114740048 newton raphson method

13
Ex.No : Date: Newton Raphson Method Aim: To calculate various line flows of an interconnected power system using the Newton Raphson method of power flow analysis and determine the voltage and load angle at all buses in the system. Software Used: Matlab Software Theory: Load flow analysis is performed on a symmentrical steady state operating condition of power system under normal mode of operation The solution of load flow gives bus voltages and line/transformer power flow for a given load condition. This information is essential for long term planning and operational planning. Long Term Planning Load flow analysis helps in investigating the effectiveness of alternative plans and choosing the bus best pan for system expansion to meet the projected operating state Operational planning It helps in choosing the best unit commitment plan and generation schedules to run the plan and generation schedules to run the system efficiently for the next day’s load condition without violating the bus voltages and line flow operating limits. Steps for load flow study: The following work has to be performed for a load flow study Representation of the system by single line diagram Determining the impedance diagram using the information in single line diagram Formulation of network equation Solution of network equation Complex power balancing at a bus P+JQ=(PGi – Pdi)+j(QGi-QDi) I=Yij Vj P-jQ = V * I = Σ Vi Vj Yij

Upload: rantesep521158673

Post on 12-Feb-2015

28 views

Category:

Documents


5 download

DESCRIPTION

electrical

TRANSCRIPT

Page 1: 114740048 Newton Raphson Method

Ex.No :

Date:

Newton Raphson Method

Aim:

To calculate various line flows of an interconnected power system using the Newton

Raphson method of power flow analysis and determine the voltage and load angle at all buses

in the system.

Software Used:

Matlab Software

Theory:

Load flow analysis is performed on a symmentrical steady state operating condition of

power system under normal mode of operation

The solution of load flow gives bus voltages and line/transformer power flow for a given load

condition.

This information is essential for long term planning and operational planning.

Long Term Planning

Load flow analysis helps in investigating the effectiveness of alternative plans and choosing

the bus best pan for system expansion to meet the projected operating state

Operational planning

It helps in choosing the best unit commitment plan and generation schedules to run the plan

and generation schedules to run the system efficiently for the next day’s load condition without

violating the bus voltages and line flow operating limits.

Steps for load flow study:

The following work has to be performed for a load flow study

Representation of the system by single line diagram

Determining the impedance diagram using the information in single line diagram

Formulation of network equation

Solution of network equation

Complex power balancing at a bus

P+JQ=(PGi – Pdi)+j(QGi-QDi)

I=Yij Vj

P-jQ = V*I = Σ Vi Vj Yij

Page 2: 114740048 Newton Raphson Method

=Σ |Vi||Vj||Yij|<(θij-δi+δj)

Equating real and imaginary part

Pical=Σ |Vi||Vj||Yij|cos(θij-δi+δj)

Qical=- |Vi||Vj||Yij|sin(θij-δi+δj)

The quation constitute a set of non linear algebraic equation in terms of the independent variables V

in p.u. and phase angle in radians

Pi(δ,V) – Pii=0

Qi(δ,V) – Qii=0

For every bus whose bus phase angle δ is unknown include the respective real power

balance equation

For every bus whose bus voltage magnitude V is unknown, include respect power balance

equation.

Algorithm:

Step 1:

Formulate Y bus matrix

Step 2:

Assume flat start for starting voltage solution

δ i=0, for i=1,2,3, ...N for all buses except slackbus

|Vi|= 1.0, for i=M+1,M+2, ...N (for all PQ buses)

|Vi|=|Vi| for all PV buses and slack bus

Step 3:

For load bus Calculate Pi cal and Qi

cal

Pical=Σ |Vi||Vj||Yij|cos(θij-δi+δj)

Qical=- |Vi||Vj||Yij|sin(θij-δi+δj)

Step 4:

For PV buses, check for Q limit violation

Page 3: 114740048 Newton Raphson Method

If Qi(min) < Qi cal < Qi(max), the bus acts as PV bus

If Qi cal > Qi (max), Qi(spec) = Qi(max)

If Qi cal < Qi (min) , Qi(spec) = Qi(min), the PV bus will act as a PQ bus

Step 5:

Compute mismatch vector using

ΔPi =Pi(spec) – Pi cal

ΔQi = Qi(spec) – Qi cal

Step 6:

ΔPi (max) = max | ΔPi|; i=1,2,3,...N except slack bus

ΔQi (max) = max |ΔQi| i=M+1,....N

Step 7:

Compute Jacobian matrix using

J= ƏPi/ Əδ ƏQi/ Ə|V|

ƏQi/ Əδ ƏQi/ Ə|V|

The diagonal and off diagonal elements of J1 are

ƏPi/ Əδi= Σ |Vi||Vj||Yij|sin(θij-δi+δj)

ƏPi/ Əδj = -|Vi||Vj||Yij|sin(θij-δi+δj) for i≠j

The diagonal and off diagonal elements of J2 are

ƏPi/ ƏVi= Σ |Vj||Yij|cos(θij-δi+δj)+2|Vi||Yij|cosθii

ƏPi/ ƏVj = -|Vi||Yij|cos(θij-δi+δj) for i≠j

The diagonal and off diagonal elements of J3 are

ƏQi/ Əδi= Σ |Vi||Vj||Yij|cos(θij-δi+δj)

ƏQi/ Əδj = -|Vi||Vj||Yij|cos(θij-δi+δj) for i≠j

Page 4: 114740048 Newton Raphson Method

The diagonal and off diagonal elements of J4 are

ƏQi/ ƏVi= -Σ |Vj||Yij|sin(θij-δi+δj)-2|Vi||Yij|sinθii

ƏQi/ ƏVj = -|Vi||Yij|sin(θij-δi+δj) for i≠j

J = J1 J2

J3 J4

Step 8 :

Obtain state correction vector

Δδ ΔP

= [ J ]-1

Δ|V| ΔQ

Step 9:

Update state vector using

V new = V old + ΔV

Δnew = δ old + Δδ

Step 10:

This procedure is continued until

|ΔP|<ε and |ΔQ| <ε, otherwise go to step 3.

Start

Read linear data, bus data tolerance for ΔP and ΔQ

Compute Y bus

Initial voltage state vector

Bus No i=1 I=i+1

Calculate Pi

cal=Σ |Vi||Vj||Yij|cos(θij-δi+δj) Qi

cal=- Σ |Vi||Vj||Yij|sin(θij-δi+δj)

Page 5: 114740048 Newton Raphson Method

Is I refer to Pv bus

Calculate ΔPi =Pi(spec) – Pi

cal

Check for Q limit

If Qi

cal > Qi (max) If Qi(min) < Qi cal < Qi(max) If Qi

cal < Qi (min) , Qi(spec) = Qi(max) Qi(spec) = Qi(min),

Is i< N Form J= ƏPi/ Əδ ƏQi/ Ə|V| ƏQi/ Əδ ƏQi/ Ə|V|

Δδ ΔP = [ J ]-1

Δ|V| ΔQ

Update state vector using V new = V old + ΔV Δnew = δ old + Δδ

Check For tolerance |ΔP|<ε and |ΔQ| <ε,

Iter=iter+1

Calculate line flow Slack bus power Total line losses

Reactive power generator at pv bus

Print

Stop Flow chart for Newton Raphon method

Page 6: 114740048 Newton Raphson Method

Manual Calculation: Step 1: Y = Y11 Y12 Y13 Y21 Y22 Y23 Y31 Y32 Y33 Y= (1/J0.18)+(1/j0.18) -(1/J0.18) -(1/J0.18) -(1/J0.18) (1/J0.18)+(1/j0.18) -(1/J0.18) -(1/J0.18) -(1/J0.18) (1/J0.18)+(1/j0.18) Y = 11.1111<-1.57 5.5556<1.57 5.5556<1.57 5.5556<1.57 11.1111<-1.57 5.5556<1.57 5.5556<1.57 5.5556<1.57 11.1111<-1.57 Step 2 Initial Bus Voltages V1 old = 1.03V V2 old=1.02V V3old=1.0V Δδ1=0 δ=0 δ=0 Slackbus PV bus PQ Bus Bus No Bus No 2 bus No 3 Step 3: Check for Q limit Violation Q2

cal = -{|V2||V1||Y21|sin(θ21-δ2+δ1)+|V2|2|Y22|sin (θ22)+|V2||V3||Y23|sin(θ21-δ2+δ3)} = -{ 1.02x1.03x5.5556xsin(1.57) + 1.022sin(-1.57) + 1.02x1.0x5.5556xsin(1.57) = -{ 5.8367-11.1111+5.6667} = 0.05658 Step 4: Calculate |ΔP| and |ΔQ| P2(spec) = PG2- PD2 = 1.5-0=1.5 P3(spec) = PG3-PD3 = 0-2 = -2 Q2(spec)=QG2 – QD2=0- Q3(spec) = QG3-QD3=0-0.5 = -0.5 P2

cal = {|V2||V1||Y21|cos(θ21-δ2+δ1)+|V2|2|Y22|cos (θ22)+|V2||V3||Y23|cos(θ21-δ2+δ3)} ={1.02x1.03x5.5556xcos(1.57) + (1.02)2x11.1111xcos(-1.57)+ 1.02x1.0x5.5556xcos(1.57)} ={4.6479x10-3+9.2055x10-3+4.5126x10-3} = 0.018366 P3

cal = {|V3||V1||Y31|cos(θ31-δ3+δ1)+ |V3||V2||Y32|cos(θ32-δ3+δ2)+|V3|2|Y33|cos (θ33)} ={1x1.03x5.5556xcos(1.57)+1x1.02x5.5556xcos(1.57)+1x1x11.1111xcos(-1.57)} ={4.5568x10-3+4.5126x10-3+8.8841x10-3} = 0.017954 Q3 cal = -({|V3||V1||Y31|sin(θ31-δ3+δ1)+ |V3||V2||Y32|sin(θ32-δ3+δ2)+|V3|2|Y33|sin (θ33)} =-{(1.0x1.03x5.5556xsin(1.57)+1.0x1.02xsin(1.57)+1x1x11.1111xsin(-1.57)} =-{5.7223+5.6667-11.1111} = -0.2779

ΔP2 =P2(spec) – P2 cal=1.5 – 0.018366 =1.481634 ΔP3 =Pi(spec) – P3 cal = -2-0.017954=-2.017954 ΔQ3 = Qi(spec) – Q3 cal=-0.5-(-0.2779)=-0.2221

Page 7: 114740048 Newton Raphson Method

Step 6

Step7:

Compute Jacobian matrix

J= ƏPi/ Əδ ƏPi/ Ə|V| ƏQi/ Əδ ƏQi/ Ə|V| J = J1 J2 J3 J4 The diagonal and off diagonal elements of J1 are

ƏPi/ Əδi= Σ |Vi||Vj||Yij|sin(θij-δi+δj)

ƏPi/ Əδj = -|Vi||Vj||Yij|sin(θij-δi+δj) for i≠j

P2 cal = {|V2||V1||Y21|cos(θ21-δ2+δ1)+|V2|2|Y22|cos (θ22)+|V2||V3||Y23|cos(θ21-δ2+δ3)}

ƏP2/ Əδ2={|V2||V1||Y21|sin(θ21-δ2+δ1)+|V2||V3||Y23|sin(θ23-δ2+δ3)} ={1.02x1.03x5.5556xsin(1.57) + 1.02x1x5.5556xsin(1.57)} ={5.8367+5.6667}

= 11.5034 ƏP2/ Əδ3=-{|V2||V3||Y23|sin(θ23-δ2+δ3)} =-{1.02x1.03x5.5556xsin(1.57) =-{5.8367} P3

cal = {|V3||V1||Y31|cos(θ31-δ3+δ1)+ |V3||V2||Y32|cos(θ32-δ3+δ2)+|V3|2|Y33|cos (θ33)} ƏP3/ Əδ2=-{|V3||V2||Y32|sin(θ32-δ3+δ2)} =-{1.0x1.02x5.5556xsin(1.57)} =-{5.6667} ƏP3/ Əδ3={|V3||V1||Y31|sin(θ31-δ3+δ1)+ |V3||V2||Y32|sin(θ32-δ3+δ2)} =-{1.0x1.03x5.5556xsin(1.57)+1x1.02x5.5556xsin(1.57) =-{5.7223+5.6667}=-11.389 The diagonal and off diagonal elements of J2 are

ƏPi/ ƏVi= Σ |Vj||Yij|cos(θij-δi+δj)+2|Vi||Yij|cosθii ƏPi/ ƏVj = -|Vi||Yij|cos(θij-δi+δj) for i≠j P2

cal = {|V2||V1||Y21|cos(θ21-δ2+δ1)+|V2|2|Y22|cos (θ22)+|V2||V3||Y23|cos(θ21-δ2+δ3)} ƏP2/ ƏV2 = {|V1||Y21|cos(θ21-δ2+δ1)+2|V2||Y22|cos (θ22)+|V3||Y23|cos(θ21-δ2+δ3)} = 1.03x5.5556xcos(1.57) + 2x1.02x11.1111xcos(-1.57)+1.0x5.5556xcos(1.57)} = {4.5568x10-3 +0.01805+4.4241x10-3}

=0.02703 P3 cal = {|V3||V1||Y31|cos(θ31-δ3+δ1)+ |V3||V2||Y32|cos(θ32-δ3+δ2)+|V3|2|Y33|cos (θ33)} ƏP3/ ƏV3= {|V1||Y31|cos(θ31-δ3+δ1)+ |V2||Y32|cos(θ32-δ3+δ2)+2|V3||Y33|cos (θ33)} = 1.03x5.5556xcos(1.57) + 1.02x5.5556xcos(1.57)+2x1.0x11.1111cos(-1.57) ={4.5568x10-3+4.5126x10-3+0.017696}

=0.026765

Page 8: 114740048 Newton Raphson Method

The diagonal and off diagonal elements of J3 are

ƏQi/ Əδi= Σ |Vi||Vj||Yij|cos(θij-δi+δj) ƏQi/ Əδj = -|Vi||Vj||Yij|cos(θij-δi+δj) for i≠j Q2

cal = -{|V2||V1||Y21|sin(θ21-δ2+δ1)+|V2|2|Y22|sin (θ22)+|V2||V3||Y23|sin(θ21-δ2+δ3)} ƏQ2/ Əδ2= {|V2||V1||Y21|cos(θ21-δ2+δ1)+|V2||V3||Y23|cos(θ21-δ2+δ3)} = 1.02x1.03x5.5556xcos(1.57)+1.02x1.0x5.5556xcos(1.57) ={4.6479x10-3+4.51255x10-3} =9.1605x10-3 Q3 cal = -({|V3||V1||Y31|sin(θ31-δ3+δ1)+ |V3||V2||Y32|sin(θ32-δ3+δ2)+|V3|2|Y33|sin (θ33)} ƏQ3/ Əδ3 =({|V3||V1||Y31|cos(θ31-δ3+δ1)+ |V3||V2||Y32|cos(θ32-δ3+δ2)} =1.0x1.03x5.5556xcos(1.57)+1.0x1.02x5.5556xcos(1.57) ={4.5568x10-3+4.51255x10-3} =9.06935x10-3

The diagonal and off diagonal elements of J4 are

ƏQi/ ƏVi= -Σ |Vj||Yij|sin(θij-δi+δj)-2|Vi||Yij|sinθii ƏQi/ ƏVj = -|Vi||Yij|sin(θij-δi+δj) for i≠j Q2

cal = -{|V2||V1||Y21|sin(θ21-δ2+δ1)+|V2|2|Y22|sin (θ22)+|V2||V3||Y23|sin(θ21-δ2+δ3)} ƏQ2/ ƏV2= -{|V1||Y21|sin(θ21-δ2+δ1)+2|V2||Y22|sin (θ22)+|V3||Y23|sin(θ21-δ2+δ3)} =-{1.03x5.5556xsin(1.57) +2x1.02x11.1111xsin(-1.57)+1.0x5.5556xsin(1.57) =5.7223-22.6666+5.5556 =-11.3887 Q3 cal = -({|V3||V1||Y31|sin(θ31-δ3+δ1)+ |V3||V2||Y32|sin(θ32-δ3+δ2)+|V3|2|Y33|sin (θ33)} ƏQ3/ ƏV3=-{|V1||Y31|sin(θ31-δ3+δ1)+ |V2||Y32|sin(θ32-δ3+δ2)+2|V3||Y33|sin (θ33)} =-{1.03x5.5556xsin(1.57)+1.02x5.5556xsin(1.57)+2x1.0x11.1111xsin(-1.57)} =-{5.7223+5.6667-22.2222} =10.8332

[J] = J1 J2

J3 J4

[J1] = 11.5034 -5.8367 -5.6667 -11.389 [J2] = 0.02703 0.026765 [J3] = [ 9.1605x10-3 9.06935x10-3] [J4] = [10.8332]

Page 9: 114740048 Newton Raphson Method

[J] = 11.5034 -5.8367 0.02703 -5.6667 -11.389 0.026765 9.1605x10-3 9.06935x10-3 10.8332 Δδ2 ΔP2 Δδ3 = [J]-1 ΔP3 ΔV3 ΔQ3 Δδ2 0.0705 -0.0333 -9.3527x10-5 1.48163 Δδ3 = -0.03507 -0.071211 2.6346x10-4 -2.01795 ΔV3 -3.0249x10-5 8.7815x10-5 0.09230 -0.2221 Δδ2 0.17177 Δδ3 = 0.09166 ΔV3 -0.0207 Δ2 new = δ2 old + Δδ2 =1.5 + 1.17177 = 1.67177 Δ3 new = δ3 old + Δδ3 =-2 + 0.09166 = -1.90834 V3 new = V3 old + ΔV3 =-0.2221+(-0.0207) = -0.2428 Matlab Coding

Program

n=4;

ng=1;

pd=[0 1.7 2 .8];

q=[0 -1.0535 -1.2394 0];

pg=[0 0 0 3.18];

p=pg-pd;

v=[1 1 1 1.02];

th=[0 0 0 0];

e=.01

yb=[8.98519-44.835953i -3.815629+19.078144i -5.169561+25.847809i 0;

-3.815629+19.078144i 8.98519-44.835953i 0 -5.169561+25.847809i ;

-5.169561+25.847809i 0 8.193267-40.863838i -3.023705+15.118528i;

0 -5.169561+25.847809i -3.023705+15.118528i 8.193267-40.863838i;]

b=imag(yb)

g=real(yb)

an=angle(yb)

my=abs(yb)

for k=1:n

pp(k)=0;

qq(k)=0;

for l=1:n

Page 10: 114740048 Newton Raphson Method

pe(k)=v(k)*my(k,l)*v(l)*cos(an(k,l)-th(k)+th(l))+pp(k);

pp(k)=pe(k);

qe(k)=-v(k)*my(k,l)*v(l)*sin(an(k,l)-th(k)+th(l))+qq(k);

qq(k)=qe(k);

end

end

pp

qq

delp(1:3)=(p(2:n)-pp(2:n));

delq(1:2)=(q(2:3)-qq(2:3));

chan=[delp delq]

for k=2:n

for l=1:n

if k~=l

j1(k,l)=-v(k)*v(l)*my(k,l)*sin(an(k,l)+th(l)-th(k));

j2(k,l)=v(k)*v(l)*my(k,l)*cos(an(k,l)+th(l)-th(k));

j3(k,l)=-v(k)*v(l)*my(k,l)*cos(an(k,l)+th(l)-th(k));

j4(k,l)=-v(k)*v(l)*my(k,l)*sin(an(k,l)+th(l)-th(k));

end

end

end

for k=2:n

j1(k,k)=0;

j3(k,k)=0;

for m=1:n

if (k~=m)

H(k,k)=j1(k,m)+j1(k,k);

j1(k,k)=H(k,k);

L(k,k)=j3(k,m)+j3(k,k);

j3(k,k)=-L(k,k);

end

end

j1(k,k)=-j1(k,k);

j2(k,k)=pp(k)+v(k)^2*g(k,k);

j4(k,k)=qq(k)-v(k)^2*b(k,k);

j4

end

j11(1:3,1:3)=j1(2:4,2:4);

j12(1:3,1:2)=j2(2:4,2:3);

j13(1:2,1:3)=j3(2:3,2:4);

j22(1:2,1:2)=j4(2:3,2:3);

jacob=[j11 j12;j13 j22];

delta=inv(jacob)*chan';

dth(2:n)=delta(1:3);

Page 11: 114740048 Newton Raphson Method

th=th+dth

dv=[0 0 0 0];

dv(2:3)=delta(4:n+1);

v=v+dv

x=sign(dv);

for k=1:n

if dv(k)<0

y(k)=-dv(k);

else

y(k)=dv(k);

end

end

z=max(y);

while (z>0.01)

for k=1:n

pp(k)=0;

qq(k)=0;

for l=1:n

pe(k)=v(k)*my(k,l)*v(l)*cos(an(k,l)-th(k)+th(l))+pp(k);

pp(k)=pe(k);

qe(k)=-v(k)*my(k,l)*v(l)*sin(an(k,l)-th(k)+th(l))+qq(k);

qq(k)=qe(k);

end

end

pp

qq

delp(1:3)=(p(2:n)-pp(2:n));

delq(1:2)=(q(2:3)-qq(2:3));

chan=[delp delq]

for k=2:n

for l=1:n

if k~=l

j1(k,l)=-v(k)*v(l)*my(k,l)*sin(an(k,l)+th(l)-th(k));

j2(k,l)=v(k)*v(l)*my(k,l)*cos(an(k,l)+th(l)-th(k));

j3(k,l)=-v(k)*v(l)*my(k,l)*cos(an(k,l)+th(l)-th(k));

j4(k,l)=-v(k)*v(l)*my(k,l)*sin(an(k,l)+th(l)-th(k));

end

end

end

for k=2:n

j1(k,k)=0;

j3(k,k)=0;

for m=1:n

if (k~=m)

Page 12: 114740048 Newton Raphson Method

H(k,k)=j1(k,m)+j1(k,k);

j1(k,k)=H(k,k);

L(k,k)=j3(k,m)+j3(k,k);

j3(k,k)=-L(k,k);

end

end

j1(k,k)=-j1(k,k);

j2(k,k)=pp(k)+v(k)^2*g(k,k);

j4(k,k)=qq(k)-v(k)^2*b(k,k);

j4

end

j11(1:3,1:3)=j1(2:4,2:4);

j12(1:3,1:2)=j2(2:4,2:3);

j13(1:2,1:3)=j3(2:3,2:4);

j22(1:2,1:2)=j4(2:3,2:3);

jacob=[j11 j12;j13 j22];

delta=inv(jacob)*chan';

dth(2:n)=delta(1:3);

th=th+dth

dv=[0 0 0 0];

dv(2:3)=delta(4:n+1);

v=v+dv

x=sign(dv);

for k=1:n

if dv(k)<0

y(k)=-dv(k);

else

y(k)=dv(k);

end

end

z=max(y);

end

Input

n=4;

ng=1;

pd=[0 1.7 2 .8];

q=[0 -1.0535 -1.2394 0];

pg=[0 0 0 3.18];

Page 13: 114740048 Newton Raphson Method

v=[1 1 1 1.02];

th=[0 0 0 0];

e=.01

yb=[8.98519-44.835953i -3.815629+19.078144i -5.169561+25.847809i 0;

-3.815629+19.078144i 8.98519-44.835953i 0 -5.169561+25.847809i ;

-5.169561+25.847809i 0 8.193267-40.863838i -3.023705+15.118528i;

0 -5.169561+25.847809i -3.023705+15.118528i 8.193267-40.863838i;]

Output

th = 0 -0.0170 -0.0327 0.0266

v = 1.0000 0.9824 0.9690 1.0200

Result

The program code to calculate various line flows of an interconnected power system using

the Newton Raphson method of power flow analysis was generated and executed and the

voltage and load angle at all buses in the system were determined.