance management is to increase equipment availability and

overall effectiveness. Overall there have been four main periods of maintenance

management (Nakajima 1988 & McKone 1996):

1. Reactive (breakdown) maintenance (prior to 1950)

During this phase little attention was placed on defining reliability requirements or

preventing equipment failures. Typically equipment specifications included

requirements for individual parts and failed to consider the reliability or

availability of the entire system.

2. Preventive maintenance (1950s)

During this phase a maintenance system involved an analysis of current equipment

to determine the best methods to prevent failure and to reduce repair time.

Emphasis was placed on the economic efficiency of equipment replacements and

repairs as well as improving the equipment reliability to reduce the mean time

between failures.

3. Productive maintenance (1960s)

When the importance of reliability, maintenance, and economic efficiency in plant

design was recognized, productive maintenance became well established. It

included maintenance prevention pursued during the equipment design stages;

maintainability improvement which modifies equipment to prevent breakdowns

and facilitate ease of maintenance; and preventative maintenance including

29

Page 44: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

periodic inspections and repairs of the equipment.

4. Total productive maintenance (1970s)

TPM officially began in the 1970's in Japan and was designed to maximize

equipment effectiveness. Development of TPM is shown in the next section.

2.3.2 The development of TPM

TPM originates from the fact that productivity, cost, inventory, production output,

safety and quality all depend on equipment performance (Ravishankar, Burczak &

DeVore 1992). The goal of TPM is to eliminate equipment breakdowns and defects

caused by the production process (Ravishankar, Burczak & Devore 1992). When this

has been accomplished, operation rates improve, quality and reliability of parts

improve, costs and inventories decrease, and consequently worker productivity

increases. Below is a brief summary for the historical development of TPM (CTPM

2001a, HKPC 2000, Nakajima 1988):

TPM had its genesis in the Japanese car industry in the 1970s. It evolved at Nippon

Denso, a major supplier of the Toyota Car Company, as a necessary element of the

newly developed Toyota Production System.

It was not until 1988, with the publication in English of the first of two authoritative

texts on the subject by Seiichi Nakajima, that the western world recognized and

started to understand the importance of TPM. It soon became obvious that TPM was a

critical missing link in successfully achieving not only world class equipment

performance to support Total Quality Control (TQC) and Just In Time (JIT), but was a

30

Page 45: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

powerful new means to improving overall company performance.

Since the early 90s, TPM has steadily spread throughout the western world,

significantly improving the performance of manufacturing, and mining companies.

The development of TPM is divided into three stages. The development is in line with

the industrial environment in the world. Society of Manufacturing Engineers (1995)

stated, "Productive is TPM's middle name." In the early stage of TPM, there were

only five pillars, and TPM aimed at improving equipment efficiency and hence

productivity. When quality was becoming a serious concern, the sixth pillar " Process

Quality Management" was added at the 2nd stage of TPM. In 1990s, when the world

progresses from mere growth to development, causing OHS to be mounting concern,

a new element "Safety and Environmental Management" was also added to TPM.

Now there are eight elements in TPM as shown in Table 6 (HKPC 2000) below.

Pillars of TPM Generation

1st 2nd 3rd

1. Equipment and Process Improvement

2. Autonomous Maintenance

3. Planned Maintenance

4. Education and Training

5. Early Management of New Equipment

6. Process Quality Management

7. TPM in administration and support departments

8. Safety and Environmental Management

31

Page 46: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Table 6: Pillars of TPM in different generations

32

Page 47: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

The above is the development of the Japanese and Western approach of TPM. In

Australia, the first generation is the same as the Japanese approach. In the third

generation, there are now ten pillars.

1. Macro focused equipment and process improvement

2. Work area management

3. Operator equipment management

4. Maintenance excellence management

5. Education and Training

6. People support systems improvement

7. Administration and support systems improvement

8. New equipment management

9. 9. Safety and environmental management

10. Process quality management

In Hong Kong, and so is this dissertation, the Japanese approached is adopted.

2.3.3 TPM Principles

Blanc (1993) defined six principles for TPM:

1. Improvement of product and process quality through zero mentality

2. Elimination of the six big losses (see Table 7)

3. Development of a clean, safe, well organized, and visually controlled work place.

4. Focus on chronic losses and root cause preventive problem solving.

5. Development of equipment management systems - (predictive maintenance, OEE

tracking, preventive maintenance) which enhance TPM implementation and

development.

33

Page 48: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

6. Increase skill levels of operators and maintenance personnel and begin to transfer

more equipment ownership to operators.

1 Breakdown failures Losses due to sporadic and function-reducing

machine failures

2 Setups and adjustments Shutdown losses accompanying setup

changeovers and adjustments

3 Idling and minor stoppages Losses due to idling or stoppage resulting from

transient problems

4 Reduced speed Losses arising from disparities between actual

operating speeds and speeds specified in

equipment design

5 Quality defects and rework Losses due to defects and rework

6 Startup and reduced yield Losses incurred in the interval between

production startup and stable production

Table 7 : The six big losses (Blanc 1993)

2.3.4 TPM structure

Through the use of overlapping teams, everyone participates from top executives to

shop floor employees. To create an effective communication channel, the leader of

one team is a member of another team at the next higher level (see Figure 6). The

result is top down support and resources guided by pillar champions with bottom up

activity and ownership through the use of small group activities (JIPM 2001).

34

Page 49: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

President ☺Company wide TPMPromotion Committee

Plant Manager

Plant TPM PromotionManager Committee

Team LeadersSupervisor

Small teams formedFront Line Worker at the production site

Figure 6: Proposed organizational structure of TPM (JIPM 2001)

2.3.5 Autonomous Maintenance

Autonomous Maintenance is the second pillar of TPM (see Table 6). The word

autonomous means independent. Autonomous maintenance refers to activities

designed to involve operators in the maintenance of their own equipment (JIPM 1997,

p.8). Operators learn the maintenance skills they need through a seven-step

autonomous maintenance program (JIPM 1996, p.109) (see Table 8).

Autonomous maintenance can only be achieved via good management practice

(Prickett 1999, p.236). This should include the associated training of machine tool

operators which must be undertaken to ensure their co-operation. Limited changes are

35

Page 50: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

needed to existing maintenance engineering practices to support the transfer of certain

responsibilities and actions from maintenance staff to operators. Such actions must be

managed to ensure high levels of staff motivation. Some of the developments

presented in this work were aimed at supporting the operators at the machine tool

level by presenting maintenance related information to them in a form that they could

use.

36

Page 51: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Step Name Activities Related to safetyEliminate unsafe conditions

1 Clean and inspect

Eliminate all dirt and grime on the machine, lubricate, tighten bolts, and find and correct problems.

Identify and correct problems such as exposed moving parts, projecting parts, spattering of harmful substances

2 Eliminate problem sources and inaccessible areas

Correct sources of dirt and grime; prevent spattering and improve accessibility for cleaning and lubrication. Shorten the time it takes to clean and lubricate.

Take steps to correct problems related to covers, guards, etc.

3 Draw up cleaning and lubricating standards

Write standards that will ensure that cleaning, lubricating, and tightening can be done efficiently.(Make a schedule for periodic tasks.)

Establish and review work standards and daily check methods, etc.

4 Conduct general inspections

Conduct skills training with inspection manuals and use general inspections to find and correct slight abnormalities in the equipment.

Check and improve performance of safety and disposal devices.

Eliminate unsafe behavior5 Conduct

autonomous inspections

Prepare standard check sheets for autonomous inspections. Carry out the inspections.

Correct stressful working postures and methods

6 Standardize through visual workplace management

Standardize and visually manage all work processes.Examples of standards needed: cleaning, lubrication, and inspection

standards shop floor materials flow standards data recording method standards tool and die management standards

Assure workplace organization (5S) and maintain a proper working environment

7 Implement Develop company policies and objectives; Encourage everyone

37

Page 52: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

autonomous equipment management

make improvement activities part of everyday practice; keep reliable MTBF (mean time between failures) data, analyze it, and use it to improve equipment.

to take care of their own workplaces

Table 8: The seven steps of Autonomous Maintenance

38

Page 53: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

2.3.6 Steps in developing a TPM system

Nakajima (1988, p.55) established a 12-step model in developing a TPM system.

When TPM was introduced into the western world, Hartmann (2000) also established

a 12-step Western model in developing a TPM system. The 12-steps of these two

models are summarized in Table 9 below. Details of these two 12-steps models are

shown in Appendices A and B.

Step Japan approach(Nakajima 1988)

Western Approach(Hartmann 2000)

1 Announce top management decision to introduce TPM

Collect information

2 Launch education and campaign to introduce TPM Initial audit and presentation

3 Create organizations to promote TPM In-plant TPM training4 Establish basic TPM policies and goals Study team training5 Formulate master plan for TPM development Feasibility study6 Hold TPM kick-off Feasibility study

presentation7 Improve effectiveness of each piece of equipment Pilot installation8 Develop an autonomous maintenance program Plant-wide installation9 Develop a scheduled maintenance program for the

maintenance departmentIntroduction audit

10 Conduct training to improve operation and maintenance skills

Progress audit

11 Develop early equipment management program Certification12 Perfect TPM implementation and raise TPM levels TPM award

Table 9: The twelve steps of TPM development

In a case study by Tsang & Chan (2000, p.153) to develop a TPM system in China,

the 12 steps of the Japan Approach are divided into three phases as shown in Table 10.

39

Page 54: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Phase Steps Status in the case studyPi

lot p

hase

T1 Announcement The introduction of TPM was announced through internal

correspondence and posters on TPM notice-boards. The

maintenance manager was appointed the champion of

TPM

T5 TPM master plan The master plan was developed by the TPM champion

T3 Organize and promote TPM A TPM committee was formed to steer the

implementation program and monitor progress

T2 Education campaign Training on TPM concepts for supervisory staff was

conducted by the champion. This was followed by

training courses for operators focusing on discipline,

proper use of equipment, cleaning and lubricating

T6 TPM kick off No special event was organized to kick off the program

T7 Improve equipment

effectiveness

This was initially focused on two pilot sites. The

improvements were made by the maintenance department

T8 Develop an autonomous

maintenance program:

A1 Perform initial cleaning

A2 Address sources of

contamination and

inaccessible places

A3 Establish cleaning and

lubricating standards

A4 Set overall inspection

standards

Tasks A1-A3 were performed by the maintenance

department in collaboration with production. Visual

controls such as equipment nameplates and correct

operating range displays on gauges, valve on-off

indicators, etc. were introduced. Photographs were used to

document the desired cleanliness of equipment and the

workplace inspection checklists were prepared by

maintenance

Prom

otio

n an

d T4 Establish basic TPM

policies

The operator is responsible for providing primary care for

his equipment - cleaning, lubricating, adjusting and

inspecting

T2 Education campaign Steps T2 and T8 were extended to all production units

40

Page 55: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Con

solid

atio

n

T8 Develop an autonomous

maintenance program

- steps A1-A4M

atur

ity p

hase

T9 Develop scheduled

maintenance program

This is being done by maintenance

T10 Conduct training to

improve operation and

maintenance skills

There is ongoing effort to prepare operators for the

challenge of autonomous maintenance

T11 Develop an early

management program

Data are being captured to track equipment performance

and optimize maintenance decisions

T8 Develop an autonomous

maintenance program:

A5 Set autonomous

maintenance standards

A6 Assure process quality

A7 Autonomous supervision

Simple PM tasks have been included in autonomous

maintenance.

There is ongoing training to enhance operators' awareness

of the causal relationships between equipment conditions

and output quality, and develop their data analysis and

problem-solving skills for maintenance improvement

T12 Perfect TPM implementation This is the ultimate target to be accomplished

Table 10: Development of a TPM system-a case study in China (Tsang & Chan 2000 )

2.3.7 Obstacles in implementing TPM

Bakerjan (1994) identified three major obstacles in introducing TPM:

1. Lack of management support and understanding

2. Lack of sufficient training

3. Failure to allow sufficient time for its evolution

Davis (1997) outlined ten main reasons for TPM failure within UK manufacturing

organizations:

1. The program is not serious about change.

2. Inexperienced consultants/trainers are used.

41

Page 56: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

3. The program is too high level, run by managers for managers.

4. There is a lack of structure and relationship to strategic needs.

5. The program does not implement change on the shop floor and is not managed.

6. A lack of education and training for those expected to take it on board and

provide support.

7. Programs are initiated and run exclusively by engineering and seen by

production as a project that does not involve them.

8. Attempts to apply TPM in the same way it is implemented in Japan using the

standard approach found in Japanese publications.

9. TPM teams lack the necessary mix of skills and experience.

10. Poor structure to support the TPM teams and their activities.

Hartmann (2000) also pointed out the reasons of failure in the installation of TPM,

including:

1. lack of proper understanding of the total effort required

2. lack of management support

3. lack of sufficient TPM staff

4. union resistance

5. not enough training carried out

6. change of priorities

7. lack of persistence

8. failure to develop a good installation strategy

9. choosing the wrong approach

2.3.8 Factors for success implementation of TPM

Bamber, Sharp & Hides (1999, p.171) developed a conceptual framework, which

42

Page 57: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

consisted of nine categories, to show the factors that affect successful implementation

of TPM (see Figure 7).

Measures of The involvementPerformance of people

AnAlignment to implementationMission plan

SuccessfulImplementation

of TPM

Knowledge Management The existingand beliefs commitment organization

Time Timeallocation for motivation ofimplementation management and workforce

Figure 7: Cause and effect diagram -a generic model of factors affecting

successful implementation of TPM (Bamber et al. 1999)

CTPM (2001b) also described that the success implementation of TPM required three

key mind-set changes by all employees from the most senior management to shop

floor:

1. Equipment reliability cannot be a dedicated maintenance department

responsibility. All departments including Production, Maintenance, Engineering,

43

Page 58: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Procurement and Planning have a major contributing role in ensuring the cost-

effective reliability of plant and equipment. In fact, the production and operation

departments must take full responsibility for the cost-effective performance of

their plant and equipment. All employees must recognize that there is no place

for the "I operate, you fix" mentality. This is a basic concept on the development

of a proactive safety culture.

2. Early identification and rectification of equipment defects is paramount to

reducing total operating costs especially maintenance costs. All employees,

especially operators must take an active role in this important activity which

must also be supported by a "Defect Avoidance" mentality. This change in mind-

set helps to reduce machine related accident.

3. Hidden costs associated with poor equipment management (the costs generated

by equipment not running effectively such as production inefficiency costs, poor

quality costs, capacity constraint costs etc.), as opposed to just focusing on the

maintenance budget, needs to be understood, measured and managed by all

employees.

44

Page 59: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

2.4 Investigate TPM's effectiveness in enhancing safety culture

JIPM (1996, p.103) said, "Safety is a cornerstone of TPM. The basic principle behind

TPM safety activities is to address dangerous conditions and behavior before they

cause accidents." In Section 2.2, eight safety culture factors had been identified to

improve safety performance. In this section, it would be shown that TPM could

promote these eight factors and hence enhanced safety culture.

2.4.1 Implementation of TPM provides a good incentive for management

Manufacturing systems (Blanchard 1997) often operate at less than full capacity,

productivity is low, and the costs of producing products are high. In dealing with the

aspect of cost, experience has indicated that a large percentage of the total cost of

doing business is due to maintenance-related activities in the factory, that is, the costs

associated with maintenance labor and materials and the cost due to production losses.

TPM aims to increase productivity through maximizing equipment effectiveness and

minimizing losses in production (Schmidt 1997). This is a good incentive for

management to implement TPM, which will promote safety together (JIPM 1996).

TPM maximizes equipment effectiveness through reducing machine utilization losses

caused by reduced processing speed, minor machine stoppages and process defects. In

addition, TPM reduces the occurrences of equipment failure and the associated costs

of repeated machine and process set up. Put in its most simple form TPM will

increase the Overall Equipment Effectiveness (OEE, calculation see Appendix C) of

manufacturing facilities by operating and maintaining machinery at an optimum level

(Prickett 1999, p.236).

45

Page 60: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

TPM minimizes losses in production by eliminating major losses in production

activities (Riis, Luxh & Thorsteinsson 1997). Naguib (1993, p.90) also said, "TPM

enables operating equipment profitably by reducing equipment related losses. The "six

major losses" as described by Swanson (2001), that TPM aims to remove are

equipment failure, set-up and adjustment time, idling and minor stoppages, reduced

speed, defects in process and reduced yield (see Table 7).

Besides maximizing productivity and minimizing losses, TPM is cost effective. It

provides cost effective acquisition of equipment by selecting the correct machine for

the job, with comprehensive documentation, training and spare parts availability

(Naguib 1993, p.90). By decentralizing maintenance activities, such as planning and

supervision, to the operators, the costs and performance of maintenance can

sometimes be improved. A study by Maggard & Rhyne, (1992) showed that 40% of

the traditional maintenance mechanic's work could be done by another employee, with

minimal training, and another 40% could be performed with additional training.

Steudel & Desruelle (1992) also argued that 80-90% of the maintenance work should

be carried out by operators.

Below are three examples showing TPM provides incentives for management to

improve productivity and safety together:

1. Yamato Kogyo, a motorcycle manufacturers, after implementation of TPM for

five years, productivity improved by 150%, accidents dipped by 90%, and

defects reduced by 95% (Turbide 1995).

46

Page 61: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

2. Pirelli, a rubber industry in UK, over a 3-year period, showed a 31% reduction in

accidents and near misses, a reduction from 600 hours to 40 hours lost arising

from manual handling accidents (HSE 1996b).

3. Nissan Casting Australia - Dandenong Victoria, after implementation of TPM for

2 years, loss time injury decreased from an average of 60 hours per 1,000,000

hours in 1990-1994 to 3 hours per 1,000,000 hours in 1997-1998 (HKPC 2000,

p.6.7).

2.4.2 Management commitment is important in TPM

For effective implementation of TPM (Roberts 1997), total commitment to the

program by upper level management is required. To begin applying TPM concepts,

the entire work force must first be convinced that upper level management is

committed to the program (Roberts 1997). A case study by Bamber et al. (1999) found

out that lack of management support would lead to failure of the implementation of

TPM.

Management commitment has been identified in section 2.2.2 as a core factor of

safety culture, while TPM requires a culture where there is a commitment to ongoing

improvement, and a commitment to treating each individual as a valued employee

(Society of Manufacturing Engineers 1995). Thus if the management has the incentive

to implement TPM successfully, a high commitment is necessary which will promote

the safety culture eventually.

47

Page 62: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

2.4.3 TPM encourages participation of management and workers

It has been identified in section 2.2.3 that 'participation of management and workers'

is essential for a proactive safety culture. TPM program promotes worker involvement

by preparing operators to become active partners with maintenance and engineering

personnel in improving the overall performance and reliability of the equipment

(McKone, Schroeder & Cua 1999, p.126). The word 'Total' means all people are

involved, including management and workers. In the TPM framework, the goals (Riis

et al. 1997) are to develop a maintenance free design and to involve the participation

of all employees to improve maintenance productivity.

2.4.4 TPM enhances communication

It has been identified in section 2.2.4 that communication is essential for a proactive

safety culture. TPM can enhance communication, and hence safety culture. As

described by McKone et al. (2001), TPM helps to improve the organization's

capabilities by enhancing the problem-solving skills of individuals and enabling

learning across various functional areas. Successful change in technology depends on

the deployment of organizational structures (see Figure 1) that enable individuals to

work across functional boundaries to identify problems, develop solutions, and

execute plans. Companies need to build the skills of their workforce and develop

worker participation in order to compete through World Class Manufacturing. TPM

changes the structure of the organization to break down traditional barriers between

maintenance and production, fosters improvement by looking at multiple perspectives

for equipment operation and maintenance, increases technical skills of production

48

Page 63: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

personnel, includes maintenance in daily production tasks as well as long-term

maintenance plans, and allows for information sharing among different functional

areas. Therefore, TPM should develop the capability of the organization to identify

and resolve production and OHS problems and subsequently improve manufacturing

practice and OHS.

2.4.5 TPM encourages education and training

It has been identified in section 2.2.5 that 'education and training' is essential to

develop proactive safety culture. TPM encourages education and training through

autonomous maintenance. As described by McKone et al. (1999, p.125), operators

learn to carry out important daily tasks that maintenance people rarely have time to

perform. These housekeeping tasks include cleaning and inspecting, lubricating,

precision checks, and other light maintenance tasks and can be broken down into five

S's (see appendix D). After these tasks are transitioned to operators, maintenance

people can focus on developing and implementing other proactive maintenance plans.

TPM is designed to help operators learn more about how their equipment functions,

what problems can occur and why, and how those problems can be prevented through

early detection and treatment of abnormal conditions. This cross-training allows

operators to maintain equipment and to identify and resolve many basic equipment

problems.

2.4.6 TPM improves working conditions and procedures

Roberts (1995, p.2) said, "Some injuries are preventable through manipulations of the

work environment." A workplace that is easy to work in must first be one where

49

Page 64: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

people can work without worrying. TPM can help to create such a workplace by

getting rid of the three evils: difficulty, dirt and danger (JIPM 1996, p.104).

After getting rid of the three evils, serious accidents may be avoided. As illustrated in

the Bird's (1969) accident pyramid, for every major injury there are 10 minor injuries,

30 property damage accidents and 600 near misses. Many factors can cause major

accidents. These factors are hidden in equipment and human work procedures. They

are the problems people overlook every day because they seem too trivial. TPM can

help to break down the pyramid by eliminating these tiny problems (JIPM 1996,

p.106).

Workplace organization and discipline, regular inspections and servicing, and

standardization of work procedures are the three basic principles of safety. All are

essential elements in creating safe workplace, and are also part of the activities of

TPM (JIPM 1996, p.119).

Autonomous maintenance to remove hazards

Autonomous maintenance promotes safety by eliminating breakdowns and

standardizing procedures and responses to equipment situations. It eliminates unsafe

conditions and unsafe behavior from workplace by integrating safety issues into

autonomous maintenance activities. It makes safety check items become part of

equipment inspection check-lists. It plans and coordinates nonrepetitive maintenance

tasks to avoid safety hazards (JIPM 1996, p.119).

50

Page 65: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Autonomous maintenance can prevent sudden equipment breakdown which in turn

will avoid the accidents caused by malfunction of equipment. An empirical study

(Maggard & Rhyne, 1992) showed that 75% of maintenance problems could be

prevented by operators at an early stage, by frequent looking, listening, smelling and

testing. However, these figures are case specified and are impossible to be used as

generally optimum figures. Continuous education and training are necessary to fully

decentralize maintenance to the operators.

2.4.7 TPM improves morale and job satisfaction

In section 2.2.7 it has been identified that 'morale and job satisfaction' is an essential

factor of proactive safety culture. TPM can provide morale and job satisfaction and

hence improve safety culture. This is supported by Roberts (1997) who said that the

goal of TPM was to markedly increase production while, at the same time, increased

employee morale and job satisfaction. Naguib (1993) also said that TPM improved

employee morale and job satisfaction. This was achieved through increased

involvement and autonomy on the job, providing interesting job assignments, and

increased training and knowledge.

In a case study of implementing TPM in mainland China, Tsang & Chan (2000)

concluded that TPM embraced the concept of empowerment such that sufficient

authorities, resources and freedom to contribute were given to equipment operators

for establishing a sense of ownership.

TPM increases employee morale and job satisfaction by providing operators with a

sense of ownership of the equipment. In TPM, operators will do most of the

51

Page 66: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

maintenance work on the equipment. Workers will treat their equipment as if it were

their own car or truck. This means paying attention to the funny noises it makes, or

the vibrations, or the leaks, or the smoke coming from the motors. It means keeping it

clean so they can see problems before they become failures (Society of Manufacturing

Engineers, 1995).

Swanson (2001) said, "Under TPM, small groups or teams create a cooperative

relationship between maintenance and production that helps in the accomplishment of

maintenance work. Additionally, production workers become involved in performing

maintenance work allowing them to play a role in equipment monitoring and upkeep.

This raises the skill of production workers and allows them to be more effective in

maintaining equipment in good condition."

CTPM (2001c) also described that by creating a higher degree of employee

participation, TPM increased employee morale and a sense of positive participation,

especially as they saw their daily frustrations with equipment reduced.

2.4.8 TPM improves attitude and risk perception

As identified in section 2.2.8, 'attitude and risk perception' is essential for a proactive

safety culture. TPM can improve workers' attitude and risk perception through the

change of mindset and TPM activities described below.

Maggard & Rhyne (1992) said, "The introduction of TPM means a significant

cultural change, by shifting shop floor personnel from the dualism between

52

Page 67: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

production and maintenance to the partnership approach among all organizational

functions." To implement TPM successfully it requires a dramatic shift in an

organization's collective mindset (The Auto Channel 1998).

As described by JIPM (1996), TPM required a shift in attitudes toward equipment

from the traditional "I make it; you fix it" to "we take care of our own machines."

Breakdown and minor stoppages, in particular, impact the activities of operators - the

people who have the most contact with equipment and know it best. In TPM,

eliminating breakdown is not a maintenance department responsibility nor getting rid

of defects is a management's job. Everyone participates in reducing losses to zero -

and everyone benefits. With total participation, TPM can make the "zero loss"

workplace a reality.

Implementation of TPM will have a profound, positive effect on the culture of a

company. It will change the culture. It will change relationships across organizations

of the company. It will distribute decision-making, and disperse the authority base

(Society of Manufacturing Engineers 1995, p.19).

JIPM (1996) has also stressed the importance of hazard awareness training and active

signaling in TPM. Hazard awareness training is a four-round approach that uses

illustrations and photographs to train people to see and deal with potential dangers in

equipment and work methods. Active signaling is used to prevent errors between

people working together on maintenance or other tasks. In signaling, workers may call

out to reach each other or use a visual signal to indicate what they are about to do and

to make sure the other person gets the message.

53

Page 68: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

2.5 A way to effective OHS management through TPM

In section 2.1, it has been identified that a proactive safety culture is essential for good

safety performance and three safety culture models have been described:

A strategic top down approach to safety (Gleendon & Stanton 2000)

(see Figure 4).

The Berends' (1995) safety culture model (see Figure 5)

3 levels of safety culture (HSE 1999) (see Table 6)

In Section 2.2, eight factors of safety culture had been identified for a proactive safety

culture. In Section 2.4, it had also been shown that TPM was effective in enhancing

these factors. It would also be verified in Section 2.6.1 that these factors were

effective to assess safety culture. The eight factors identified were:

management incentive

management commitment

participation of management and worker

communication

education and training

improve working conditions and procedures

morale and job satisfaction

attitude and risk perception

By combining the above three models and the eight safety culture factors identified, a

TPM approach to effective OHS management was developed (see Figure 8).

54

Page 69: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Figure 8 : A TPM approach to effective OHS management

Effectiveness increase with higher level of safety culture

Effectiveness of the OHS Management System

Level 1 Level 2 Level 3

SafetyCulture

compliance driven

managed safety

constructive intolerance

legislationreactive

approach in management

proactive approach in management

8 safety cultural factors enhanced by TPM

participation ofmanagement &

worker

education and training

morale andjob

satisfaction

management incentive

management commitment

communication working conditions & procedures

attitude and risk

perception

55

Page 70: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

2.6 Assessing safety culture

2.6.1 Criteria for assessing safety culture

Lee & Harrison (2000) said, "The proactive stance to safety is now almost universally

accepted, if not always practiced. In consequence, there is an urgent demand for

methods of assessment, for ways of diagnosing weakness; also for benchmarking the

strengths of safety cultures across time and between organizations." Grote & Kunzler

(2000) also said, "Assessing safety culture is not an issue of determining whether an

organization does or does not have a safety culture, but rather an issue of determining

shared as well as conflicting norms within and between groups in an organization and

the relationship between these norms and safe performance."

Different researchers have different criteria in assessing safety culture. Below four

examples (A to D) shows the 35 criteria in assessing safety culture.

(A) In assessing the safety culture of a nuclear plant, Lee & Harrison (2000)

developed questionnaires relevant to eight domains:

confidence in safety (A1)

contractors (A2)

job satisfaction (A3)

participation (A4)

risk (A5)

safety rules (A6)

stress (A7)

training (A8)

(B) The questionnaires developed by Grote & Kunzler (2000) in accessing the safety

56

Page 71: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

culture of petrochemical production sites contains three sets of items:

1. Operational safety:

a. Technical, organizational and person related safety measures including:

ergonomic design (B1)

operating procedures (B2)

safety training (B3)

b. Actual safety performance including:

implementation of safety suggestions (B4)

support from co-workers (B5)

2. Safety management and sociotechnical design strategies, including:

ways of handling safety responsibility (B6)

technology use (B7)

distribution of decision authority (B8)

3. Personal job needs, including:

safety measures (B9)

quality of job design (B10)

general training (B11)

(C) In measuring the safety climate of a variety of working populations, Willamson,

Feyer, Cairns & Biancotti (1997) mainly concerned on perceptions and attitudes.

The questionnaire was designed based on 8 factors:

safety awareness (C1)- attitudes to hazards and risks and possibility of

57

Page 72: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

personal injury in the workplace

safety responsibility (C2) - attitudes about whose role is ensuring safety in

the workplace

safety priority (C3) - beliefs about the importance of safety in the workplace

management safety commitment (C4) - perceptions of management to safety

issues

safety control (C5) - attitudes to the controllability of accidents

safety motivation (C6) - attitudes and perception relating to the influences

motivating safe or unsafe behavior

safety activity (C7) - perceptions of the individual's own safe behavior

safety evaluation (C8) - perceptions of safety in the individual's own

workplace

(D) Glendon & Stanton (2000) also set up eight safety climate factors to develop

questionnaire:

Work pressure (D1) - degree to which employees feel under pressure to

complete work, amount of time to plan and carry out work, balance of

workload

Incident investigation and development of procedures (D2) - degree to

which staff are involved in development of procedures, extent to which

incident investigations get to underlying causes of accidents, effectiveness of

procedures

Adequacy of procedures (D3) - accuracy, completeness,

comprehensiveness, clarity and appropriateness of procedures, ease of

selection and use of procedures

58

Page 73: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Communication and training (D4) - degree of openness and extent to which

communication reaches all levels in the organization, extent to which

training incorporates all aspects of the job, relevance and effectiveness of

training

Relationships (D5) - degree of trust and support within the organization,

confidence that people have in the organization's future, working

relationships with others and general morale.

Personal protective equipment (D6) - degree to which the organization is

concerned with the design, issue, use, and enforcement and monitoring of

personal protective equipment.

Spares and back up equipment (D7)

Safety policy and procedures (D8) - degree to which safety is a priority,

extent to which people are consulted on safety matters, practicality of

implementing safety policy and procedures

The above four examples introduced 35 factors (A1 to D8) for safety culture

assessment, and many of them were overlapped. In this dissertation, the questionnaire

was designed based on the eight safety culture factors identified in Section 2.3. The

reasons for selecting these eight factors were:

1. Literature review showed clearly that TPM could enhance such factors.

2. These eight factors had been adopted by other researchers as criteria to assess

safety culture, as shown in the Table 11.

The 8 safety culture factors Corresponding criteria in assessing safety culture in the

59

Page 74: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

identified four examples

management incentive (C3) safety priority

management commitment (C4) management safety commitment

participation of management

and worker

(A4) participation

communication (B5) support from co-workers

(D4) communication and training

education and training (A8) training

(B3) safety training

(D4) communication and training

improve working conditions

and procedures

(A6) safety rules

(B1) ergonomic design

(B2) operating procedures

(D2) incident investigation and development of

procedures

(D3) adequacy of procedures

(D8) safety policy and procedures

morale and job satisfaction (A3) job satisfaction

(C6) safety motivation

attitude and risk perception (C1) safety awareness - attitudes to hazards and risks

and possibility of personal injury in the workplace

(C2) safety responsibility - attitudes about whose role is

ensuring safety in the workplace

(C7) safety activity - perceptions of the individual's

own safe behavior

60

Page 75: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

(C8) safety evaluation - perceptions of safety in the

individual's own workplace

Table 11: Factors for assessing safety culture

2.6.2 Methods to assess safety culture

There are several ways, as described by Goetsch (1998, p.141) to assess employee

perceptions, as shown in Figure 9 below:

Figure 9: Methods of assessing employee perceptions (Goetsch 1998)

The four methods described by Goetsch (1998) are:

1. Survey (Internal)

This is the employee survey conducted as an in-house project.

2. Focus groups (Internal)

This is also conducted as an in-house project. With this method, employees

representing all departments and units within the organization are invited to be

members of a focus group. In larger organizations, more than one group may be

Methodsfor AssessingEmployeePerceptions

FocusGroups(Internal)

Survey(Internal)

Survey(External)

FocusGroups(External)

61

Page 76: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

required.

62

Page 77: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

3. Survey (External)

This approach is the same as the internal survey with one exception: the survey is

conducted and summarized by an outside agent.

4. Focus Groups (External)

This approach is conducted just as the internal focus group, except the focus

groups are conducted by an external consultant.

Goetsch (1998) suggested to record the employee feedback in a quantifiable format.

Each possible response could be assigned a numeric value as in the following

example:

Strongly Disagree 1

Disagree 2

Agree 3

Strongly Agree 4

With all statements in the questionnaire of equally important, the score for an

individual could then be summed up. Similar methods had been used by Lee &

Harrison (2000), Grote & Kunzler (2000), Willamson et al. (1997), Roberts (1995)

and Glendon & Stanton (2000) to assess safety culture. In these studies,

questionnaires were also used as a tool for survey. Five-point or six-point Likert scale

was used to analyze the results quantitatively.

In the study of Lee & Harrison (2000) above, the factors were allocated into domains.

The factors within domains were completely independent. However, the domains

themselves were inter-correlated to varying degrees.

63

Page 78: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

In this dissertation, the method similar to that used by Lee & Harrison (2000) was

adopted. Factors were distributed into eight domains.

2.6.3 Reliability analysis of safety culture survey

In section 3.4, it was shown that quantitative questionnaires had been used by

researchers to assess safety culture. The reliability of the results obtained had to be

tested. Reliability is the extent to which a study's operations can be repeated, with the

same results (Yin 1989, p.41). Reynaldo & Santos (1999) said, "Reliability comes to

the forefront when variables developed from summated scales are used as predictor

components in objective models. Since summated scales are an assembly of

interrelated items designed to measure underlying constructs, it is very important to

know whether the same set of items would elicit the same responses if the same

questions are recast and re-administered to the same respondents. Variables derived

from test instruments are declared to be reliable only when they provide stable and

reliable responses over a repeated administration of the test."

Burns (2000, p.339) introduced four methods for reliability measure: test-retest

method, alternate forms method, split-half method and internal consistency method.

In this dissertation, Cronbach's alpha as an internal consistency reliability index was

used for reliability measure. Cronbach's Alpha has been widely used by researchers as

a tool for reliability analysis in the surveys on safety culture, such as Lee& Harrison

(2000), Willamson et al. (1997) and Roberts (1995).

64

Page 79: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

2.6.4 The t-test

Howitt & Cramer (1997) said, "T-test compares the means of two related samples of

scores to see whether the means differ significantly." Burns (2000) also said t-test was

used to test whether the difference between the two sample means from independent

groups was a real one or reasonably attributed to chance. In this dissertation, t-test

was used to test the hypothesis.

2.7 Chapter Summary

In this chapter, factors of proactive safety culture had been identified and from which

eight were selected to assess safety culture of manufacturing organizations. These

eight factors were also criteria of past researchers in assessing safety culture and had

been shown effective. This chapter had also introduced and explained the principles of

TPM. It had been verified that TPM was able to enhance these eight safety culture

factors and hence improved safety performance. A TPM approach to effective OHS

management was developed in this chapter. This was the approach to solve the

problem statement in the dissertation. A framework of TPM activities to improve

safety performance would be developed in Chapter 7.

Survey methods for safety culture had also been reviewed. In this dissertation,

quantitative questionnaires with five-point Likert scale were used for assessing safety

culture. Cronbach's alpha was used for reliability analysis and t-test for hypothesis

testing.

65

Page 80: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Chapter 3

Research Method

It had been reviewed from literature that TPM enhanced proactive safety culture. In

this dissertation, the aim was to develop a framework of TPM activities for

manufacturing organizations to improve the effectiveness of the OHS management

systems. This was achieved through the seven steps below (see figure 10):

Figure 10 : Flow Chart of Research Method

1. Through literature review, identified safety culture factors that affected

effectiveness of OHS management systems and could be enhanced by TPM.

STARTIdentify safety culture factors that can be enhanced by TPM

Design QuestionnairesA - for managementB - for worker

Questionnaire set (B) Safety culture survey to the workers of ABC Company (not implementing TPM)

Questionnaire Set (A)Safety culture survey to management in

different companiesIdentify which companies are

implementing TPM

LiteratureReview

Analyze and compare theresultsTest the

Hypothesis

Develop a framework of TPM activitiesEND

Questionnaire Set (B)Safety culture survey to the workers of the organization implementing TPM

Questionnaire (A) sent to 72 companies

Phone to those implementing TPM and ask for help to distribute Questionnaire (B) to workers

Verify TPM helps to improve safety culture

66

Page 81: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

2. Based on the safety culture factors identified, developed questionnaires to

evaluate the safety culture of manufacturing organizations. Two sets of

questionnaires were developed. Questionnaire A was designed for management

people and questionnaire B for workers.

3. 72 sets of questionnaires A were sent to the management of 72 companies to

study the safety culture of the companies. Another purpose of this step was to

find out those companies who were implementing TPM. After receiving the

replies, those companies implementing TPM were asked by telephone whether

they could help to distribute Questionnaire B to their workers.

4. At the same time, evaluated the safety culture in ABC Company, which was

going to implement a TPM system.

5. The result obtained from the ABC Company was then compared with that

obtained from another company which was implementing TPM. This was to

identify whether these two companies had significant different safety culture.

6. From the results obtained, the hypothesis of the paper was tested to show a

company with TPM in place had a more positive safety culture than one not

implementing TPM.

7. After confirming TPM could help to improve safety culture, a framework of

TPM activities would then be developed to improve effectiveness of OHS

management systems in manufacturing industry.

67

Page 82: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Chapter 4

Research questions

4.1 Design of questionnaires

Based on the eight safety culture factors identified in section 2.2, two sets of

questionnaires, set (A) and set (B) were developed (see appendices P and Q). Set (A)

was designed for management people and set (B) for supervisors and workers. A

Chinese version of questionnaire set (B) was also prepared (see appendix R).

The background information of the respondent was collected from questions 1 to 4 in

questionnaire A and questions 1 to 3 in questionnaire B. In each questionnaire, there

were 20 quantifiable questions, with 5-point Likert scale. Each possible response was

assigned a numeric value as below:

Strongly Disagree 1

Disagree 2

Neutral 3

Agree 4

Strongly Agree 5

Thus for a single respondent, the minimum score was 20 while the maximum score

was 100. According to the 'TPM approach to effective OHS management' developed

(see Figure 8), a higher score implied a more proactive orientation towards safety,

reached a higher level of safety culture and finally higher effectiveness of the OHS

68

Page 83: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

management system.

As described above, the questionnaire covered the eight factors relevant to safety

performance identified in section 2.2. These factors could be enhanced by TPM. The

questions were allocated into eight domains for analysis, according to the safety

culture factors studied in the questions (see Table 12).

The 8 safety culture factors Question number in Set (A) Question number in Set (B)

management incentive 5, 6 4, 16

management commitment 7, 8, 18 5, 6

participation of

management and worker

9, 10, 11 12, 20

Communication 19, 20, 21 13, 14, 18, 19

training and education 12, 13, 14 7, 8, 9

improve working conditions

and procedures

15, 16 10, 11 15

morale and job satisfaction 24 17, 21

attitude and risk perception 17, 22, 23 22, 23

Table 12: Questions in eight domains

4.2 The ABC Company

The ABC Company was a medium size manufacturing industry. It had around 300

employees. Excluding the management, office staffs, marketing people and the

workers in the warehouse, there were around 120 production workers and

maintenance people. The company had had an OHS management system for almost

69

Page 84: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

two years. ABC Company had the intention to implement a TPM system for better

performance in productivity, quality and safety; and planned continuous improvement

to compete successfully and make profit in an environment of international

competition.

4.3 Distribution of questionnaires

In ABC Company, questionnaires were distributed in a meeting in the 'safety

awareness week' held by the company. The aims and background of the study were

explained to all the employees. All respondents were supplied with sealable envelopes

pre-addressed to the writer. Seven sets questionnaire (A) were distributed to the

technical managers, engineers and safety officer. 85 questionnaires set (B) were

distributed to the day-shift workers. Night shift workers (around 20) were not selected

since their operations were much simpler and some of them did not need to operate a

machine. Those workers who did not need to operate machines such as the cleaning

ladies were also not included.

Questionnaires (A) were also mailed to 72 manufacturing industries. All these were

medium size industries (including the few largest manufacturing industries in Hong

Kong) located in the major industrial estates. This had two objectives:

1. Sought companies who had implementing TPM and willing to distribute the

questionnaire (B) to the workers.

2. If there were sufficient replies, the general status of safety culture in the

70

Page 85: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

manufacturing industries in Hong Kong could be studied.

There were only few manufacturing industries in Hong Kong implementing TPM.

Question 25 of questionnaire (A) asked the respondents whether their organizations

were implementing TPM. Out of the eleven replies, there were two organizations

implementing TPM. The two companies were then contacted by phone and finally one

(the PQR Company) agreed to distribute the Questionnaire (B) to the workers.

71

Page 86: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Chapter 5

Results

5.1 Replies received

In the safety culture survey of the ABC Company, 7 sets questionnaire (A) were

issued and all were received. 85 sets questionnaire (B) were distributed to the workers

and 78 replies received (Table 13).

72 sets questionnaires (A) were mailed to 72 companies but only 11 replies were

received. Out of these two were implementing TPM. Only one company 'PQR' agreed

to distribute questionnaire B to the workers and finally 21 replies were received. The

other 10 replies of questionnaire (A), other than that of PQR, were not sufficient to

give a clear picture of the general safety culture of manufacturing industries in Hong

Kong and hence they were not studied in the paper.

ABC Company (no TPM) PQR Company (with TPM) Others, include PQR

Set (A) for

Management

Set (B) for

Workers

Set (A) for

Management

Set (B) for

workers

Set (A) for

management

Sent 7 85 1 1 (other copied) 72

Received 7 78 1 21 11

Table 13: Number of questionnaires sent and received

5.2 Average score of questionnaires A & B

The average score of each question in questionnaires A and B of both ABC Company

72

Page 87: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

and PQR Company were listed in the Table 14 and 15.

73

Page 88: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

No. Description of questions in Questionnaire A AverageScore for ABC(no TPM)

AverageScore for PQR (with TPM)

5 The employer regards safety as an important matter as others like productivity and quality.

3.6 5

6 Safety goals are pursued proactively and on the company's initiative.

3.0 5

7 Management encourages safe behavior. 3.4 5

8 Safety proposals developed are swiftly implemented. 3.1 5

9 Management is involved in safety activities such as risk assessment, accident investigations & promotion programs.

3.7 5

10 Management is well informed about relevant safety issues. 3.3 5

11 Workers are eager to attend safety activities and training. 3.0 3

12 A lot is learnt from near misses. 3.1 4

13 Information needed to work safely is made available to all employees.

3.4 4

14 Workers are qualified to actively enhance operational safety.

3.4 3

15 Workers and supervisors participate in defining safe work practices.

3.1 4

16 Workers and supervisors are actively involved in removing hazards in the working environment.

3.4 4

17 Workers will raise concern on machine problems. 3.4 5

18 Safety problems with machines are swiftly solved. 3.6 4

19 A questioning attitude towards instruction is encouraged. 2.7 5

20 Management listens to workers' recommendations and will provide feedback.

3.6 4

21 The channels for the communication between management and workers are efficient and sufficient.

3.1 4

74

Page 89: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

22 The managers in your plants really care about safety and try to reduce risk levels as much as possible.

3.1 5

23 Both management and workers regard safety as everyone's responsibility, and safety officers provide support.

3.3 4

24 Workers are motivated for safety by information and interesting tasks.

2.4 4

Total for the 20 questions: 65.0 87

Table 14: Average Score of Questionnaire A

75

Page 90: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

No. Description of questions in Questionnaire B AverageScore for ABC(no TPM)

AverageScore for PQR(with TPM)

4 Senior management regards safety as an important matter as others like productivity and quality.

3.0 3.6

5 Management provides enough safety equipment. 3.1 3.5

6 Management can do what they commit. 3.2 3.6

7 Accidents and near misses are studied and used as training materials.

3.3 3.6

8 Workers have been trained properly, including safety precautions as well as operation of the machines

3.2 3.7

9 Workers are always trained for the use of safety equipment.

3.1 3.7

10 Management is willing to improve the safety of the working environment.

3.3 3.6

11 Safety procedures are realistic. 3.4 3.5

12 Management actively participates in safety activities. 3.2 3.4

13 Management listens to workers' recommendations and will provide feedback.

3.2 3.2

14 Workers are encouraged to question instructions from management.

3.2 3.3

15 There are arrangements to check equipment to make sure it is free of faults.

3.4 3.7

16 Which one below is the best to describe the management of your company? (Choices refer to Appendix Q)

3.3 3.5

17 You regard safety as everyone's responsibility, and safety officers provide support.

3.1 3.8

18 You find it easy to communicate with the management. 3.2 3.4

19 Whenever you encounter any safety matters, you will report to the supervisor or safety officer.

3.4 3.4

20 You are willing to join the safety activities and trainings. 3.3 3.5

76

Page 91: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

21 You take care of the machines which you are operating. 3.2 3.6

22 You believe that accidents are preventable. 3.0 3.6

23 You regard compliance with the safety rules as important. If people are not following the rules, accidents may occur.

3.2 3.8

Total for the 20 questions: 64.1 70.9

Table 15: Average Score of Questionnaire B

77

Page 92: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

In summary, the average sum of scores for all 20 questions of questionnaire A and B

for ABC Company and PQR Company were shown in the chart below.

Figure 11: Average score of all 20 questions

From Figure 11, it could be observed that the average scores on both questionnaires

(A) and (B) of PQR Company were higher than those obtained from ABC Company.

5.3 Results on each safety culture factor

In this section, the mean score of each question of Questionnaire (B) in different

domains from ABC Company and PQR Company would be described. Reliability of

the results obtained from questionnaire B of ABC Company would also be estimated.

An internal consistency analysis, with Cronbach's alpha as an index, was used to test

the reliability. Questions were allocated into eight domains as shown in Table 12. The

inter-correlation among all the 20 questions together would be estimated. The inter-

correlation among questions within each domain would also be estimated. All alpha

values mentioned in this report referred to the Cronbach' alpha values of the results

from questionnaire (B) of the ABC Company.

Set A Set B

ABC PQR ABC PQR (TPM) (TPM)

78

Page 93: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

5.3.1 Results on Management Incentive

Mean = 3.1 (ABC) Alpha = 0.7187 (ABC) Mean = 3.5 (PQR)

Questionnaire B Score 1 2 3 4 5

4. Senior management regards safety as an important matters as others like productivity and quality.

ABC 1 16 45 14 2

Rep

liesPQR 1 3 5 7 5

16. Which one below is the best to describe the management of your company? (Choices refer to Appendix Q)

ABC 0 7 46 23 2

PQR 0 4 6 8 3

Table 16: Results on Management Incentive

5.3.2 Results on Management Commitment

Mean = 3.1 (ABC) Alpha = 0.7332 (ABC) Mean = 3.5 (PQR)

Questionnaire B Score 1 2 3 4 5

5. Management provides enough safety equipment. ABC 0 19 35 19 5

Rep

lies

PQR 0 1 10 8 2

6. Management can do what they commit. ABC 0 20 34 15 9

PQR 0 0 11 8 2

Table 17: Results on Management Commitment

Set A Set B

ABC PQR ABC PQR (TPM) (TPM)

Figure 12: Average score on Management Incentive

79

Page 94: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

ABC PQR ABC PQR (TPM) (TPM)

Set A Set B

Figure 13: Average score on Management Commitment

80

Page 95: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

5.3.3 Results on Participation of Management and Workers

Mean = 3.3 (ABC) Alpha = 0.5390 (ABC) Mean = 3.5 (PQR)

Questionnaire B Score 1 2 3 4 5

12. Management actively participates in safety activities. ABC 0 14 36 23 5

Rep

lies

PQR 2 10 8 1

20. You are willing to join the safety activities and training.

ABC 0 8 42 24 4

PQR 0 0 11 9 1

Table 18: Results on Participation of Management and Workers

5.3.4 Results on Communication

Mean = 3.3 (ABC) Alpha = 0.7287 (ABC) Mean = 3.3 (PQR)

Questionnaire B Score 1 2 3 4 5

13. Management listens to workers' recommendations and will provide feedback.

ABC 0 12 44 18 4R

eplie

sPQR 0 4 10 6 1

14. Workers are encouraged to question instructions from management.

ABC 0 11 44 19 4

PQR 0 3 8 0 10

18. You find it easy to communicate with the management.

ABC 0 18 31 25 4

PQR 0 1 12 7 1

19.Whenever you encounter any safety matters, you will report to the supervisor or safety officer.

ABC 0 8 36 27 7

PQR 2 1 5 12 1

Table 19: Results on Communication

ABC PQR ABC PQR (TPM) (TPM)

Set A Set B

Figure 14: Average score on Participation of Management and Workers

81

Page 96: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

ABC PQR ABC PQR (TPM) (TPM)

Set A Set B

Figure 15: Average Score on communication

82

Page 97: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

5.3.5 Results on Education and Training

Mean = 3.2 (ABC) Alpha = 0.7288 (ABC) Mean = 3.7 (PQR)

Questionnaire B Score 1 2 3 4 5

7. Accidents and near misses are studied and used as training materials.

ABC 0 6 48 18 6

Rep

lies

PQR 0 0 10 9 2

8. Workers have been trained properly, including safety precautions as well as operation of the machines

ABC 1 12 38 25 2

PQR 0 0 8 12 1

9. Workers are always trained for the use of safety equipment.

ABC 0 19 37 19 3

PQR 0 2 5 12 2

Table 20: Results on Education and Training

5.3.6 Results on Working Conditions and Procedures

Mean = 3.4 (ABC) Alpha = 0.5974 (ABC) Mean = 3.6 (PQR)

Questionnaire B Score 1 2 3 4 5

10. Management is willing to improve the safety of working environment.

ABC 1 6 47 20 4

Rep

lies

PQR 0 1 10 7 3

11. Safety procedures are realistic. ABC 0 5 40 29 4

PQR 0 2 7 11 1

15. There are arrangements to check equipment to make sure it is free of faults.

ABC 0 5 42 27 4

PQR 0 0 9 9 3

Table 21: Results on Working Conditions and Procedures

ABC PQR ABC PQR (TPM) (TPM)

Set A Set B

Figure 16: Average Score onEducation and Training

83

Page 98: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Set A Set B

Figure 17: Average score on Working Conditions and Procedures

ABC PQR ABC PQR (TPM) (TPM)

84

Page 99: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

5.3.7 Results on Morale and Job Satisfaction

Mean = 3.1 (ABC) Alpha = 0.5758 (ABC) Mean= 3.7 (PQR)

Questionnaire B Score 1 2 3 4 5

17. You regard safety as everyone's responsibility, and safety officers provide support.

ABC 1 17 40 13 7

Rep

liesPQR 0 1 6 10 4

21. You take care of the machines which you are operating.

ABC 1 16 36 19 6

PQR 0 2 7 10 2

Table 22: Results on Morale and Job Satisfaction

5.3.8 Results on Attitude and Risk Perception

Mean = 3.1(ABC) Alpha = 0.6798 (ABC) Mean = 3.7 (PQR)

Questionnaire B Score 1 2 3 4 5

22. You believe that accidents are preventable. ABC 1 24 34 15 4

Rep

liesPQR 0 0 11 7 3

23. You regard compliance with the safety rules as important. If people are not following the rules, accidents may occur.

ABC 0 21 29 21 7

PQR 0 1 7 9 4

Table 23: Results on Attitude and Risk perception

ABC PQR ABC PQR (TPM) (TPM)

Set A Set B

Set A Set B

Figure 18: Average score on Morale and Job satisfaction

85

Page 100: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

ABC PQR ABC PQR(TPM) (TPM)

Figure 19: Average score on Attitude and Risk Perception

86

Page 101: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

5.4 Reliability Analysis

The values of alpha were summarized in Table 24. The SPSS (version 10.0) outputs of

the reliability analysis could refer to the appendices shown in Table 24. Reynaldo &

Santos (1999) said that Cronbach's alpha of 0.70 was the cutoff value for being

acceptable. There were 4 domains shown in the table with alpha values lower than

0.7. The other 4 domains and the 8 factors together had alpha values higher than 0.7

and were considered acceptable.

Safety culture factors Question numbers Cronbach's alpha Appendix

All the 8 factors All 20 questions 0.9041 G

1. management incentive 4, 16 0.7187 H

2. management commitment 5, 6 0.7332 I

3. participation of

management and worker

12, 20 0.5390 J

4. communication 13, 14, 18, 19 0.7287 K

5. education and training 7, 8, 9 0.7288 L

6. improve working

conditions and procedures

10, 11 15 0.5974 M

7. morale and job satisfaction 17, 21 0.5758 N

8. attitude and risk perception 22, 23 0.6798 O

Table 24: Summary of Cronbach's Alpha value for each domain

5.5 Testing of the hypothesis

The hypothesis of the paper, as described in section 1.3 is:

87

Page 102: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

"A manufacturing company with TPM in place has a more positive safety culture than

one not implementing TPM. "

There were two sets data obtained for questionnaire (B), one from ABC Company and

another from PQR Company. A t-test was conducted to determine whether there was a

significant difference between the means of scores on safety culture from the two

groups. Using the software of SPSS (version 10.0), the below results were obtained

(see Table 25):

Group Statistics

COMPANY N MeanStd.

Deviation

Std. Error

Mean

SCORE PQR

ABC

21

78

70.90

64.14

9.32

9.52

2.03

1.08

Independent Samples TestLevene's Test

for Equality of

Variances

t-test for Equality of Means

F Sig. t df Sig. (2-

tailed)

Mean

Difference

Std. Error

Difference

95% Confidence

Interval of the

Difference

Lower Upper

SCORE Equal

variances

assumed

.171 .681 2.904 97 .005 6.76 2.33 2.14 11.39

Equal

variances

not

assumed

2.940 32.153 .006 6.76 2.30 2.08 11.45

Table 25: Output of t-test analysis

88

Page 103: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

From the output (see Table 25), t = 2.904

At degree of freedom df = N1 + N2 - 2 = 76 + 21 - 2 = 97,

the significant level (2-tailed) = 0.05

The t value (2.904) is larger than the significant level (0.05).

89

Page 104: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Result of the t-test analysis:

An independent-samples t-test was conducted to evaluate the hypothesis that 'a

manufacturing company with TPM in place had a more positive safety culture than

one not implementing TPM'. The mean score of safety culture of the PQR Company

(M = 10.90, SD = 9.32) was significantly different from (t = 2.904, df=97, two-tailed

p=0.05) and higher than that of ABC Company (M = 64.14, SD = 9.52). Therefore,

the null hypothesis was rejected.

90

Page 105: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Chapter 6

Discussion

6.1 Discussion on the research method and questionnaire design

There are two major constraints in the study:

1. ABC Company planned to implement TPM but still has not implemented it. Due

to time constraints of the study, the safety culture of the ABC Company after

implementation of TPM could not be measured and compared with that obtained

before the implementation.

2. There are very few organizations in Hong Kong implementing TPM. The ABC

Company and the PQR Company in the study come from different types of

manufacturing industries. Another major difference between the two companies is

that ABC Company has around 120 workers while PQR has only around 50

workers.

One important common factor between the two companies is that both companies has

had OHS management systems in place for just less than two years at the time of the

survey.

This study established two sets of questionnaires to measure the safety culture of the

ABC Company, one for management and one for workers. This chapter mainly used

the results from questionnaire (B) (for worker) to evaluate the safety culture of the

ABC Company since there were 78 replies but only 7 sets of data of questionnaire set

(A) were available. This appears reasonable since the internal consistency of the

91

Page 106: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

scores for all the 20 questions in questionnaire (B) is high (Cronbach's alpha equals to

0.9041 as estimated in section 5.4). This also appears reasonable since it is the

workers who face the accidents and their attitude and perception are different from

those management who normally have little hazards in their workplaces.

There were two criteria in selecting the safety culture factors to evaluate the safety

culture of the ABC Company. First, these factors must have been successfully used by

other researchers to measure safety culture. Second, TPM must be able to enhance

such factors. The eight safety culture factors selected can fulfill these two criteria.

The results were used to picture the safety culture of the ABC Company and by

comparing them with those obtained from the PQR Company, to see whether TPM

could enhance the eight safety culture factors identified. From the reliability analysis

of the results of questionnaires (B) of ABC Company (section 5.4), four of the

Cronbach's alphas obtained for the eight domains were acceptable (alpha larger than

0.7) and four were not (alpha smaller than 0.7). Nevertheless, the results were

analyzed by dividing the 20 questions into these eight domains.

6.2 Discussion on the results of questionnaires B from ABC Company

Unless otherwise specified, the data and discussion in this section all referred to the

questionnaire (B) of ABC Company. Since many people did not reply questions 25

and 26, results of these two questions, concerning their attitude to do the maintenance

works, were not discussed.

92

Page 107: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

6.2.1 Management Incentive (Questions 4 and 16)

In this domain, alpha = 0.7187, internal consistency was acceptable. In question 16,

59% of respondents selected 'management accepts the fact that there are problems but

is unable to solve them because they don't want to know how to attack them'. In

question 4, 58% of respondents gave a neutral response to 'senior management

regards safety as an important matters as productivity and quality'. The results showed

the management incentive to put safety first was not high. A TPM system, which can

improve productivity and safety together, should be a good incentive for the

management to operate.

6.2.2 Management commitment (Questions 5 and 6)

In this domain, alpha = 0.7332, internal consistency was acceptable. In both

questions, around 44% of respondents had neutral response to 'management provides

enough safety equipment' and 'management can do what they commit'. For each

statement, there were around 25% of respondents who answered with disagree. This

implied that the management commitment was not high. When looking at the results

from PQR Company, there was only one respondent who disagreed with the former

statement and none disagreed with the later. Implementing TPM thus able to show the

employee the management's commitment.

6.2.3 Participation of management and workers (Questions 12 and 20)

In this domain, alpha = 0.5390, internal consistency was unacceptable. The

participation of management in question 12 and the participation of workers in

93

Page 108: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

question 20 were appeared not to be inter-correlated. 18% of the workers considered

the management had not actively participated in the safety activities while 46% had a

neutral response to this question. 10% of the workers were not willing to join the

safety activities while 54% had a neutral response. The results were not strange since

the 'morale and job satisfaction' of the workers were extremely low (as discussed in

6.2.7) and hence many workers had no intention of joining the safety activities.

6.2.4 Communication (Questions 13, 14, 18, 19)

In this domain, alpha = 0.7287, internal consistency was acceptable. The results

(score) in this domain were not bad when compared to the results of the PQR

Company. But there were still 23% of respondents who felt difficulties in

communicating with the management (question 18).

6.2.5 Education and training (Questions 7, 8 and 9)

In this domain, alpha = 0.7288, internal consistency was acceptable. From question 9,

it was noted that around 24% of respondents claimed they had not been trained in the

use of safety equipment. In contrast, a relatively high score was obtained from PQR

Company since 'education and training' is one of the eight pillars in TPM.

6.2.6 Improve working conditions and procedures (Questions 10, 11 and 15)

In this domain, alpha = 0.5974, internal consistency was unacceptable. The three

questions in this domain were appeared not to be inter-correlated. The ABC Company

got the highest score in this domain. 23%, 37% and 35% had positive response to the

94

Page 109: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

three questions: 'management is willing to improve the safety of working

environment', 'safety procedures are realistic' and 'there are arrangements to check

equipment' respectively; and around 50% of the respondents had a neutral response to

these questions. The negative responses to these questions were 6-9%. PQR Company

still had a higher score in this domain. There is still much room for ABC Company to

improve and TPM can help.

6.2.7 Morale and job satisfaction (Questions 17 and 21)

In this domain, alpha = 0.5758, internal consistency was unacceptable. The two

questions in this domain were appeared not to be inter-correlated. 22% of respondents

did not agree that safety was everyone's responsibility (question 17). 21% of

respondents did not take care of their machines (question 21). This was one of the two

domains in which ABC Company had the lowest score while PQR Company had the

highest score. A TPM system is believed able to improve this safety culture factor.

6.2.8 Attitude and risk perception (Questions 22 and 23)

In this domain, alpha = 0.6798, internal consistency was only just unacceptable. It

was critical to learn from the results that 31% of the respondents did not believe

accidents were preventable (Question 22) and 27% of respondents did not regard

complying with safety rules was important (Question 23). This was also one of the

two domains in which ABC Company had the lowest score while PQR Company had

the highest score. A TPM system is believed able to improve this safety culture factor.

95

Page 110: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Chapter 7

Develop a framework of TPM activities

It had been shown in Chapter 5 that the PQR Company with TPM in place had a more

positive safety culture than that of the ABC Company, which had not implemented

TPM. The next step was then to develop a framework of TPM activities based on the

literature and findings from the safety culture surveys. This framework was intended

to be useful for most manufacturing companies to improve their safety performance.

TPM places an emphasis on people and machine. Management's support and

participation are also important for successful implementation of TPM. A framework

of TPM activities, based on the 'People', 'Management', 'Machine and Environment'

was developed (see Figure 20).

7.1 Organize to enhance communication

7.1.1 Set up a TPM committee

Hartmann (2000) recommended to have a pilot installation, covering 10 to 25% of a

plant's equipment, before plant-wide installation of TPM. An example of a TPM

committee for pilot installation of TPM was designed for ABC Company (see Figure

21), based on the proposal of HKPC (2000, p.17.6), which was specially designed for

medium size organizations in Hong Kong. A Steering Committee had to be set up

first. Two production lines were proposed for the pilot installation and implementation

of TPM system. Other companies can have similar set up, depending on their own

organization structure.

96

Page 111: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

7.3.1. Conduct general

inspection2. Carry out visual

workplace management

3. Link safety education and training to skill training

4. Present the one point lesson

5. On-the-job coaching to each individual

7. Self audit

7.11. Set up a TPM

committee2. Manage small group

activities3. Conduct step audit

for training and mutual learning

7.41. Address sources of

human error2. Develop education

and training program

3. Draw up a budget for safety

4. Involve senior management in auditing team activities

5. Devise a program of accident prevent training

6. Conduct autonomous inspection

7. Carry out consistent autonomous management

8. Develop an early equipment management program

7.2.1. Clean and inspect2. Eliminate problem

sources and inaccessible areas

3. Draw up cleaning and lubricating standards

4. Planned maintenance and predict failure

5. Implement 5S

Equipment and Environment

ManagementPerson

The 7th pillar of TPM: Safety Management

Develop safety conscious people

Make equipment and workplace safe

Show commitmentand provide support

Measures to prevent behavior originated

accidents

Measures to prevent equipment / workplace

originated accidents

Operate management

system reliably

Communication

Organize to enhance

communication

Figure 20: Framework of TPM activities to improve safety performance[Strategies are further discussed in the below sections, refer to the section number]

Zero Accident

Highest level of Safety Culture

Strategies Strategies

97

Page 112: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Figure 21 : Proposed organization chart for TPM pilot installation in ABC Company

As shown in the organization chart, two TPM teams were proposed in two production

lines for TPM pilot tests. Responsibilities of different groups / people for the

implementation of the TPM system were shown below, based on the

recommendations of HKPC (2000):

Responsibility of the TPM Steering Committee:

Select the TPM teams and defining their responsibilities

Monitor the progress of the TPM teams

Allocate adequate resources to the TPM teams

Discuss issues raised by the TPM teams

Measure the performance of each TPM team

Ensure adequate training is provided and all employees participated

TPM Steering Committee

Technical Director (Sponsor)Production Manager (Champion)Maintenance ManagerProject Engineering ManagerQA ManagerHR Manager

Maintenance Engineer(TPM Coordinator)

TPM Team II

SupervisorOperatorsMechanical Technician (1 no)Electrical Technician (1 no)Project Engineering Manager (from steering committee)TPM coordinator

TPM Team I

SupervisorOperatorsMechanical Technician (1 no)Electrical Technician (1 no)Maintenance Manager (from steering committee)TPM coordinator

98

Page 113: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Responsibility of the Champion in the TPM Steering Committee

Report direct to the Technical Director (Sponsor)

Ensure the problems and concerns raised by the TPM coordinator immediately

raised and solved.

Introduce TPM to all employees

Ensure all employees receive sufficient training and support

Promote TPM and motivate employees to join

Gather and distribute the information for TPM

Responsibility of the TPM Coordinator

Direct report to Technical Director, TPM Champion and TPM Steering

Committee

Organize all TPM activities

Co-ordinate all TPM teams

Leading TPM monitoring and planning teams

Support the supervisor of each TPM teams

Co-ordinate and assist to solve the problems encountered by the TPM teams

Encourage all employee participation

Gather and distribute TPM information

7.1.2 Manage small group activities

Nakajima (1988, p.109) said, "A small group promotes itself and satisfies company

goals as well as individual employee needs through concrete activities." Teams or

groups should set goals compatible with the larger goals of the company and achieve

them through group cooperation or teamwork. The basic steps to manage small group

activities as described by JIPM (1995) are:

99

Page 114: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

1. Choose a team leader

2. Select a project

3. Set targets

4. Schedule activities and assign roles

5. Study current conditions

6. Establish plans

7. Implement

8. Analyze results and prevent backsliding

7.1.3 Conduct step audit for training and mutual learning

Step audits are audits conducted by shop floor managers to see how the teams are

doing. These are chances for people on the shop floor to learn what the boss thinks

and expects - and for the boss to recognize the hard work shop floor people have done

and to gain a better understanding of current problems. (JIPM 1996, p.75)

7.2 Make equipment and workplace safe

7.2.1 Clean and inspect (Step 1 of Autonomous Maintenance):

In TPM, cleaning is inspection (HKPC 2000). Cleaning does not simply mean

polishing the outside of a machine; it means getting rid of the years of grime coating

on every part of the machine. As part of initial cleaning, detect and correct any

problems such as exposed moving parts, projecting parts, spattering of harmful

substances, loosen and missing screws.

7.2.2 Eliminate problem sources (Step 2 of Autonomous Maintenance)

100

Page 115: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Very often machines get dirty soon after cleaning. It is necessary to eliminate sources

of leaks, spills and dust. Deal with major contamination sources through focused

improvement. Modify equipment to make cleaning and lubrication easier. Improve

cleaning and lubrication standards where necessary. Apply tags to equipment to label

the problems found (see Appendix F) and remove tags only when problems solved.

7.2.3 Draw up cleaning and lubrication standards (Step 3 of Autonomous

Maintenance)

Team members decide what standards they need to follow to prevent deterioration of

their equipment. Establish and review work standards and daily check method.

Looking at suppliers' standards for lubrication to ensure warranty on equipment.

Include key safety procedures in provisional cleaning and checking standards.

7.2.4 Planned maintenance and predict failure

Carry out planned and preventive maintenance on equipment. Prevent recurrence of

chronic failures. Perform regular equipment diagnoses such as checking for corrosion,

cracking, wear and brittle.

7.2.5 Implement 5S (definition refers to Appendix D)

Use 'Seiri - organization' to eliminate unnecessary items.

Use 'Seiton - neatness' to establish a permanent place for everything essential.

Use 'Seiso - Cleaning' to find ways to keep things clean and eliminate contamination.

Use 'Seiketsu - Standardization' for easy inspection.

Use 'Shitsuke - Discipline' to ensure proper methods of handling production activities.

101

Page 116: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

7.3 Develop safety conscious people

7.3.1 Conduct general inspections (Step 4 of Autonomous Maintenance)

Operators participate in general inspections and become more familiar with their

equipment (JIPM 1997, p.31). Safety check that addresses the following types of

issues (JIPM 1996, p.110):

Leaks and spattering

Heat

Equipment load

Reduced performance

Vibration and excessive noise

Electrical leakage and static electricity

Problems during operation

Problems during processing or execution

7.3.2 Carry out visual workplace management (step 6 of Autonomous

maintenance)

Develop workers' safety awareness through visual workplace management. This is to

assure workplace organization (done by 5S) and maintain a proper working

environment by:

sorting out and arranging objects in the workplace properly

defining procedures that need to be followed

performing equipment precision checks

facilitating operator tasks

102

Page 117: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

7.3.3 Link safety education and training to skill training

Through the use of accident case studies and the findings in safety audits, link safety

education and training to skill training. A model (see Figure 22) to link safety

education and training to skill training has been developed by HKPC (2000, p.15.4).

Aware to safety will become a habit after education, training and practice.

Figure 22: Link safety education and training to skill training

7.3.4 Present the One-point Lesson

This is a 5-10 minutes self study lesson drawn up by team members and covering a

single quality or safety issue; or a single aspect of machine structure, functioning or

method of inspection. A one-point lesson provides a way for team leaders and

members who have special training or knowledge about equipment to share their

knowledge with their teammates (JIPM 1997, p.105). A standard form of one-point

lesson is shown in Appendix E.

Aware to safety,Not skill competent

Aware to safety,Skill comptent

Not aware to safety,Not skill comptent

Habit,Skill comptent

Education

Training

Practice

103

Page 118: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

7.3.5 On-the-job coaching to each individual

The more people know about their equipment and processes, the more safely they can

work. Collect examples of near misses and compile them into on-point lesson sheets

are some examples of on-the-job coaching to each individual.

7.3.6 Self audit

Identify and record near misses. Use checklists to check safety of equipment. Self

audits promote effective monitoring and evaluation of progress. (Suzuki 1994, p.143)

7.4 Commitment and support of management

7.4.1 Address sources of human error

While it is impossible to train people never to make mistakes, they can learn to be

safety-conscious. Management plays an important role in addressing sources of

human error and has the responsibility to train everyone addresses safety issues.

104

Page 119: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

7.4.2 Develop an education and training program

Establish a detailed education and training program (Suzuki 1994, p.293) that

covers all specializations and grades

sets standards for acquiring the necessary knowledge and skills, and

devises effective training curricula

7.4.3 Draw up a budget for safety

A budget in place is the easiest way to show employee the management's

commitment.

7.4.4 Involve senior management in auditing team activities

The person in charge of TPM programs in the company serves as a coach for the

shopfloor teams and keeps team activities energized and on track. In addition,

managers are asked to conduct periodic reviews of team activities. Having managers

guide team activities through the audits or check clarifies management policies and

priorities, boosts team member motivation, and helps ensure satisfying activities

(JIPM 1996, p.90).

7.4.5 Devise a program of accident prevention training

Devise a program of accident prevention training using illustrations, and practice

safety procedures on the actual equipment during autonomous maintenance activities.

105

Page 120: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

7.4.6 Conduct autonomous inspection (step 5 of autonomous maintenance)

This is to revise the cleaning inspection, and lubrication standards developed. The

inspection can help to streamline those tasks and correct stressful working postures

and methods.

7.4.7 Carry out consistent autonomous management (step 7 of Autonomous

Maintenance)

This is to confirm the activities of autonomous maintenance continue, so as to ensure

everyone takes care of his own equipment and workplace.

7.4.8 Develop an early equipment management program

This is the eleventh step of the 12-step model developed by Nakajima (1988) as

shown in Appendix A. This program includes the establishment of assessment criteria

for safety of new products and machines. Suzuki (1994) said, "Poor design is a major

cause of reduced profitability, impaired production efficiency, and low OEE". A good

planned new installation or process at the development design stage can minimize

wastage and equipment breakdown as well as enhance safety operation. Even though

a new setup has been smoothly designed, problems may come out during test-running,

commissioning and start-up. An early equipment management program includes

improvement activities at various stages: the equipment investment planning stage,

design, fabrication, installation and test running, as well as commissioning.

106

Page 121: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

7.5 Discussion on the framework of TPM activities developed

This dissertation developed a framework of TPM safety activities for the

manufacturing industry to improve safety performance. The framework is important

since most literature and studies on TPM were mainly concerned with productivity,

but not safety. The figures of improvement in safety performance due to

implementation of TPM can be found in literature, but these were very often by-

products of the figures in productivity improvement. There is a gap on how to

implement safety management within the TPM environment. The framework

developed is a start to fill the gap.

Environment, equipment and people are very often regarded as components of system

safety. The framework developed also started with these three components, with the

addition of a new component, management. Equipment and environment were

combined to a single component since TPM very often tackles these two problems

together. People and management are linked by 'communication'. Thus the four

components of the framework are 'people', 'communication', 'management', and

'equipment and working environment'. The targets of these components are to prevent

behavior originated accidents, enhance communication, operate management systems

reliably and prevent equipment / workplace originated accidents. A lot of TPM

activities were allocated into the framework to achieve the targets.

The TPM committee was specially designed for the ABC Company. Upon

implementing TPM, the safety culture of ABC Company can then be enhanced. Other

companies can have similar set up, depending on their existing organization structure

and size of the plants.

107

Page 122: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Chapter 8

Conclusion

In this study, it had been shown that a manufacturing company with TPM in place had

a more positive safety culture than one not implementing TPM. Notwithstanding the

limitations of this study, the results provide strong empirical support for the proposed

solution, namely to establish a TPM system (see Figure 7 for the TPM approach to

effective OHS management) to tackle the problem 'high standards of health and safety

still cannot be assured even though OSH management systems have already been in

place."

The study demonstrates that effectiveness of an OSH management system depends on

the safety culture of the organization, and that the safety culture is a result of whether

the organization has adopted a proactive or reactive approach towards safety. TPM

can enhance eight safety culture factors that can influence the 'proactivity' of an

organization. The eight factors identified are management incentive, management

commitment, participation of management and worker, communication, education and

training, improve working conditions and procedures, morale and job satisfaction, and

finally the attitude and risk perception.

This dissertation evaluated the safety culture of the ABC Company based on the eight

safety culture factors identified. These eight factors have been used by researchers to

evaluate safety culture and have been shown effective. The results showed that there

is much room for the company to improve. It is critical to learn from the results that in

ABC Company many respondents did not believe accidents are preventable and did

108

Page 123: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

not regard complying with safety rules as important. The company has a plan to

implement TPM. The framework of TPM activities developed in the dissertation can

give a guideline for ABC Company to set up and implement the TPM activities that

can improve the safety performance of the company. The framework can also be a

general guideline for medium size companies in manufacturing industry to set up

TPM activities to improve safety performance.

The first step to world-class manufacturing is to implement TPM successfully and to

create a very active organization. When TPM becomes a common practice in daily

production of the ABC Company, it can be said that the company has commenced a

journey to word-class manufacturing.

109

Page 124: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Chapter 9

Recommendations

Based on the results and constraints of the study, it is recommended that:

1. There has been much research on the relationship between safety and quality, and

also between TPM and productivity. The figures of improvement in safety

performance due to implementation of TPM are very often by-products of the

research. Studies on how TPM improves the safety performance are rare. Further

research on this topic is necessary to support the findings of the study.

2. For future research, measuring the safety culture of an organization before and

after implementing TPM; or comparing the safety culture between two

organizations of similar background in the manufacturing field, similar number of

employees, similar size of plants, similar years of OHS management system in

place, similar organization structure and safety structure etc. will give a more

reliable result as well.

3. The framework of TPM activities developed in the study is only a start. The

effectiveness and practicality of the framework have to be confirmed by further

studies.

4. Further studies on how to integrate the existing safety structure of an organization

into the TPM structure are also recommended.

110

Page 125: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

References

Ashby, S.G. & Diacon, S.R. 1996, 'Motives for occupational risk management in large UK companies', Safety Science, vol. 22, no. 1-3, pp.229-243

Bakerjan, R. 1994, Tool and Manufacturing Engineers Handbook, Vol. 7, Continuous Improvement, 4th ed., An ASME Publications, USA, Chapter 15.

Bamber, C.J., Sharp, J.M. & Hides, M.T. 1999, 'Factors affecting successful implementation of total productive maintenance - A UK manufacturing case study perspective', Journal of Quality in Maintenance Engineering, vol. 5, no. 3, pp.162-181.

Berends, J.J. 1995, 'Developing and using a widely applicable measurement tool for safety culture', unpublished interim report, Eindhoven University of Technology, Eindhoven, cited in "Guldenmund, F.W. 2000, 'The nature of safety culture: a review of theory and research', Safety Science, vol. 34, pp.215-257".

Berends, J.J. 1996, 'On the Measurement of Safety Culture', unpublished graduation report, Eindhoven University of Technology, Eindhoven, cited in "Guldenmund, F.W. 2000, 'The nature of safety culture: a review of theory and research', Safety Science, vol. 34, pp.215-257".

Blanc, A. 1993, 'Total Productive Maintenance', Semiconductor Manufacturing, International Symposium, pp. 0_474 - 0_488.

Blanchard, B.S. 1997, 'Enhanced approach for implementing total productive maintenance in the manufacturing environment', Journal of Quality in Maintenance Engineering, vol. 3, issue 2, pp.69-80.

Brabazon, P., Tipping, A. & Jones, J. 2000, 'Construction health and safety for the new Millennium', HSE Contract Research Report no. 313/2000, HSE, London.

Brown, R.L. & Holmes, H. 1986, 'The use of a factor-analytic procedure for assessing the validity of an employee safety climate model', Accident Analysis and Prevention, vol. 18 (6), pp.455-470, cited in "Guldenmund, F.W. 2000, 'The nature of safety culture: a review of theory and research', Safety Science, vol. 34, pp.215-257".

111

Page 126: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Burns, R.B. 2000, Introduction to Research Methods, Pearson Education Australia, Frenchs Forest.

Butler, B. 1989, 'Safety first - profits last?', International Journal of Quality and Reliability Engineering, vol. 5, pp.95-100.

Cabrera, D.D., Isla, R. & Vilela, L.D. 1997, 'An evaluation of safety climate in ground handling activities', cited in "Guldenmund, F.W. 2000, 'The nature of safety culture: a review of theory and research', Safety Science, vol. 34, pp.215-257".

Cheyne, A., Cox, S., Oliver, A. & Thomas, J. 1998, 'Modelling safety climate in the prediction of levels of safety activity', Work and Stress, vol. 12, pp. 255-271.

Cigolini, R. & Turco, F. 1997, 'Total productive maintenance practices: a survey in Italy', Journal of Quality in Maintenance Engineering, vol. 3, issue 4, pp.259-272.

Cohen, A. 1997, 'Factors in successful occupational safety programs', Journal of Safety Research, vol. 9, pp.168-178.

Cooper, M.D. 1998, Improving safety culture: a practical guide, John Wiley & Sons Ltd., Chichester.

Cooper, M.D. & Philips, R.A.1994, 'Validation of a Safety Climate Measure', paper presented at the British Psychological Society, Annual occupational Psychology Conference, Birmingham, January 3-5 cited in "Guldenmund, F.W. 2000, 'The nature of safety culture: a review of theory and research', Safety Science, vol. 34, pp.215-257".

Covey, S.R. 1991, The Seven Habits of Highly Effective People - Restoring the Character Ethic, Simon & Schuster, New York.

Coyle, I.R., Sleeman, S.D. & Adams, N. 1995, 'Safety Climate', Journal of Safety Research, vol. 26, issue 4, pp.247-254, cited in "Guldenmund, F.W. 2000, 'The nature of safety culture: a review of theory and research', Safety Science, vol. 34, pp.215-257".

CTPM 2001a, 'The development of TPM', CTPM.

112

Page 127: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

http://www.ctpm.org.au/articles/development_of_tpm.htm accessed on 12/8/2001

CTPM 2001b, 'The challenges of TPM', CTPMhttp://www.ctpm.org.au/articles/challenges_of_tpm.htm accessed on 12/8/2001

CTPM 2001c, 'The third wave has arrived', CTPMhttp://www.ctpm.org.au/articles/third_wave.htm accessed on 12/8/2001

Davis, R. 1997, 'Making TPM a part of factory life', TPM Experience, (Project EU 1190, Sponsored by the DTI), Findlay.

Dedobbeleer, N. & Beland, F. 1998, 'Is risk perception one of the dimensions of safety climate?' cited in "Feyer, A. & Williamson, A. (Eds.), Occupational Injury: Risk Prevention and Intervention, Taylor & Francis, London, pp.73-81."

Flin, R., Mearns, K., O'Connor, P., Bryden, R. 2000, 'Measuring safety climate: identifying the common features', Safety Science, vol. 34, pp.177-192.

Geller, E.S. 1994, 'Ten principles for achieving a Total Safety Culture', Professional Safety, September, pp.18-24 cited in "Guldenmund, F.W. 2000, 'The nature of safety culture: a review of theory and research', Safety Science, vol. 34, pp.215-257"

Glendon, A.I. & Stanton, N.A. 2000, 'Perspectives on safety culture', Safety Science, vol. 34, pp.193-214.

Glennon, D.P. 1982, 'Measuring organizational safety climate', Australian Safety News, January/February pp.23-28, cited in "Guldenmund, F.W. 2000, 'The nature of safety culture: a review of theory and research', Safety Science, vol. 34, pp.215-257".

Goetsch, D.L. 1998, Implementing Total Safety Management - Safety, Health, and Competitiveness in the Global Marketplace, Prentice Hall, Ohio, pp.139-150.

Gonzalez-Roma, V., Peiro, J., Lloret, S. & Zornoza, A. 1999, ' The validity of collective climates', Journal of Occupational and Organizational Psychology, vol. 72, pp. 25-40.

Grote, G. & Kunzler C. 2000, 'Diagnosis of safety culture in safety management audits', Safety Science, vol. 34, pp.131-150.

113

Page 128: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Halme, H. 1992, 'Accident Prevention Project in six Stevedoring Companies', Tampere Studies, vol. 17, National Board of Labor Protection.

Hartmann, E. 2000, 'A proven 12-stage Western approach to successfully installing Total Productive Maintenance and setting the stage for world-class performance', Maintenance Technology.http://www.mt-online.com/current/04-00tpm.html accessed on 16/4/2001

Health and Safety Commission 1993, 'Organizing for Safety', Third Report, Human Factors Study Group, Advisory Committee on the Safety of Nuclear Installations, HMSO, London, cited in "Glendon, A.I. & Stanton, N.A. 2000, 'Perspectives on safety culture', Safety Science, vol. 34, pp.193-214."

Health and Safety Factbook 1998, Making Safety Pay Using the BS8800 Approach, Health and Safety Factbook Bulletin, Gee Publishing Ltd., London.

HKPC 2000, 'Introduction to Total Productive Equipment Maintenance', Seminar Handbook for TPM Workshop, HKPC

Holmes, N., Gifford, S.M. & Triggs, T.J. 1998, 'Meanings of risk control in occupational health and safety among employers and employees', Safety Science, vol. 28, no. 3, pp.141-154.

Holmes, N., Triggs, T.J., Gifford, S.M. & Dawkins, A.W. 1997, 'Occupational injury risk in a blue collar, small business industry: implications for prevention', Safety Science, Vol. 25, No. 1-3, pp.67-78.

Hopkins, A. 1995, Making Safety Work: getting management commitment to occupational health and safety, Allen & Unwin Pty Ltd., Sydney.

Howitt, D. & Cramer, D. 1997, An introduction to statistics in psychology, Prentice Hall, London.

HSE 1990, 'Study Group on Human Factors. First report on training and related matters', Advisory Committee on the Safety of Nuclear Installations Reports, London: HMSO, 6/90.

114

Page 129: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

HSE 1995, 'Managing health and safety pays in the catering industry', London: HSE, September.

HSE 1996a, 'Safety pays in the catering industry', London: HSE, December

HSE 1996b, 'Pirelli first for UK and rubber industry', Manchester: HSE, April.

HSE 1997, 'Successful health and safety management', London: HSE, November

HSE 1998, 'Factors motivating proactive health and safety management', HSE Contract Research Report: no. 179/1998, London: HSE, July 1998.

HSE 1999, 'Safety cultures: giving staff a clear role', HSE Contract Research Report: no. 214/1999, London: HSE, April. HSE 2001, 'Get workers more involved and everyone benefits - new guidance from HSE', HSE Press Release, E127:01 - 20 July 2001. http://www.hse.gov.uk/press/e01127.htm accessed on 30/9/2001

Institution of Occupational Safety and Health 1994, 'Policy statement on safety culture', IOSH, Leicester, cited in "Glendon, A.I., Stanton, N.A. 2000, 'Perspectives on safety culture', Safety Science, vol. 34, pp.193-214."

International Safety Advisory Group 1991, 'Safety Culture', Safety Series No. 75-INSAG-4, International Atomic Energy Agency, Vienna, cited in "Guldenmund, F.W. 2000, 'The nature of safety culture: a review of theory and research', Safety Science, vol. 34, pp.215-257".

Isla Diaz, R. & Diaz Cabrera, D. 1997, 'Safety climate and attitude as evaluation measures of organizational safety', Accident Analysis and Prevention, vol. 29, No. 5, pp.643-650.

JIPM 1995, TPM Team Guide, Productivity Press, Portland.

JIPM 1996, TPM for every operator, Productivity Press, Portland

JIPM 1997, Autonomous Maintenance for Operators, Productivity Press, Portland

115

Page 130: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

JIPM 2001, 'How do we implement TPM', JIPM.http://www.jipm.com/tpm_faqs_2.html accessed on 12/8/2001

Kennedy, R. & Kirwan, B. 1998, 'Development of a Hazard and Operability-based method for identifying safety management vulnerabilities in high risk system', Safety Science, vol. 30, issue 3, Dec, pp.249-274.

Koh, D. 1995, 'Occupational health and safety promotion: Problems and solutions', Safety Science, vol. 20, pp.323-328.

Krause, T.R. 1993, 'Safety and quality: two sides of the same coin', Occupational Hazards, April, pp.47-50

Labor Department 2001, 'Industrial Accidents in Manufacturing Industry 1991-2000', HKSAR.http://www/oshc.org.hk/eng/statistics_00/tr00e/tr_3.html accessed on 13/10/2001

Lee, T. & Harrison, K. 2000, 'Assessing safety culture in nuclear power stations', Safety Science, vol. 34, pp.61-97

Lee, T.R. 1996, 'Perceptions, attitudes and behavior: the vital elements of a safety culture', Health and Safety, October, pp.1-15, cited in "Guldenmund, F.W. 2000, 'The nature of safety culture: a review of theory and research', Safety Science, vol. 34, pp.215-257".

Maggard, B.N. & Rhyne, D.M. 1992, 'Total Productive Maintenance: a timely integration of production and maintenance', Production and Inventory Management Journal, vol. 33, no. 4, pp.6-10.

Marcus, A.A. 1988, 'Implementing externally induced innovations - a comparison of rule-bound and autonomous processes', Academy of Management Journal, vol. 3, pp.235-256.

McKone, K.E. 1996, 'Guidelines for investments in Total Productive Maintenance', Dissertation for the degree of Doctor of Philosophy in Business Administration, University of Virginia.

116

Page 131: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

McKone, K.E., Schroeder, R.G. & Cua, K.O. 1999, 'Total productive maintenance: a contextual view', Journal of Operations Management, vol.17, issue 2, pp.123-144.

McKone, K.E., Schroeder, R.G. & Cua, K.O. 2001, 'The impact of total productive maintenance practices on manufacturing performance', Journal of Operations Management, vol.19, issue 1, pp.39-58.

Merritt A. & Helmreich R.L. 1996, 'Creating and sustaining a safety culture: Some practical strategies', CRM Advocate, vol. 1, pp.8-12.http://www.psy.utexas.edu/psy/helmereich/ussafety.htm accessed on 18/8/2001

Michaud, P.A. 1995, Accident prevention and OSHA compliance, Lewis Publishers, Boca Raton.

Mohamed, S. 1999, 'Empirical investigation of construction safety management activities and performance in Australia', Safety Science, vol. 33, pp.129-142

Naguib, H. 1993, 'A roadmap for the implementation of total productive maintenance in a semiconductor manufacturing operations', IEE/SEMI International, pp.89-97

Nakajima, S. 1988, Introduction to Total Productive Maintenance (TPM), Productivity Press, Cambridge (translated into English from the original text published by the Japan Institute for Plant Maintenance, Tokyo, Japan, 1984)

Neal, A., Griffin, M.A. & Hart, P.M. 2000, 'The impact of organizational climate on safety climate and individual behavior', Safety Science, vol. 34, issue 1-3, pp. 99-109.

Niskanen, T. 1994, 'Safety climate in the road administration', Safety Science, vol. 17, pp.237-255 cited in "Guldenmund, F.W. 2000, 'The nature of safety culture: a review of theory and research', Safety Science, vol. 34, pp.215-257".

Osada, T. 1991, The 5S: Five keys to a total quality environment, Asian Productivity Organization, Tokyo.

Ostrom, L., Wilhelmsen, C. & Kaplan, B. 1993, 'Assessing safety culture', Nuclear Safety, vol. 34 (2), pp.163-172 cited in "Guldenmund, F.W. 2000, 'The nature of safety culture: a review of theory and research', Safety Science, vol. 34, pp.215-257".

117

Page 132: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Phelps, G.R. 1999, Safety for Managers, Gower Publishing Limited, Hampshire.

Pidgeon, N. & O'Leary, M. 1994, 'Organizational safety culture: implications for aviation practice'. Cited in "Johnson, N., Fuller, R. & McDonald, N., 'Aviation Psychology in Practice', Avebury Technical, Aldershot, pp.21-43".

Prickett, P.W. 1999, 'An integrated approach to autonomous maintenance management', Integrated Manufacturing Systems, vol. 10, no. 4, pp.233-243.

Ravishankar, G., Burczak, C. & Devore, R. 1992, 'Competitive manufacturing through total productive maintenance', Semiconductor Manufacturing Science Symposium, IEEE/SEMI International, pp.85-89

Reynaldo, J. & Santos, A. 1999, "Cronbach's Alpha: A tool for accessing the reliability of scales", Journal of Extension, April, vol. 37, no.2.http://www.joe.org/joe/1999april/tt3.html accessed on 29/9/2001

Riis, J.O., Luxh, J.T. & Thorsteinsson, U. 1997, 'A situational maintenance model', International Journal of Quality & Reliability Management, vol. 14, no. 4, pp.349-366.

Roberts, D.S. 1995, 'Development and evaluation of a safety culture survey for occupational safety', Dissertation for the degree of Doctor of Philosophy, Virginia Polytechnic Institute and State University.

Roberts, J. 1997, 'Total Productive Maintenance', Technology Interfacehttp://et.nmsu.edu/`etti/fall97/manufacturing/tqm2.html accessed on 4/4/01

Rundmo, T. 1995, 'Perceived risk, safety status, and job stress among injured and non-injured employees on offshore petroleum installations', Journal of Safety Research, vol. 26 (2), p.97

Rundmo, T. 2000, 'Safety climate, attitudes and risk perception in Norsk Hydro', Safety Science, vol. 34, pp.47-59

Saari, J. 1990, 'On strategies and methods in company safety work: From informational to motivational strategies', Journal of Occupational Accidents, vol. 12,

118

Page 133: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

pp.107-118

Schmidt, S. 1997, 'Total Productive Maintenance and change over reduction engineering - A way to increase quality and productivity', Portland International Conference on Management & Technology, p.702.

Seppala, A. 1992, 'Evaluation of safety measures, their improvement and connections to occupational accidents', People and Work, Finnish Institute of Occupational Health, Helsinki Suppl. 1/92 (in Finnish).

Seppala, A. 1995, 'Promoting safety by training supervisors and safety representatives for daily safety work', Safety Science, vol. 20, pp.317-322.

Simard, M. & Marchand, A. 1995, 'A multilevel analysis of organizational factors related to the taking of safety initiatives by work groups', Safety Science, vol. 21, pp.113-129.

Sjoberg, L. 1993, 'Worry and risk perception', paper presented at FRN/Risk-kollegiets Symposium, 17th September 1993, Wennergren-Center, Stockholm (in Swedish). Society of Manufacturing Engineers 1995, Total Productive Maintenance in America, Society of Manufacturing Engineers, Michigan.

Steudel, H.J. & Desruelle, P. 1992, Manufacturing in the Nineties: How to become a mean, lean, world-class competitor, Van Nostrand Reinhold, New York.

Sutherland, V., Makin, P. & Cox, C. 2000, The management of Safety, SAGE Publications Ltd., London.

Suzuki, T. 1994, TPM in Process Industry, Productivity Press, Portland.

Swanson, L. 2001, 'Linking maintenance strategies to performance', International Journal of Production Economics, vol. 70, issue 3, pp.237-244.

The Auto Channel 1998, 'Total productive maintenance for auto industry'', The Auto Channel.www.theautochannel.com/news/press/date/19980330/press011065.html accessed on 25/2/01

119

Page 134: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Tsang, H.C. & Chan, P.K. 2000, 'TPM implementation in China: a case study', International Journal of Quality & Reliability Management, Vol. 17, no. 2, pp.144-157.

Turbide, D.A. 1995, 'Japan's new advantage: total productive maintenance', Quality Progress, vol. 28, issue 3, pp.121-123.

Varonen, U. & Mattila, M. 2000, 'The safety climate and its relationship to safety practices, safety of the work environment and occupational accidents in eight wood-processing companies', Accident Analysis and Prevention, vol. 32, pp. 761-769.

Vredenburgh, A.G. 1998, 'Safety management: Which organizational factors predict hospital employee injury rates?', Dissertation for the degree of Doctor of Philosophy, California School of Professional Psychology - San Diego.

Wentz, C.A. 1998, Safety, Health and Environmental Protection, McGraw-Hill, New York.

Williamson, A.M., Feyer, A.M., Cairns, D. & Biancotti, D. (1997), 'The development of a measure of safety climate: The role of safety perceptions and attitudes', Safety Science, vol. 25, No. 1-3, pp.15-27.

Yamashina, H. (2000), 'Challenge to world-class manufacturing', International Journal of Quality & Reliability Management, vol. 17, no.2, pp.132-143.

Yin, R.K. 1989, Case study research: design and methods, Sage Publications, Newbury Park, C.A.

Zohar, D. 1980, 'Safety climate in industrial organizations: Theoretical and applied implications', Journal of Applied Psychology, vol. 65(1), pp.96-102.

120

Page 135: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Appendix AThe twelve steps of TPM development (Nakajima 1988, p.55)

Stage Step Details

Prep

arat

ion

1. Announce top management decision to introduce TPM

Statement at TPM lecture in company; articles in company newspaper

2. Launch education and campaign to introduce TPM

Managers: seminars / retreats according to levelGeneral: slide presentations

3. Create organizations to promote TPM

Form special committees at every level to promote TPM; establish central headquarters and assign staff

4. Establish basic TPM policies and goals

Analyze existing conditions; set goals; predict results

5. Formulate master plan for TPM development

Prepare detailed implementation plans for the five foundational activities

Prel

imin

ary

impl

emen

tatio

n 6. Hold TPM kick-off Invite client, affiliated and subcontracting companies

TPM

7. Improve effectiveness of each piece of equipment

Select model equipment; form project teams

8. Develop an autonomous maintenance program

Build diagnosis skills and establish worker certification procedurePromote the 7 steps: initial cleaning, countermeasures at the source of problems, cleaning and lubrication standards,General inspection, autonomous inspection,Organization ad tidiness, full autonomous maintenance

9. Develop a scheduled maintenance program for the maintenance department

Include periodic and predictive maintenance and management of spare parts, tools, blueprints, and schedules

10. Conduct training to improve operation and maintenance skills

Train leaders together; leaders share information with group members

121

Page 136: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

impl

eme 11. Develop early equipment

management programMP design (maintenance prevention); commissioning control; LCC analysis

Stab

iliza

tion 12. Perfect TPM implementation

and raise TPM levelsEvaluate for PM prize; set higher goals

122

Page 137: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Appendix B

A 12-stage Western approach for TPM Development (Hartmann 2000)

Stage Details

1. Collect information Collect information through different ways such as

conferences, seminars, literature and consultants.

2. Initial audit and

presentation

Present a proposal to management by a consultant or a

plant personnel.

3. In-plant TPM

training

Distribute significant TPM knowledge to middle

management, maintenance, operators, representatives from

union and human resources department.

4. Study team training Training for team that will conduct TPM feasibility study.

5. Feasibility study Evaluate the condition of equipment, skills of plant

personnel, cleanliness or orderliness of the plant.

6. Feasibility study

presentation

Present to management and the union an installation

strategy and identify a pilot installation. At this point,

management will make a commitment to install TPM and

the meeting can be regarded as the TPM kickoff.

7. Pilot installation Cover 10 to 25% of plant's equipment

8. Plant-wide

installation

Expansion initiatives should begin every 3-6 months until

the whole plant is included.

9. Introduction audit Check if TPM fundamentals are done correctly and

whether the program is on schedule.

10. Progress audit Check if goals are accomplished. Point out existing

deficiencies to bring TPM a successful conclusion.

11. Certification To show the customer that equipment and product quality

123

Page 138: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

have been improved and that procedures are in place to

maintain equipment to the highest level.

12. TPM award Award by The International TPM Institutes testifies that

the plant is word-class: highly productive, produces only

top quality product, maintain its equipment in top shape,

and has a culture based on teamwork.

124

Page 139: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Appendix CCalculation of OEE (Ravishankar, Burczak & Devore 1992)

OEE = Availability x performance efficiency x Rate of quality

where

Recorded operating time(A) Availability =

Loading time

(B) Performance efficiency = speed efficiency x operating efficiency

theoretical speed effective operating time = x

actual speed planned operating time

theoretical speed x No. of good units made(approx) =

planned operating time

(Number of good units made - rejects)(C) Rate of quality =

Number of good units made

Definition of individual 'time' can be expressed by the below table (HKPC 2000):

Available time

Loading timePlanned

down

time

Planned operating timeSetup and

adjustment

125

Page 140: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

time

Recorded operating timeUnplanned

but recorded

downtime

Actual operating timeNo record

minor

stoppage

Effective operating timeReduced

speed

Value-added operating timeReject,

re-make

items

No. of good units madeOEE = approximately Planned operating time x theoretical speed

126

Page 141: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Appendix D

The 5S System

The 5S practice is a basic but powerful technique used to establish and maintain

quality environment in an organization. The English equivalent, their meaning and

typical examples are shown in the table below (Osada 1991):

Japanese English Meaning Typical Example

Seiri Structurize Organization Throw away rubbish

Seiton Systemize Neatness 30-second retrieval of a document

Seiso Sanitize Cleaning Individual cleaning responsibility

Seiketsu Standardize Standardization Transparency of storage

Shitsuke Self-discipline Discipline Do 5-S daily

127

Page 142: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Appendix E

A sample of one point lesson (JIPM 1997)

Theme No Date

ClassificationBasic knowledge

Problem case

Improvement case

Student

Teacher

Date

Line Group Leader :

TPM ONE POINT LESSON ONE POINT LESSON

128

Page 143: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Appendix FSamples of F-tag for operator and maintenance

A B C

TPMOPERATOR

CONTROL NO.

Priority

Equipment:

Found By: by:

Date:

PROBLEM

DESCRIPTION:

F-TAG

Add this tag to the relevant equipment

A B C

TPMMAINTENANCE

CONTROL NO.

Priority

Equipment:

Found By: by:

Date:

PROBLEM

DESCRIPTION:

F-TAG

Add this tag to the relevant equipment

129

Page 144: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Appendix GReliability analysis of questionnaire result from ABC Company- All the 20 questions: Q4 to Q23

****** Method 2 (covariance matrix) will be used for this analysis

******

R E L I A B I L I T Y A N A L Y S I S - S C A L E (A L P H

A)

Mean Std Dev Cases

1. Q4 3.0000 .7385 78.0

2. Q5 3.1282 .8583 78.0

3. Q6 3.1667 .9455 78.0

4. Q7 3.3077 .7263 78.0

5. Q8 3.1923 .7739 78.0

6. Q9 3.0769 .8021 78.0

7. Q10 3.2564 .7286 78.0

8. Q11 3.4103 .6920 78.0

9. Q12 3.2436 .8247 78.0

10. Q13 3.1795 .7515 78.0

11. Q14 3.2051 .7448 78.0

12. Q15 3.3846 .6881 78.0

13. Q16 3.2564 .6534 78.0

14. Q17 3.1026 .8914 78.0

15. Q18 3.1923 .8537 78.0

16. Q19 3.4231 .7980 78.0

17. Q20 3.3077 .7263 78.0

18. Q21 3.1667 .8888 78.0

19. Q22 2.9615 .8745 78.0

20. Q23 3.1795 .9362 78.0

Correlation Matrix

130

Page 145: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Q4 Q5 Q6 Q7 Q8 Q9 Q10

Q4 1.0000

Q5 .5532 1.0000

Q6 .5394 .5815 1.0000

Q7 .4358 .4151 .3026 1.0000

Q8 .4317 .2752 .2751 .4710 1.0000

Q9 .4385 .4005 .3254 .5162 .4361 1.0000

Q10 .3862 .4660 .3331 .3644 .2108 .4547 1.0000

Q11 .2033 .3914 .3110 .1849 .2145 .2700 .4069

Q12 .5330 .3773 .2637 .2852 .2105 .4621 .4134

Q13 .5148 .4874 .4508 .2068 .2525 .4292 .4841

Q14 .2361 .3240 .0984 .2419 .2461 .2341 .3805

Q15 .2811 .2673 .0998 .1759 .1276 .3222 .2929

Q16 .5652 .5659 .5606 .3242 .3122 .3336 .4330

Q17 .3156 .3221 .3801 .1914 .2911 .4429 .2589

Q18 .2472 .2318 .1368 .1966 .2185 .3954 .2538

Q19 .4407 .4128 .2668 .2206 .2451 .5166 .4588

Q20 .2421 .3526 .3215 .3352 .2168 .3155 .2417

Q21 .1187 .1419 .1056 .0604 .0472 .2915 .0735

Q22 .2614 .3354 .3220 .3460 .2989 .4301 .3011

Q23 .3944 .4559 .3179 .4143 .3819 .5348 .3696

131

Page 146: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Appendix G (continue)

Q11 Q12 Q13 Q14 Q15 Q16 Q17

Q11 1.0000

Q12 .3005 1.0000

Q13 .3061 .4943 1.0000

Q14 .1874 .3616 .3278 1.0000

Q15 .2916 .2905 .3419 .4522 1.0000

Q16 .2813 .3646 .3547 .2641 .1533 1.0000

Q17 .2888 .2306 .4568 .1831 .1466 .3779 1.0000

Q18 .2824 .3753 .4111 .4069 .2925 .2364 .3834

Q19 .1284 .4728 .4997 .3328 .2911 .4119 .3764

Q20 .3399 .3719 .2544 .2179 .1239 .4063 .4722

Q21 .1619 .1033 .2268 .0065 .0849 .1714 .4043

Q22 .1552 .1392 .3071 .1718 .1328 .4493 .5549

Q23 .2657 .3463 .3966 .3563 .2946 .3909 .6002

Q18 Q19 Q20 Q21 Q22 Q23

1.0000

Q19 .4318 1.0000

Q20 .2804 .3775 1.0000

Q21 .1284 .2838 .3822 1.0000

Q22 .3232 .3586 .3051 .3258 1.0000

Q23 .4600 .3664 .4334 .2289 .5162 1.0000

R E L I A B I L I T Y A N A L Y S I S - S C A L E (A L P H

A)

N of Cases = 78.0

N of

Statistics for Mean Variance Std Dev Variables

Scale 64.1410 90.5383 9.5152 20

132

Page 147: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Item-total Statistics

Scale Scale Corrected

Mean Variance Item- Squared Alpha

if Item if Item Total Multiple if Item

Deleted Deleted Correlation Correlation Deleted

Q4 61.1410 81.5773 .6308 .6343 .8973

Q5 61.0128 79.8570 .6483 .5774 .8964

Q6 60.9744 80.7786 .5217 .5321 .9003

Q7 60.8333 83.4134 .4973 .5082 .9006

Q8 60.9487 83.5818 .4493 .3964 .9018

Q9 61.0641 80.2166 .6736 .6011 .8959

Q10 60.8846 82.4151 .5740 .5091 .8987

Q11 60.7308 84.5629 .4319 .4191 .9021

Q12 60.8974 81.5997 .5543 .5283 .8991

Q13 60.9615 81.2842 .6412 .5599 .8970

Q14 60.9359 84.0867 .4317 .4262 .9022

Q15 60.7564 85.1996 .3830 .3462 .9032

Q16 60.8846 82.7527 .6190 .5615 .8981

Q17 61.0385 80.1673 .6000 .5941 .8978

Q18 60.9487 82.1012 .4983 .4266 .9007

Q19 60.7179 81.1402 .6094 .5464 .8977

Q20 60.8333 82.9719 .5320 .4958 .8998

Q21 60.9744 84.9604 .2922 .3280 .9067

Q22 61.1795 81.2920 .5379 .4912 .8996

Q23 60.9615 78.5050 .6725 .5786 .8956

Reliability Coefficients 20 items

Alpha = .9041 Standardized item alpha = .9050

133

Page 148: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Appendix H

Reliability analysis of questionnaire result from ABC Company- Management Incentive: Q4 and Q16

****** Method 2 (covariance matrix) will be used for this analysis

******

R E L I A B I L I T Y A N A L Y S I S - S C A L E (A L P H

A)

Mean Std Dev Cases

1. Q4 3.0000 .7385 78.0

2. Q16 3.2564 .6534 78.0

Correlation Matrix

Q4 Q16

Q4 1.0000

Q16 .5652 1.0000

N of Cases = 78.0

N of

Statistics for Mean Variance Std Dev Variables

Scale 6.2564 1.5178 1.2320 2

Item-total Statistics

134

Page 149: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Scale Scale Corrected

Mean Variance Item- Squared Alpha

if Item if Item Total Multiple if Item

Deleted Deleted Correlation Correlation Deleted

Q4 3.2564 .4269 .5652 .3194 .

Q16 3.0000 .5455 .5652 .3194 .

Reliability Coefficients 2 items

Alpha = .7187 Standardized item alpha = .7222

135

Page 150: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Appendix I

Reliability analysis of questionnaire result from ABC Company- Management Commitment: Q5 and Q6

****** Method 2 (covariance matrix) will be used for this analysis

******

R E L I A B I L I T Y A N A L Y S I S - S C A L E (A L P H

A)

Mean Std Dev Cases

1. Q5 3.1282 .8583 78.0

2. Q6 3.1667 .9455 78.0

Correlation Matrix

Q5 Q6

Q5 1.0000

Q6 .5815 1.0000

N of Cases = 78.0

N of

Statistics for Mean Variance Std Dev Variables

Scale 6.2949 2.5743 1.6044 2

Item-total Statistics

136

Page 151: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Scale Scale Corrected

Mean Variance Item- Squared Alpha

if Item if Item Total Multiple if Item

Deleted Deleted Correlation Correlation Deleted

Q5 3.1667 .8399 .5815 .3381 .

Q6 3.1282 .7366 .5815 .3381 .

Reliability Coefficients 2 items

Alpha = .7332 Standardized item alpha = .7354

137

Page 152: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Appendix J

Reliability analysis of questionnaire result from ABC Company- Participation of Management and Worker: Q12 and Q20

****** Method 2 (covariance matrix) will be used for this analysis

******

R E L I A B I L I T Y A N A L Y S I S - S C A L E (A L P H

A)

Mean Std Dev Cases

1. Q12 3.2436 .8247 78.0

2. Q20 3.3077 .7263 78.0

Correlation Matrix

Q12 Q20

Q12 1.0000

Q20 .3719 1.0000

N of Cases = 78.0

N of

Statistics for Mean Variance Std Dev Variables

Scale 6.5513 1.6532 1.2858 3

138

Page 153: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Item-total Statistics

Scale Scale Corrected

Mean Variance Item- Squared Alpha

if Item if Item Total Multiple if Item

Deleted Deleted Correlation Correlation Deleted

Q12 3.3077 .5275 .3719 .1383 .

Q20 3.2436 .6802 .3719 .1383 .

Reliability Coefficients 2 items

Alpha = .5390 Standardized item alpha = .5422

139

Page 154: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Appendix K

Reliability analysis of questionnaire result from ABC Company- Communication: Q13, Q14, Q18 and Q19

****** Method 2 (covariance matrix) will be used for this analysis

******

R E L I A B I L I T Y A N A L Y S I S - S C A L E (A L P H

A)

Mean Std Dev Cases

1. Q13 3.1795 .7515 78.0

2. Q14 3.2051 .7448 78.0

3. Q18 3.1923 .8537 78.0

4. Q19 3.4231 .7980 78.0

Correlation Matrix

Q13 Q14 Q18 Q19

Q13 1.0000

Q14 .3278 1.0000

Q18 .4111 .4069 1.0000

Q19 .4997 .3328 .4318 1.0000

N of Cases = 78.0

N of

Statistics for Mean Variance Std Dev Variables

Scale 13.0000 5.4805 2.3411 4

140

Page 155: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Item-total Statistics

Scale Scale Corrected

Mean Variance Item- Squared Alpha

if Item if Item Total Multiple if Item

Deleted Deleted Correlation Correlation Deleted

Q13 9.8205 3.4219 .5373 .3086 .6582

Q14 9.7949 3.6457 .4500 .2096 .7057

Q18 9.8077 3.1184 .5417 .2946 .6551

Q19 9.5769 3.2602 .5494 .3226 .6496

Reliability Coefficients 4 items

Alpha = .7287 Standardized item alpha = .7287

Appendix L

Reliability analysis of questionnaire result from ABC Company- Education and training: Q7, Q8 and Q9

****** Method 2 (covariance matrix) will be used for this analysis

******

141

Page 156: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

R E L I A B I L I T Y A N A L Y S I S - S C A L E (A L P H

A)

Mean Std Dev Cases

1. Q7 3.3077 .7263 78.0

2. Q8 3.1923 .7739 78.0

3. Q9 3.0769 .8021 78.0

Correlation Matrix

Q7 Q8 Q9

Q7 1.0000

Q8 .4710 1.0000

Q9 .5162 .4361 1.0000

N of Cases = 78.0

N of

Statistics for Mean Variance Std Dev Variables

Scale 9.5769 3.4421 1.8553 3

Item-total Statistics

Scale Scale Corrected

Mean Variance Item- Squared Alpha

if Item if Item Total Multiple if Item

Deleted Deleted Correlation Correlation Deleted

Q7 6.2692 1.7837 .5829 .3411 .6071

Q8 6.3846 1.7722 .5197 .2726 .6787

Q9 6.5000 1.6558 .5536 .3143 .6395

142

Page 157: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Reliability Coefficients 3 items

Alpha = .7288 Standardized item alpha = .7303

Appendix M

Reliability analysis of questionnaire result from ABC Company- Working conditions and procedures: Q10, Q11 and Q15

****** Method 2 (covariance matrix) will be used for this analysis

******

R E L I A B I L I T Y A N A L Y S I S - S C A L E (A L P H

A)

Mean Std Dev Cases

1. Q10 3.2564 .7286 78.0

2. Q11 3.4103 .6920 78.0

3. Q15 3.3846 .6881 78.0

Correlation Matrix

143

Page 158: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Q10 Q11 Q15

Q10 1.0000

Q11 .4069 1.0000

Q15 .2929 .2916 1.0000

N of Cases = 78.0

N of

Statistics for Mean Variance Std Dev Variables

Scale 10.0513 2.4649 1.5700 3

Item-total Statistics

Scale Scale Corrected

Mean Variance Item- Squared Alpha

if Item if Item Total Multiple if Item

Deleted Deleted Correlation Correlation Deleted

Q10 6.7949 1.2301 .4356 .1987 .4515

Q11 6.6410 1.2980 .4363 .1981 .4525

Q15 6.6667 1.4199 .3484 .1214 .5779

Reliability Coefficients 3 items

Alpha = .5974 Standardized item alpha = .5969

****** Method 2 (covariance matrix) will be used for this analysis

******

144

Page 159: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Appendix N

Reliability analysis of questionnaire result from ABC Company- Morale and Job satisfaction: Q17 and Q21

****** Method 2 (covariance matrix) will be used for this analysis

******

R E L I A B I L I T Y A N A L Y S I S - S C A L E (A L P H

A)

Mean Std Dev Cases

1. Q17 3.1026 .8914 78.0

2. Q21 3.1667 .8888 78.0

Correlation Matrix

Q17 Q21

Q17 1.0000

Q21 .4043 1.0000

N of Cases = 78.0

N of

Statistics for Mean Variance Std Dev Variables

Scale 6.2692 2.2253 1.4917 2

Item-total Statistics

145

Page 160: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Scale Scale Corrected

Mean Variance Item- Squared Alpha

if Item if Item Total Multiple if Item

Deleted Deleted Correlation Correlation Deleted

Q17 3.1667 .7900 .4043 .1635 .

Q21 3.1026 .7945 .4043 .1635 .

Reliability Coefficients 2 items

Alpha = .5758 Standardized item alpha = .5758

146

Page 161: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Appendix O

Reliability analysis of questionnaire result from ABC Company- Attitude and Risk Perception: Q22, and Q23

****** Method 2 (covariance matrix) will be used for this analysis

******

R E L I A B I L I T Y A N A L Y S I S - S C A L E (A L P H

A)

Mean Std Dev Cases

1. Q22 2.9615 .8745 78.0

2. Q23 3.1795 .9362 78.0

Correlation Matrix

Q22 Q23

Q22 1.0000

Q23 .5162 1.0000

N of Cases = 78.0

N of

Statistics for Mean Variance Std Dev Variables

Scale 6.1410 2.4863 1.5768 2

Item-total Statistics

147

Page 162: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Scale Scale Corrected

Mean Variance Item- Squared Alpha

if Item if Item Total Multiple if Item

Deleted Deleted Correlation Correlation Deleted

Q22 3.1795 .8765 .5162 .2664 .

Q23 2.9615 .7647 .5162 .2664 .

Reliability Coefficients 2 items

Alpha = .6798 Standardized item alpha = .6809

148

Page 163: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Appendix PQuestionnaire Set A (for management and safety officers) total 3 pages

A. Please fill in the blank or tick at square boxes where appropriate.1. Name of your organization: ______________________________________

(Name will not be disclosed. You may also choose not to fill in the name):

Business (e.g. food manufacturing): ________________________________

2. Your position: ________________________________

3. How many employees are there in your organization and how many of them are production workers? ______ employees ______ production workers

4. Which of the below is best to describe the safety culture of your organization?a. To stay out of trouble with the regulator and senior management. Getting

concerns addressed is often a matter of personal persistence.b. Has a formal safety management system in place. Can move beyond external

prescription and set its own targets and standards.c. Devolves responsibilities to the team level and emphases on local ownership

of health and safety issues and on developing risk awareness. □ a □ b □ c

B. Please circle the number to show your degree of agreement on the below

(5-24) statements. = strongly disagree = disagree = neutral (50% agree) = agree = strongly agree.

(In some statements there are hints bracketed to show how will the strongly disagree be.)

Do you agree your company is acting like below statements?strongly strongly

disagree neutral agree

5. The employer regards safety as an important matter as 1 2 3 4 5others like productivity and quality.

6. Safety goals are pursued proactively and on the 1 2 3 4 5company's initiative. (1 = Safety goals are adapted to comply regulations)

7. Management encourages safe behavior. 1 2 3 4 58. Safety proposals developed are swiftly implemented. 1 2 3 4 5

149

Page 164: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

strongly strongly

disagree neutral agree

9. Management is involved in safety activities such as risk 1 2 3 4 5 assessment, accident investigations & promotion

programs.10. Management is well informed about relevant safety 1 2 3 4 5 issues11. Workers are eager to attend safety activities and 1 2 3 4 5

training.12. A lot is learnt from nearly misses. 1 2 3 4 5

(1 = Near misses are not discussed.)13. Information needed to work safety is made available to 1 2 3 4 5

all employees.14. Workers are qualified to actively enhance operational 1 2 3 4 5

safety. (1 = employees are not trained for safety operation.)

15. Workers and supervisors participate in defining safe work 1 2 3 4 5practices.

(1 = these are defined by specialists alone.)16. Workers and supervisors actively involved in removing 1 2 3 4 5

hazards in the working environment.17. Workers will raise concern on machine problems. 1 2 3 4 518. Safety problems on machines are swiftly solved. 1 2 3 4 519. A questioning attitude towards instruction is encouraged. 1 2 3 4 5

(1 = Instructions are not meant to be questioned.)20. Management listens to workers' recommendations and 1 2 3 4 5

will provide feedback.21. The channels for the communication between 1 2 3 4 5

management and workers are efficient and sufficient.22. The managers in your plants really care about safety and 1 2 3 4 5

try to reduce risk levels as much as possible.23. Both management and workers regard safety is everyone's 1 2 3 4 5

responsibility, and safety officers provide support. (1 = Safety is ensured by specially assigned safety officersonly.)

24. Workers are motivated for safety by information and 1 2 3 4 5interesting tasks.(1 = Workers are bound to safety by strict control)

150

Page 165: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

C. Please tick at square boxes where appropriate.

25. Is your plant implementing Total Productive Maintenance (TPM)?□ Yes □ No

If your answer is yes, jump to question no. 26.

If your answer is no, end of the questionnaire.

- end -(for those working in companies not implementing TPM)

--------------------------------------------------------------------------------------------------------Below questions (26-30) are for those working in companies implementing TPM

Do you believe (for 26-29):26. the workers are competent to do the maintenance works well? □ Yes □ No27. TPM can reduce the chance of accident caused by equipment? □ Yes □ No28. TPM can increase the self-esteem of workers? □ Yes □ No29. TPM can improve safety culture of your organization? □ Yes □ No

30. Have the safety performance of your plant been improved after implementation of TPM? □ Yes □ NoIf yes, please advise some figures (e.g. accident rate decreases by 50% in 1 year.)__________________________________________________________________________________________________________________________________

- end -(for those working in companies implementing TPM)

151

Page 166: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Appendix QQuestionnaire Set B (for workshop supervisors and workers) total 3 pages

A. Please fill in the blank or tick at square boxes where appropriate. 1. Name of your organization: _________________________________

(will not be disclosed)

Business (e.g. food manufacturing): _________________________________2. Your position: □ workshop supervisor □ line leader □ worker3. What is your education level? □ primary □ secondary

□ technical institute or above

B. Please circle the number to show your degree of agreement on the below (4-23) statements. = strongly disagree = disagree

= neutral (50% agree) = agree = strongly agree.(In some statements there are hints bracketed to show how will the strongly disagree be.)

B1. Do you agree your company is acting like below statements (4-16)? strongly strongly

disagree neutral agree

4. Senior management regards safety as an important. 1 2 3 4 5matters as others like productivity and quality.

5. Management provides enough safety equipment. 1 2 3 4 56. Management can do what they commit. 1 2 3 4 5

(1 = what management committed are usually lip service)7. Accidents and near miss are studied and used as 1 2 3 4 5

training materials.8. Workers have been trained properly, including safety 1 2 3 4 5

precaution as well as operation of the machines.(1 = Workers are seldom trained for safety.)

9. Workers are always trained for the use of safety equipment. 1 2 3 4 510. Management is willing to improve the safety of working 1 2 3 4 5

environment.11. Safety procedures are realistic. 1 2 3 4 512. Management actively participates safety activities. 1 2 3 4 513. Management listens to workers' recommendations and 1 2 3 4 5

will provide feedback.14. Workers are encouraged to question instructions from 1 2 3 4 5

152

Page 167: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

management. (1 = Instructions from management cannot be questioned.)

153

Page 168: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

strongly strongly

disagree neutral agree

15. There is arrangement to check equipment to make sure 1 2 3 4 5it is free of faults.

16. Which one below is the best to describe the management 1 2 3 4 5of your company?1. Management denies that there are problems or don't want to see them.2. Management admits the fact that there are problems but find excuses for not

being able to solve them.3. Management accepts the fact that there are problems but is unable to solve

them because they don't want to know how to attack them.4. Management wants to see potential problems and for this try to visualize

them. They will attack them by learning proper methods.5. Management will try to solve the problems and after the problems are solved,

measures will be taken to prevent similar incidents occurring again.

B2. Do you agree that you are doing like the below statements (17-23)?

17. You regard safety is everyone's responsibility, and 1 2 3 4 5safety officers provide support.(1 = Safety is the responsibility of management only.)

18. You are easy to communicate with the management. 1 2 3 4 5(1 = You can only discuss safety issues with your

supervisor.)19. Whenever encounter any safety matters, you will report 1 2 3 4 5

to the supervisor or safety officer.(1 = It is no use to report, so you never report.)

20. You are willing to join the safety activities and trainings. 1 2 3 4 5(1 = You are forced to join the safety activities & trainings.)

21. You take care of the machines which you are operating. 1 2 3 4 5(1 = Taking care of the machines is the responsibility

of the maintenance department only.)22. You believe that accidents are preventable. 1 2 3 4 5

(1 = Accidents will happen no matter what you do.)23. You regard compliance with the safety rules is important. 1 2 3 4 5

If not following the rules, accidents may occur.(1 = If take care on the works, even not following the

safety rules, accidents will not occur on you.)

154

Page 169: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

C. Please tick at square boxes where appropriate.

24. Is your company implementing Total Productive Maintenance (TPM)□ Yes □ No □ Do not know

If your answer is 'Yes', jump to question no. 27 on the next page.If your answer is 'No' or 'Do not know', continue to question no. 25 and 26

.(Questions 25-26 are for those whose companies are not implementing TPM)(To be answered by production workers only, maintenance people no need to answer)

25. If sufficient training is provided, do you think you can □ Yes □ Nocarry out the routine maintenance works of the machines you are operating, such as lubrication, change over and adjustment of settings of machines.

26. Are you willing to do the above routine maintenance works? □ Yes □ No- end -

(for those working in companies not implementing TPM)-------------------------------------------------------------------------------------------------------

(Questions 27-40 are for those whose companies are implementing TPM)

27. Are you willing to do the routine maintenance jobs as □ Yes □ Norequired by TPM?

28. Do you think you have received sufficient training to □ Yes □ Nocarry out the routine maintenance works?

29. Do you think you are competence and have confident to do □ Yes □ Nocarry out the routine maintenance works as required by TPM?

30. Is your job description clearly distinguishable with that □ Yes □ Noof maintenance people?

31. Do you think TPM can help you to be more familiar with □ Yes □ Nothe machines which you are operating?

32. Do you think TPM can reduce the chances of accidents □ Yes □ Nocaused by equipment?

33. Does TPM provides you a sense of ownership on equipment? □ Yes □ No34. Does TPM provides you a sense of job satisfaction? □ Yes □ No35. Does TPM motivate your self-esteem? □ Yes □ No

- end -(for those working in companies implementing TPM)

155

Page 170: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

Appendix RQuestionnaire Set B - for supervisors and workers (Chinese Version)問卷 B (對象: 生產部工場管工及工人) 共 3 頁

甲. 請填上以下資料,及在適當的答案方格內加上 號1. 貴公司名稱: _________________________

(名稱不會公開。)

業務 (例:食品制造) : _________________________________2. 你的職位: □ 管工 □ 組長 □ 工人3. 你的學歷: □ 小學 □ 中學 □ 工業學院或以上乙 請圈出你對下列 (4-23 ) 問題 的同意程度。

=「非常不同意」, = 「不同意」 =「同意一半」。 = 「同意」 = 「非常同意」(有些句子在括號內附加提示,說明 「非常不同意」 會是怎樣的。)

乙 1 你同意 貴公司 的管理層 己做到下列(4-16)各點嗎? 非常不同意 同意一半 非常同意

4. 貴公司的 最高管理層視「職業安全」與 1 2 3 4 5「生產力」及「產品質量」同等重要。

5. 貴公司己提供了足夠的安全設備。 1 2 3 4 5

6. 貴公司高級管理層的承諾都能夠一一實現。 1 2 3 4 5(1 = 高層的承諾通常都是說說罷了。)

7. 意外及意外邊緣事故都會加以研究及用作訓練教材。 1 2 3 4 5

8. 所有工人都接受過適當訓練,除了訓練機械操作外, 1 2 3 4 5亦包括安全訓練。 (1 = 工人極少接受安全訓練。)

9. 貴公司的管理層會訓練工人使用安全設備。 1 2 3 4 5

10. 貴公司的管理層致力於改善工作的安全環境。 1 2 3 4 5

11. 貴公司訂下的安全措施是易明的。 1 2 3 4 5

12. 貴公司的管理層積極參加各項安全活動。 1 2 3 4 5156

Page 171: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

13. 管理層樂意聽取工人的意見,并會作出回應。 1 2 3 4 5非常不同意 同意一半 非常同意

14. 公司鼓勵員工對管理層的指引發表意見。 1 2 3 4 5(1 = 管理層的指引,工人是不能提出任何意見的。)

15. 公司有安排檢查設備,確保設備不會有問題。 1 2 3 4 5

16. 下列那一項最適合形容你的上司或管理層? 1 2 3 4 56. 他們否認有安全問題存在 或 乍作什麼也看不見。7. 他們承認有安全問題存在,但會找藉口說問題不能 解決。8. 他們接受有安全問題存在的事實,但是他們不想

知道怎樣去解決。9. 他們樂於發掘存在的問題,并樂於學習解決的方法。10. 他們會設法解決問題。解決問題後會改善現有的

制度使問題不會再發生。乙 2: 你同意你自己 已經做到下列(17-23)各點嗎?17. 你認為安全是每一個人的責任,由安全主任提供 1 2 3 4 5

支援。 (1 =安全祇是管理層的責任)

18. 你很容易和管理層接觸及討論問題。 1 2 3 4 5(1 = 你祇可以和上一級的上司接觸。)

19. 遇到有關安全的事件,你會報告給管工或安全主任。 1 2 3 4 5(1 = 報告是沒有用的,所以你不會報告。)

20. 你樂於參加公司舉辦的各項安全活動及訓練。 1 2 3 4 5(1 = 你是被公司強迫才參加的。)

21. 你會小心照顧你操作的機械設備 1 2 3 4 5(1 = 照顧機械設備祇是維修部的責任)

22. 你相信意外是可以避免的。 1 2 3 4 5(1 = 意外就是意外,無論你怎樣做,意外都是不能避免的。)

23. 你認為遵守安全規則非常重要,如不遵守, 1 2 3 4 5你是有機會發生意外的。 (1 = 祇要你小心一些,

157

Page 172: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

就算不遵守安全規則,你也不會發生意外。)

158

Page 173: 158.132.155.107158.132.155.107/posh97/private/research/Thesis-Patrick-Wong/the…  · Web viewIn Conjunction with. The Hong Kong Polytechnic University. Total Productive Maintenance

丙 請選擇合適的答案,在方格內加上 號24. 你的公司有否實行「全員生產保養 TPM」?

□ 有 □ 否 □ 不知道如你的答案是 '有',請跳到第 27 題作答。如你的答案是 '否' 或 '不知道',請繼續作答第 25 及 26 題。

------------------------------------------------------------------------------------------------------(以下 25-26 祇供在 沒有實行 「全員生產保養 TPM」公司工作的員工填寫)(由生產部員工作答,維修部員工無需作答。)

25. 如有足夠的訓練,你認為你可以替你操作的機械做 □ 是 □ 否例行保養工作(包括加潤滑油、轉機及調較等)嗎?

26. 你願意做上一題所說的保養工作嗎? □ 是 □ 否- 完 - (在沒有實行「全員生產保養」公司工作的問卷調查在此結束)

------------------------------------------------------------------------------------------------------(以下 27-35 祇供在 有實行 「全員生產保養 TPM」公司工作的員工填寫)

27. 你願以做「全員生產保養 TPM」制度下的保養工作嗎? □是□否28. 你認為你己接受足夠的訓練去處理日常的保養工作嗎? □是□否29. 你認為你有能力及信心去處理 TPM 制度下的保養 □是□否

工作嗎?30. 你做的保養工作是否與維修部的工作分辨得清楚嗎? □是□否31. 你認為「全員生產保養 TPM」能令你更熟悉你的機械嗎? □是□否32. 你認為「全員生產保養 TPM」可以減少機械引致的 □是□否

意外嗎?33. 「全員生產保養 TPM」能令你覺得你是設備的主人嗎? □是□否34. 「全員生產保養 TPM」能令你增加工作的成功感嗎? □是□否35. 你認為 「全員生產保養 TPM」能增加你的士氣嗎? □是□否

- 完 - (在有實行「全員生產保養」公司工作的問卷調查在此結束)

159