15 acid-base equilibria · 2020-06-04 · acid-base titration curves. 15.7. polyprotic acids. 15.8....

66
General Chemistry II ACID-BASE EQUILIBRIA 15 CHAPTER General Chemistry II 15.1 Classifications of Acids and Bases 15.2 Properties of Acids and Bases in Aqueous Solutions: The Brønsted-Lowry Scheme 15.3 Acid and Base Strength 15.4 Equilibria Involving Weak Acids and Bases 15.5 Buffer Solutions 15.6 Acid-Base Titration Curves 15.7 Polyprotic Acids 15.8 Organic Acids and Bases: Structure and Reactivity 15.9 Exact Treatment of Acid-Base Equilibria

Upload: others

Post on 09-Jul-2020

7 views

Category:

Documents


1 download

TRANSCRIPT

General Chemistry II

ACID-BASE EQUILIBRIA15CHAPTER

General Chemistry II

15.1 Classifications of Acids and Bases15.2 Properties of Acids and Bases in Aqueous

Solutions: The Brønsted-Lowry Scheme15.3 Acid and Base Strength15.4 Equilibria Involving Weak Acids and Bases15.5 Buffer Solutions15.6 Acid-Base Titration Curves15.7 Polyprotic Acids15.8 Organic Acids and Bases: Structure and Reactivity15.9 Exact Treatment of Acid-Base Equilibria

General Chemistry II

Cyanidin is blue in the basic sap of the cornflower and red in the acidic sap of the poppy.

669

General Chemistry II

Acid Base

Arrhenius [H3O+ ] > KW1/2 [OH- ] > KW

1/2

Brønsted-Lowry donates H+ accepts H+

Lewis accepts donates

lone-pair electrons lone-pair electrons

15.1 CLASSIFICATIONS OF ACIDS AND BASES

670

General Chemistry II

Arrhenius Acids and Bases

Acid: A substance that, when dissolved in water, increases the concentration of hydronium ion (H3O+) above the value in pure water.

HCl(aq) + H2O H3O+(aq) + Cl-(aq)

Base: A substance that increases the concentration of hydroxide ion (OH–).

NaOH(aq) Na+(aq) + OH-(aq)

670

General Chemistry II

Acid: A substance that can donate a protonBase: A substance that can accept a proton

Brønsted-Lowry conjugated acid-base pairs:

CH3COOH(aq) + H2O(l) CH3COO-(aq) + H3O+(aq)acid1 base2 base1 acid2

Brønsted-Lowry Acids and Bases 671

General Chemistry II

General Chemistry II

Lewis Acids and Bases Acid: Any species that accepts lone-pair electronsBase: Any species that donates lone-pair electrons

Competition between two bases for a proton by offering electron pairs:

2 3

2 11 2

HF( ) H O ( ) acid

H O( ) F ( ) bas acid

e ba

se

aq a aql q−+→+ +←

Reactions without proton transfers~ Octet-deficient compound (BF3) ← strong Lewis acid

674

General Chemistry II

General Chemistry II

~ removing H2O from oxoacids or hydroxides

Acid anhydrides: Oxides of most of the nonmetalsN2O5(s) + H2O(l) → HNO3(aq)

Base anhydrides: Oxides of Group I & II metalsCaO(s) + H2O(l) → Ca(OH)2(s)

Amphoteric: Oxides of Group III & V metals Al2O3(s) + 6 H3O+(aq) → 2 Al3+(aq) + 9 H2O(l)

Al2O3(s) + 2 OH- (aq) + 3 H2O(l) → 2 Al(OH)4- (aq)

Anhydrides of Acids and Bases

675

General Chemistry II

General Chemistry II

Fig. 15.2 Acidity and basicity of oxides of main group elements.

676

General Chemistry II

Autoionization of Water

H2O(l) + H2O(l) H3O+(aq) + OH-(aq)acid1 base2 acid2 base1

2 H2O(l) H3O+(aq) + OH-(aq)14

w 3 [H O ][OH ] 1.0 10 K + − −= = ×

[H3O+] = [OH-] = 1.0 x10–7 M

for pure water at 25°C

15.2 PROPERTIES OF ACIDS AND BASES IN AQUEOUS SOLUTIONS: THE BRØNSTED-

LOWRY SCHEME

677

General Chemistry II

677

General Chemistry II

Strong Acids and Bases

Strong Acids ~ ionizes fully in aqueous solution producing H3O+

H2O(l) + HCl(aq) H3O+(aq) + Cl-(aq)base2 acid1 acid2 base1

Leveling Effect of water on HCl, HBr, HI, H2SO4, HNO3, HClO4

~ too strong to tell the difference in water

678

General Chemistry II

Strong Bases

~ ionizes fully in aqueous solution producing OH-,amide ion (NH2

-), hydride ion (H-), NaOH, ...

H2O(l) + NH2-(aq) OH-(aq) + NH3(aq)

acid1 base2 base1 acid2

679

General Chemistry II

The pH Function

10 3 pH log [H O ] += −

Fig. 15.4 pH’s of many everyday materials

aqueous solution at 25°C

pH + pOH = 14pH < 7 acidic (can be negative)pH = 7 neutralpH > 7 basic

679

Fig. 15.3 A simple pH meterwith a digital readout.

General Chemistry II

General Chemistry II

General Chemistry II

Hydrolysis (ionization) of a weak acid

HA(aq) + H2O(l) H3O+(aq) + A-(aq)

Acid ionization (hydrolysis) constant, Ka

The stronger an acid, the larger Ka (smaller pKa).pKa of strong acids < 0pKa of H3O+ = 0pKa of weak acids > 0pKa of H2O = 14

15.3 ACID AND BASE STRENGTH681

𝐾𝐾𝑎𝑎 =𝐻𝐻3𝑂𝑂+ 𝐴𝐴−

𝐻𝐻𝐴𝐴, 𝑝𝑝𝐾𝐾𝑎𝑎 = − log10 𝐾𝐾𝑎𝑎

General Chemistry II

682

General Chemistry II

General Chemistry II

Hydrolysis of a weak base

A-(aq) + H2O(l) HA(aq) + OH-(aq)

or B(aq) + H2O(l) BH+(aq) + OH-(aq)

= = =[HA] [OH ][H O ]

[H[HA][OH ]=

[A ] [ O[HA]

[H O ][A] ]A ]K

+3

+w

a3b +

3

w-

-

-

- -K K

K

w a b w a b , p p p K K K K K K= = +

Base hydrolysis constant, Kb

682

𝐾𝐾𝑏𝑏 =𝐻𝐻𝐴𝐴 𝑂𝑂𝐻𝐻−

𝐴𝐴−, 𝑝𝑝𝐾𝐾𝑏𝑏 = − log10 𝐾𝐾𝑏𝑏

General Chemistry II

Fig. 15.5 The relative strengthof some acids and theirconjugate bases.

683

General Chemistry II

Competition of two weak acids

~ Prediction of the direction of net hydrogen ion transfer

HF(aq) + H2O(l) H3O+(aq) + F-(aq), Ka = 6.6×10-4

HCN(aq) + H2O(l) H3O+(aq) + CN-(aq), Ka' = 6.17×10-10

HF a stronger acid than HCN → Equilibrium is strongly to the right.

684

HF(aq) + CN-(aq) HCN(aq) + F-(aq), K = Ka/Ka' =1.1×106

acid1 base2 acid2 base1(strong) (strong) (weak) (weak)

General Chemistry II

682

General Chemistry II

General Chemistry II

Molecular Structure and Acid Strength

Fig. 15.6 (a) Basic compound, electropositive X, breaking X – O bond. (b) Acidic compound, electronegative X, breaking O – H bond.

–X–O–H group ~ Oxoacid (electronegativity of X, pKa)

NaOH (0.93, basic) HClO3 (3.16, –3) > HNO3 (3.04, –1.3) > HIO3 (2.66, 0.80)H3PO4 (2.19, 2.12) > H3AsO4 (2.18, 2.30)H2SO3 (2.58, 1.81) > H2CO3 (2.55, 6.37)

685

General Chemistry II

Fig. 15.7 Lewis diagram for H3PO3. (a) Wrong triprotic structure. (b) Correct diprotic structure. Assignment of the formal charge to P and the lone O. P – H bond is not breaking.

686

General Chemistry II

Indicators Organic weak acid that has a different color from its

conjugate base

HIn(aq) + H2O(l) H3O+(aq) + In-(aq)

=+[H O ][In ]

[HIn]3

a

K K−3

a

+[H O ][HIn] =[In ]

687

General Chemistry II

Indicators Organic weak acid that has a different color from its

conjugate base

HIn(aq) + H2O(l) H3O+(aq) + In-(aq)

=+[H O ][In ]

[HIn]3

a

K K−3

a

+[H O ][HIn] =[In ]

Range of color change: pH ~ pKa ± 1

Fig. 15.8 bromophenol red, thymolphthalein, phenolphthalein, bromocresol green

687

General Chemistry II

Fig. 15.9 Indicators changetheir colors at very differentpH values.

688

General Chemistry II

Fig. 15.10 Natural indicator: Red cabbage extract in a natural pH indicator.The color changes from red to violet to yellow as the solution becomesless acidic.

688

General Chemistry II

Weak Acids

HOAc H3O+ AcO–

--------------------------------------------------------------------------Initial 1.000 ~ 0 0Change –y + y + y

---------------- ------ -----Equilibrium 1.000 – y y y--------------------------------------------------------------------------

→←

−= = = ×−

+[H O ][Ac ] 1.76 10[HAc] 1.000

253

a

K yy

→ y = 4.20×10–3

[H3O+] = y = 4.20×10–3 M → pH = 2.38

𝑦𝑦2

1000 − 𝑦𝑦 ≈𝑦𝑦2

1000 = 1.76 × 10−5

Fraction ionized = [Ac–] / [HAc]0 = y / 1.000 = 4.20×10–3 → 0.42%

EXAMPLE 15.6

15.4 EQUILIBRIA INVOLVING WEAK ACIDSAND BASES

Calculate the pH and the fraction of HOAc ionized at equilibrium.HOAc(aq) + H2O(l) H3O+(aq) + AcO-(aq)

689

1 M

General Chemistry II

HOAc H3O+ AcO–

--------------------------------------------------------------------------Initial 0.00100 ~ 0 0Change –y + y + y

---------------- ------ -----Equilibrium 0.00100 – y y y--------------------------------------------------------------------------

General Chemistry II

General Chemistry II

Weak Bases

H2O(l) + NH3(aq) NH4+(aq) + OH–(aq)

--------------------------------------------------------------------------Initial 0.0100 0 ~ 0Change –y + y + y

---------------- ------ -----Equilibrium 0.0100 – y y y--------------------------------------------------------------------------

−= = = ×−

+[NH ][OH ] 1.8 10[NH ] 0.0100

254

b3

K yy

y = 4.15 ×10–4 M = [OH–]

[H3O+] = Kw / [OH–] = 2.4 ×10–11 M → pH = 10.62

692

EXAMPLE 15.8 Calculate the pH of an aqueous solution of ammonia.0.01 M

General Chemistry II

Hydrolysis

AcO–(aq) + H2O(l) HOAc(aq) + OH–(aq) --------------------------------------------------------------------------

Initial 0.100 0 ~ 0Change –y + y + y

---------------- ------ -----Equilibrium 0.100 – y y y

--------------------------------------------------------------------------

693

EXAMPLE 15.9 Hydrolysis of NaOAc

NaOAc(s) + H2O(l) → Na+(aq) + AcO–(aq)

0.1 M

General Chemistry II

Hydrolysis of a weak base

A-(aq) + H2O(l) HA(aq) + OH-(aq)

or B(aq) + H2O(l) BH+(aq) + OH-(aq)

= = =[HA] [OH ][H O ]

[H[HA][OH ]=

[A ] [ O[HA]

[H O ][A] ]A ]K

+3

+w

a3b +

3

w-

-

-

- -K K

K

w a b w a b , p p p K K K K K K= = +

Base hydrolysis constant, Kb

682

𝐾𝐾𝑏𝑏 =𝐻𝐻𝐴𝐴 𝑂𝑂𝐻𝐻−

𝐴𝐴−, 𝑝𝑝𝐾𝐾𝑏𝑏 = − log10 𝐾𝐾𝑏𝑏

General Chemistry II

Hydrolysis

AcO–(aq) + H2O(l) HOAc(aq) + OH–(aq) --------------------------------------------------------------------------

Initial 0.100 0 ~ 0Change –y + y + y

---------------- ------ -----Equilibrium 0.100 – y y y

--------------------------------------------------------------------------

y = 7.5 × 10–6 M = [OH–]

[H3O+] = Kw / [OH–] = 1.3 × 10–9 M → pH = 8.89

−−= = = = ×

−[HAc][OH ] 5.7 10

[Ac ] 0.100

2w

a

10b

K KK

yy

693

EXAMPLE 15.9 Hydrolysis of NaOAc

NaOAc(s) + H2O(l) → Na+(aq) + AcO–(aq)

0.01 M

General Chemistry II

Buffer solution ~ maintains an approximately constant pHWeak acid + Salt containing its conjugate base(eg. HOAc/NaOAc)

15.5 BUFFER SOLUTIONS

694

- Controlling the solubility of ions- Maintaining pH of biochemical and physiological

processesblood pH 7.4 (7.0 – 7.8)

General Chemistry II

Calculations of Buffer Action

HCOOH(aq) + H2O(l) H3O+(aq) + HCOO–(aq) ---------------------------------------------------------------------------------------Initial 1.00 ~ 0 0.500Change –y + y + y

--------------- ------ -------------Equilibrium 1.00 – y y 0.500 + y

---------------------------------------------------------------------------------------

EXAMPLE 15.10 Calculate the pH of a solution of HCOOH and NaHCOO.Buffer solution of HCOOH (1.00 mol) / NaHCOO (0.500 mol) in 1L

( ) −= = = ×−

[H O ][HCOO ] 1.77 10[HCOOH] 1.00

+43

a0.500−

Ky + y

y

( ) ( ) −≈ ≈ ×−

1.77 101.00 1.00

40.500 0.500y + y yy

y = [H3O+] = 3.54×10–4 M → pH = 3.45

695

General Chemistry II

General Chemistry II

Testing the buffer strength.

Buffer solution of HCOOH (1.00 mol) / NaHCOO (0.500 mol) in 1L

+ 0.10 mol of HCl

EXAMPLE 15.11

1. Before considering ionization of HCOOH….

HCl ionizes completely → reacts with HCOO– to give HCOOH

[HCOO–]0 = 0.500 – 0.10 = 0.40 M

[HCOOH]0 = 1.00 + 0.10 = 1.10 M

2. Now consider ionization of HCOOHHCOOH(aq) + H2O(l) H3O+(aq) + HCOO–(aq)

-----------------------------------------------------------------------------------------Initial 1.10 ~ 0 0.40Change –y + y + y

--------------- ------ -------------Equilibrium 1.10 – y y 0.40 + y-----------------------------------------------------------------------------------------

696

General Chemistry II

( ) −= = = ×−

K+

43a

0.40[H O ][HCOO ] 1.77 10[HCOOH]

− y + yy1.10

( ) ( ) −≈ ≈ ×−

40.40 0.401.77 10

y + y yy1.10 1.10

y = [H3O+] = 4.9 ×10–4 M → pH = 3.31

Addition of 0.100 mol HCl toBuffer solution of Ex. 15.10: pH = 3.45 → 3.31Pure water: pH = 7 → 1

696

General Chemistry II

General Chemistry II

Designing Buffers

2 3HA( ) H O( ) H O ( ) A ( )aq l aq aq+ −→+ +←

3a

03

0

[H O ][A ] [H O ][A ][HA] [HA]

K+ − + −

= ≈

a 100

0

[HA] pH p log [A ]

K −≈ −

Determining pH of the buffer solution1. Choose a weak acid whose pKa ≈ pH2. Fine-tuning of pH by adjusting the ratio of [HA]0 / [A–]0

Henderson-Hasselbalch Equation

697

General Chemistry II

General Chemistry II

682

General Chemistry II

a 100

0

[HA] pH p log [A ]

K −≈ −

General Chemistry II

Capacity of the Buffer Solution

Fig. 15.12 pH change of buffer solutions as a strong base (NaOH) is added.Red line: 100 mL of a buffer that is 0.1 M in both HAc and Ac–.Blue line: 100 mL of a buffer that is 1.0 M in both HAc and Ac–.

698

General Chemistry II

Titration of a Strong Acidwith a Strong Base

Titration of 100.0 mL of

0.1000 M HCl with

0.1000 M NaOH at 25°C

H3O+(aq) + OH–(aq) →

2 H2O(l)

15.6 ACID-BASE TITRATION CURVES699

General Chemistry II

Region I: Before the equivalence point

The pH determined by the excess H3O+.

2. V = 30.00 mL NaOH addedn(OH–) = (0.1000 mol/L)(0.0300 L) = 3.000×10–3 moln(H3O+) = (1.000×10–2 – 3.000×10–3 ) mol = 7.00×10–3 mol

Volume increased: Vtot = 100.0 mL + 30.00 mL = 0.1300 L[H3O+] = n(H3O+) / Vtot = (7.00×10–3 mol) / (0.1300 L)

= 0.0538 M → pH = 1.27

1. V = 0 mL NaOH added[H3O+] = 0.1000 M → pH = 1.00n(H3O+) = (0.1000 mol/L)(0.1000 L) = 1.000×10–2 mol

699

General Chemistry II

Region II : At the equivalence point

The pH determined by the dissociation of water.3. V = 100.0 mL NaOH added → pH = 7.00

Region III: Beyond the equivalence point

The pH determined by the excess OH–.

4. V = 100.05 mL NaOH added

n(OH–) = (0.1000 mol/L)(5×10–5 L) = 5×10–6 mol

Vtot = 0.1000 L (HCl) + 0.10005 L (NaOH)

= 0.20005 L

[OH–] = n(OH–) / Vtot = (5×10–5 mol) / (0.20005 L) = 2.5×10–5 M

→ [H3O+] = 4×10–10 M → pH = 9.4

700

General Chemistry II

Titration of a Weak Acid with a Strong Base

At the equivalence point,

c0V0 = ctVe (monoprotic acid)c0 : concentration of weak acidV0 : volume of acid originally presentct : concentration of OH– in the base titrantVe : volume of the base at the equivalence point

Titration of 100.0 mL of 0.1000 M HOAcwith 0.1000 M NaOH at 25°C

H3O+(aq) + OH–(aq) → 2 H2O(l)

Region I: Initial solution (Weak acid solution)

1. V = 0 mL NaOH added → pH of 0.100 M HOAc solution[H3O+] = 1.32×10–3 → pH = 2.88

701

General Chemistry II

Weak Acids

HOAc H3O+ AcO–

--------------------------------------------------------------------------Initial 1.000 ~ 0 0Change –y + y + y

---------------- ------ -----Equilibrium 1.000 – y y y--------------------------------------------------------------------------

→←

−= = = ×−

+[H O ][Ac ] 1.76 10[HAc] 1.000

253

a

K yy

→ y = 4.20×10–3

[H3O+] = y = 4.20×10–3 M → pH = 2.38

𝑦𝑦2

1000 − 𝑦𝑦 ≈𝑦𝑦2

1000 = 1.76 × 10−5

Fraction ionized = [Ac–] / [HAc]0 = y / 1.000 = 4.20×10–3 → 0.42%

EXAMPLE 15.6

15.4 EQUILIBRIA INVOLVING WEAK ACIDSAND BASES

Calculate the pH and the fraction of HOAc ionized at equilibrium.HOAc(aq) + H2O(l) H3O+(aq) + AcO-(aq)

689

1 M

General Chemistry II

HOAc H3O+ AcO–

--------------------------------------------------------------------------Initial 0.00100 ~ 0 0Change –y + y + y

---------------- ------ -----Equilibrium 0.00100 – y y y--------------------------------------------------------------------------

General Chemistry II

Titration of a Weak Acid with a Strong Base

At the equivalence point,

c0V0 = ctVe (monoprotic acid)c0 : concentration of weak acidV0 : volume of acid originally presentct : concentration of OH– in the base titrantVe : volume of the base at the equivalence point

Titration of 100.0 mL of 0.1000 M HOAcwith 0.1000 M NaOH at 25°C

H3O+(aq) + OH–(aq) → 2 H2O(l)

Region I: Initial solution (Weak acid solution)

1. V = 0 mL NaOH added → pH of 0.100 M HOAc solution[H3O+] = 1.32×10–3 → pH = 2.88

701

General Chemistry II

Fig. 15.14 A titration curve for the titration of a weak acid by a strong base.100. mL of 0.1000 M HOAc is titrated with 0.1000 M NaOH.

702

General Chemistry II

Originally,n(HOAc) = (0.1000 mol/L)(0.1000 L) = 1.000×10–2 mol

n(AcO–) generated by adding OH– :n(AcO–) = n(OH–) = (0.1000 mol/L)(0.03000 L) = 3.000×10–3 mol

Amount of HOAc unreacted :n(HOAc) = 1.000×10–2 mol – 3.000×10–3 mol = 7.000×10–3 mol

Region II: Before the equivalence point (Buffer solution)

2. V = 30.00 mL NaOH added ( 0 < V < Ve )

HOAc(aq) + OH–(aq) AcO–(aq) + H2O(l)K = 1/ Kb = Ka / Kw = 2×109 >> 1

701

General Chemistry II

Volume increased to 0.1300 LConcentrations after adding 30.00 mL of NaOH:

[HOAc] = (7.000×10–3 mol) / (0.1300 L)= 5.38×10–2 M

[AcO–] = (3.000×10–3 mol) / (0.1300 L)= 2.31×10–2 M

702

General Chemistry II

Calculations of Buffer Action

HCOOH(aq) + H2O(l) H3O+(aq) + HCOO–(aq) ---------------------------------------------------------------------------------------Initial 1.00 ~ 0 0.500Change –y + y + y

--------------- ------ -------------Equilibrium 1.00 – y y 0.500 + y

---------------------------------------------------------------------------------------

EXAMPLE 15.10 Calculate the pH of a solution of HCOOH and NaHCOO.Buffer solution of HCOOH (1.00 mol) / NaHCOO (0.500 mol) in 1L

( ) −= = = ×−

[H O ][HCOO ] 1.77 10[HCOOH] 1.00

+43

a0.500−

Ky + y

y

( ) ( ) −≈ ≈ ×−

1.77 101.00 1.00

40.500 0.500y + y yy

y = [H3O+] = 3.54×10–4 M → pH = 3.45

695

General Chemistry II

Designing Buffers

2 3HA( ) H O( ) H O ( ) A ( )aq l aq aq+ −→+ +←

3a

03

0

[H O ][A ] [H O ][A ][HA] [HA]

K+ − + −

= ≈

a 100

0

[HA] pH p log [A ]

K −≈ −

Determining pH of the buffer solution1. Choose a weak acid whose pKa ≈ pH2. Fine-tuning of pH by adjusting the ratio of [HA]0 / [A–]0

Henderson-Hasselbalch Equation

697

General Chemistry II

Volume increased to 0.1300 LConcentrations after adding 30.00 mL of NaOH:

[HOAc] = (7.000×10–3 mol) / (0.1300 L)= 5.38×10–2 M

[AcO–] = (3.000×10–3 mol) / (0.1300 L)= 2.31×10–2 M

×≈ − = − =

×K

20

a 10 10 20

[HAc] 5.38 10pH p log 4.75 log[Ac ] 2.31 10

4.38−

702

→ A buffer solution of [HOAc]0 = 5.38×10–2 M and [NaOAc]0 = 2.31×10–2 M

At V = Ve/2, [HOAc]0 = [AcO–]0 → pH = pKa

General Chemistry II

702

Region III: At the equivalence point(equivalent to Hydrolysis of salts)

AcO– + H2O HOAc + OH–

3. V = Ve pH = 8.73

Region IV: Beyond the equivalence pointThe pH determined by the excess OH–.

General Chemistry II

Hydrolysis

AcO–(aq) + H2O(l) HOAc(aq) + OH–(aq) --------------------------------------------------------------------------

Initial 0.100 0 ~ 0Change –y + y + y

---------------- ------ -----Equilibrium 0.100 – y y y

--------------------------------------------------------------------------

y = 7.5 × 10–6 M = [OH–]

[H3O+] = Kw / [OH–] = 1.3 × 10–9 M → pH = 8.89

−−= = = = ×

−[HAc][OH ] 5.7 10

[Ac ] 0.100

2w

a

10b

K KK

yy

693

EXAMPLE 15.9 Hydrolysis of NaOAc

NaOAc(s) + H2O(l) → Na+(aq) + AcO–(aq)

Now 0.05 M instead of 0.1 M due to dilution

General Chemistry II

Problem Sets

For Chapter 15,

10, 18, 24, 36, 50, 54, 94