10000 year clock

325
The Clock of The Long Now mechanical drawings and assemblies "It feels like something big is about to happen: graphs show us the yearly growth of populations, atmospheric concentrations of carbon dioxide, Net addresses, and Mbytes per dollar. They all soar up to form an asymptote just a few years ahead: The Singularity. The end of everything we know. The beginning of something we may never understand. I think of the oak beams in the ceiling of College Hall at New College, Oxford. Last century, when the beams needed replacing, carpenters used oak trees that had been planted in 1386 when the dining hall was first built. The 14th-century builder had planted the trees in anticipation of the time, hundreds of years in the future, when the beams would need replacing. Did the carpenters plant new trees to replace the beams again a few hundred years from now? I want to build a clock that ticks once a year. The century hand advances once every one hundred years, and the cuckoo comes out on the millennium. I want the cuckoo to come out every millennium for the next 10,000 years." - Danny Hillis (designer of the clock)

Upload: iannew

Post on 27-Dec-2015

34 views

Category:

Documents


6 download

DESCRIPTION

clock of the long now10000 year clock

TRANSCRIPT

Page 1: 10000 year clock

The Clock of The Long Nowmechan i ca l d rawing s and a s s embl i e s

"It

feel

s li

ke s

omet

hing

big

is

abou

t to

hap

pen:

gra

phs

show

us

the

year

ly

grow

th o

f po

pula

tion

s, a

tmos

pher

ic c

once

ntra

tion

s of

car

bon

diox

ide,

Net

ad

dres

ses,

and

Mby

tes

per

doll

ar.

The

y al

l so

ar u

p to

for

m a

n as

ympt

ote

just

a

few

yea

rs a

head

: T

he S

ingu

lari

ty.

The

end

of

ever

ythi

ng w

e kn

ow.

The

be

ginn

ing

of s

omet

hing

we

may

nev

er u

nder

stan

d.

I th

ink

of t

he o

ak b

eam

s in

the

cei

ling

of

Col

lege

Hal

l at

New

Col

lege

, O

xfor

d. L

ast

cent

ury,

whe

n th

e be

ams

need

ed r

epla

cing

, ca

rpen

ters

use

d oa

k tr

ees

that

had

bee

n pl

ante

d in

138

6 w

hen

the

dini

ng h

all

was

fir

st b

uilt

. T

he

14th

-cen

tury

bui

lder

had

pla

nted

the

tre

es i

n an

tici

pati

on o

f th

e ti

me,

hu

ndre

ds o

f ye

ars

in t

he f

utur

e, w

hen

the

beam

s w

ould

nee

d re

plac

ing.

Did

th

e ca

rpen

ters

pla

nt n

ew t

rees

to

repl

ace

the

beam

s ag

ain

a fe

w h

undr

ed y

ears

fr

om n

ow?

I w

ant

to b

uild

a c

lock

tha

t ti

cks

once

a y

ear.

The

cen

tury

han

d ad

vanc

es o

nce

ever

y on

e hu

ndre

d ye

ars,

and

the

cuc

koo

com

es o

ut o

n th

e m

ille

nniu

m.

I w

ant

the

cuck

oo t

o co

me

out

ever

y m

ille

nniu

m f

or t

he n

ext

10,0

00 y

ears

."

-

Dan

ny H

illi

s (d

esig

ner

of t

he c

lock

)

Page 2: 10000 year clock

The Clock of The Long Nowmechan i ca l d rawing s and a s s embl i e s

Danny Hillis - design and concept Alexander Rose - design and project management Elizabeth Woods - engineering and design David Munro - movement design and construction Chris Rand - head machinist Erio Brown - machinist Jerome Walker - EDM machining

© 02002 The Long Now FoundationAll rights reserved. No part of this book may be used or reproduced in any manner whatsoever without expressed and written permission from The Long Now Foundation.

Page 3: 10000 year clock

About this book This book is a record of every drawing used to build the first prototype of a 10,000 year, all mechanical clock. These drawings were done by several different designers for many different manufacturing processes over the course of three years. For this reason the standards and explanations on the drawings vary from assembly to assembly. We hope that by distributing this document, the record of this Clock will be widely distributed and increase its chances of long term survival. Please take care of your copy.

The prototype Clock built from these drawings is just that, a prototype. This is the first in a series of increasingly larger Clocks being built by The Long Now Foundation towards the final goal of a monumental version that will tick for 10,000 years.

There are three main systems within the Clock; Power, Timing, and Display. Power in the Clock comes from a traditional source, gravity. The twin drives incorporate a weight driven system where the descending weight, governed by a fly, turns a threaded bar to power the Clock.

Timing in the Clock comes from two sources; one accurate in the short term and one in the long term. The short term timing is kept by a torsional three bar pendulum which twists back and forth once per minute and is impulsed by the drive. The long term timing is achieved through a solar synchronizer. The synchronizer when struck by sunlight at noon on any sunny day heats up a piece of metal causing it to expand and give a mechanical impulse to the Clock's timing system to correct any error that may have accumulated since the last sunny day.

The last and most complex portion of the Clock is the display. The display has two halves; one which converts the time base of the pendulum, and the dials which we read to tell the time. The time base conversion is achieved by a new type of mechanical computer called the 'bit serial mechanical adder'. This device uses mechanical digital binary logic to convert hours from the pendulum to time spans as long as the precession of equinoxes, a nearly 26,000 year cycle which affects the visible night sky shown on the dials of the Clock. The dials show the year written in five digits, the sun position, the moon position and phase, sun-rise/set, moon-rise/set, and the current night sky in the center.

In designing the Clock many novel mechanisms came about which the Foundaiton patented and you can see listed below. Patents within the Clock and related mechanisms: Astrolabe Having Rotating Rete and Plate no. 6,339,885 Bit Serial Mechanical Adder no. 6,249,485 b1 Weight Operated Mechanical Drive no. 6,220,394 Winding Tower no. d440,146 Clock Face no. d440,900 Clock Configuration no. d440,882 Grooved Plane For Congreve-Style Clock no. 6,097,673

Patents Pending: Diurnal Solar Event Triggering Mechanism 09/636001 Differential Hoist 60/066,95

- Alexander Rose, April 02002

Page 4: 10000 year clock

Design Principles for the Clock by Danny Hillis:

Longevity

With occasional maintenance, the clock should reasonably be expected to display the correct time for the next 10,000 years.

Maintainability

The clock should be maintainable with bronze-age technology.

Transparency

It should be possible to determine operational principles of the clock by close inspection.

Evolvability

It should be possible to improve the clock with time.

Scalability

It should be possible to build working models of the clock from table-top to monumental size using the same design.

Some rules that follow from the design principles:

Longevity:

Go slow

Avoid sliding friction (gears)

Avoid ticking

Stay clean

Stay dry

Expect bad weather

Expect earthquakes

Expect non-malicious human interaction

Page 5: 10000 year clock

Don’t tempt thieves

Maintainability and transparency:

Use familiar materials

Allow inspection

Reherse motions

Make it easy to build spare parts

Expect restarts

Include the manual

Scalability and Evolvabilty:

Make all parts similar size

Separate functions

Provide simple interfaces

Page 6: 10000 year clock

Power

Timing Display

Oscillator

Synchronizer

Counter

Gravity Drive

Rewinder

Rings Interface

Bit Serial Adder

ConstantVelocity.

Basic Clock Modules:

Examples :

Clepsydra Atomic Clock

Power potential energy supplied byhuman

electricity

Time flow rate of water oscillation of cesium atom

Convert lever with e.o.t. adjustment electronic frequency divider

Display pointer, gong numeric display, radio

Page 7: 10000 year clock

Options considered for powering the Clock:

Atomic Poor Maintainability & Transparency

Chemical Poor Scalability

Solar Electric Poor Maintainability

Prestored potential energy Poor Scalability

Water flow Exposure to water

Wind Exposure to weather

Geothermal Poor Scalability

Tidal gravitational changes Poor Scalability

Temperature change

Pressure change Need for bellows or seal

Seismic and plate tectonic Poor Scalability

Human winding Fosters responsibility

Conclusion: My current favorite is human winding because it fits with goals of clock.

Temperature change is also a viable alternative.

Page 8: 10000 year clock

Options considered as sources of timing for clock:

pendulum inaccurate

spring and mass inaccurate

water flow inaccurate and wet

solid material flow inaccurate

daily temperature cycle unreliable

seasonal temperature cycle imprecise

tidal forces difficult to measure

earth’s rotating inertial frame difficult to measure accurately

stellar alignment unreliable (clouds)

solar alignment unreliable (clouds)

atomic oscillator too high tech, difficult to maintain

piezoelectric oscillator too high tech, difficult to maintain

atomic decay difficult to measure precisely

wear and corrosion very inaccurate

marble roll very inaccurate

diffusion inaccurate

tectonic motion difficult to predict and measure

orbital dynamics difficult to scale

audio oscillator inaccurate and difficult to measure

pressure chamber cycle inaccurate

inertial governor inaccurate

human ritual too much dependence on humans

Conclusion: Since no single source does the job, use an unreliable timer to adjust an

inaccurate timer, creating a phase locked loop. My current favorite combination is to use

solar alignment to adjust a slow mechanical oscillator.

Page 9: 10000 year clock

Options considered for the part of the Clock that converts time source to display units:

Electronics Poor Maintainability & Transparency

Gears Need for rational approximation

Pre computed display Lots of calendar pages

Levers require very slow timing source

Hydraulics high power

Mechanical digital logic

Conclusion: Mechanical digital logic.

Page 10: 10000 year clock

Options for how to display time.

chimes cannot sound too often

flutes or whistles needs air power source

sweeping hand fragile, confusing for many hands

concentric rotating dials

balls in holes creates collectibles

shadows, beams of light

animation high power

This is the one I have thought about the least. Note that there can be multiple displays, and

that some display can have independent power sources.

Page 11: 10000 year clock

Some options for what to display:

Display Days per cycle

Time of Day 1

Phase of moon 29.5305882

Lunar eclipses -6793.504897308

Season 365.242

Positions of planetsmercury 87.969venus 224.701earth 365.256mars 686.980jupiter 4331.772saturn 10759.22

Procession of zodiac 9417404.8533435

Christian Calendar approximates solar years

Moslem Calendar approximates lunar years

Jewish calendar

Chinese Calendar

Mayan Calendar 360

day count 1

moon count 29.5305882

year count (centuries, millennia) 365.242

historical events (past and future)

Page 12: 10000 year clock

Other information to display:

future time scales

astronomical ephemeris

maintenance manual

visits to the clock

weather records

earthquake records

calendar systems

general useful knowledge

Lots of room for creativity and evolution.

Page 13: 10000 year clock

20t20p

19tSpr

40t20p

2, 4

1

Drive Transmission (hidden in box)

dt: 01/03/00

nm: whole_Assy.vlm

Qty: 1 built

tol. + / - .005 all measurements in inches

The Long Now Foundation

Matl: Stainless Steel, Monel, brass, aluminum

sc: 1:16 p# .v#:

Pendulum

-

-

- 7-

\A 1;-

3, 5-

-

Drive Towers

6-

7-

6-

2-

1-

5-

3-

-

LeapYear Cams

2 02 T O O T H-

1 92 T O O T H-

L E AP Y E A R C A M ,2 4 I N D E N T SO NA 2 5 P L A C EP A T T E RN -

C E N TU R Y C A M ,1 I N D E N T A T 0P O S O F C A MA B O VE -

2 00 T O O T H-

L E AP C E N T U RY C A M

-

Adder1

-

-

Dial

2 00 T O O T H-

2 02 T O O T H-

Governor Fly

N O T C U RR E N T L Y D RI V E NB YA G E N EV A -

1 92 T O O T H-1 92 T O O T H-

1 92 T O O T H- 1 92 T O O T H- 2 00 T O O T H-

5-

Page 14: 10000 year clock
Page 15: 10000 year clock

Gear Analysis by Ludwig Oechslin 02000

Page 16: 10000 year clock

CALENDAR YEAR (bottom to top of each shaft listed) CENTURY (bottom to top of each shaft listed)

Geneva1 18 T ccw Geneva2 18T ccwidler cw idler cw18T miter ccw idler ccw

miter 12T cw 18T miter cwidler ccw miter 12T cwidler cw idler ccw200T ccw dial 202T cw dial

alsoGeneva1 12T ccw Geneva2 12T ccw

idler cw idler cw200T cw cam idler ccw

192T cw cam

SUN (bottom to top of each shaft listed) MOON (bottom to top of each shaft listed)36T cwidler ccw Geneva3 12T ccwidler cw idler cw54T 18T ccw 192T ccw

18T miter cw idler cwmiter 12T cw idler differential ccw

idler ccw 12T miter cw192T cw miter 12T cw

24T 12T ccw24T 16T cw

STARFIELD (bottom to top of each shaft listed) idler ccwidler cw

Geneva5 12T ccw 192T ccw48T 12T cw Other side of differential

48T 12T ccw 192T(sun) cwidler cw idler ccw12T miter ccw 12T arm cw

miter dial cw 24T 12T ccw24T 16T cw

SUNRISE (bottom to top of each shaft listed) idler ccw192T cw

Geneva4 12T ccw36T 12T cw

48T 12T ccw RETE (bottom to top of each shaft listed)48T cw Geneva4 18T ccwcam cw idler cw

rack N/A idler ccw12T 24T ccw (spring) idler differential cw

12T 18T cw 18T miter ccwidler ccw miter 12T ccw18T miter cw 24T 12T cw

miter 12T cw *check 24T 16T ccwidler ccw idler cwidler cw idler ccw192T ccw (spring) 192T cw

Other side of differentialSUNSET (gear train coincident with sunrise) 192T (sun) cw

idler ccwmiter 12T cw (spring) idler cw

idler ccw 12T arm ccw192T cw (spring) 24T 12T cw

24T 16T ccwidler cwidler ccw192T cw

Page 17: 10000 year clock
Page 18: 10000 year clock

� A ratioan appoximation to the length of the tropical year (JD2000)

tropicalyear � 365.242189

365.242

FactorInteger 3652

2, 2 , 11, 1 , 83, 1

N 84 100 23

365.217

FactorInteger 36524

2, 2 , 23, 1 , 397, 1

N 84 500 115

365.217

N 107 256 75

365.227

FactorInteger 365242

2, 1 , 31, 1 , 43, 1 , 137, 1

N 62 43 137 1000

365.242

FactorInteger 1000

2, 3 , 5, 3

N 31 43 137 20 25

365.242

� This is how far the calader would be off after 19K yrs

3652420 �

0

10000

tropicalyear � 0.00000013y �y

4.61

Equation of Time Cam 1

Page 19: 10000 year clock

� This is how far the modified revolutioanary calendar is off after 20k yrs.

20000 365.24225 �

0

20000

tropicalyear � 0.00000013y �y

27.22

� a rational approximation for the ratio of synodic month to tropical year

synodicmonth � 29.5305888531 � 0.000000216�T

29.5306 � 2.16 � 10�7 T

synodicmonth � % . T � d 36525

29.5306 � 5.91376 � 10�12 d

start � 36525

36525

N 365.242189 29.530588853

12.3683

N 470 38

12.3684

solarday �86400� 0.0015�T�������������������������������������������������

86400. T � d 36525

86400 � 4.10678 � 10�8 d��������������������������������������������������������������������

86400

� How far off is the month calcation? What is the best constant?

montherror jdays_ :�

start

start � jdays

1 synodicmonth . d � start �d �

start

start � jdays solarday�����������������������������������������synodicmonth

�d

jcen � 3652425

3652425

montherror jcen

0.0647347

eot.nb 2

Page 20: 10000 year clock

Fit 0, 0 ,

jcen 2,start

start � jcen�2 solarday�����������������������������������������synodicmonth

�d , jcen,start

start � jcen solarday�����������������������������������������synodicmonth

�d ,

1, x , x

0.0054321 � 0.0338632 x

newmontherror jdays_ :�

.007 �

start

start � jdays

0.033863174755042884 �d �

start

start � jdays solarday�����������������������������������������synodicmonth

�d

newmontherror jcen

0.0078695

Plot Evaluate newmontherror x , x, 0, jcen

5000001×1061.5×1062×1062.5×1063×1063.5×106

-0.01

-0.0075

-0.005

-0.0025

0.0025

0.005

0.0075

��Graphics ��

� repeating the month calcation in terms of Jcenturies

montherror jcs_ :�

1

1 � jcs

36525 29.5305888531 � 0.000000216 �T �

1

1�jcs 36525� 86400�0.0015�T�������������������������������86400

�����������������������������������������������������������������������������������������������29.5305888531 � 0.000000216�T

�T

montherror 100

0.0646099

Fit 0, 0 ,

5,1

6 36525� 86400�0.0015�T�������������������������������86400

�����������������������������������������������������������������������������������������������29.5305888531 � 0.000000216�T

�T ,

10,

1

11 36525� 86400�0.0015�T�������������������������������86400

�����������������������������������������������������������������������������������������������29.5305888531 � 0.000000216�T

�T ,

1, x , x

0.000137612 � 1236.85 x

eot.nb 3

Page 21: 10000 year clock

newmontherror jcs_ :�

.000325521 �

1

1 � jcs

1236.8529296875 �T �

1

1�jcs 36525� 86400�0.0015�T�������������������������������86400

�����������������������������������������������������������������������������������������������29.5305888531 � 0.000000216�T

�T

N 1236.8529296875 36525, 10

0.0338632

N newmontherror 11 , 10

�0.00077752

Plot Evaluate newmontherror x , x, 0, 10

2 4 6 8 10

-0.0015

-0.001

-0.0005

0.0005

0.001

��Graphics ��

� leap year cam constants

BaseForm N256

����������������2 365

, 7 , 2

0.01011001110001101 2

BaseForm N256

����������������2 366

, 7 , 2

0.01011001100001111011 2

BaseForm N256

��������������������24 365

�7 , 2

0.0011010001011110011101 2

BaseForm N256

��������������������24 366

�5 , 2

0.0010010101001101111 2

eot.nb 4 (blank page 5 deleted)

Page 22: 10000 year clock

Poly x_, a_ :�a 1 � Sum a i x^ i � 1 , i, 2, Length a

DegreesMod360 theta_ :�Mod theta, 360

RadiansToDegrees theta_ :�DegreesMod360 theta Pi 180

DegreesToRadians theta_ :�DegreesMod360 theta Pi 180

SinDegrees theta_ :�Sin DegreesToRadians theta

CosineDegrees theta_ :�Cos DegreesToRadians theta

TangentDegrees theta_ :�Tan DegreesToRadians theta

ArcTanDegrees x_, quad_ :�Module deg ,deg � RadiansToDegrees ArcTan x ;If quad �� 1 quad �� 4, deg, deg � 180

ArcSinDegrees x_ :�RadiansToDegrees ArcSin x

ArcCosDegrees x_ :�RadiansToDegrees ArcCos x

eot.nb 6

Page 23: 10000 year clock

� This is the julian day number of Noon, Jan. 1, 2000

J2000 � 2451545.0

2.45155 � 106

� equation of time

(in Julian days) (adapted from Dershowitz & Reingold)

EquationOfTime jd_ :�Modulec, longitude, anomaly, inclination, eccentricity, y , c � jd � J2000 36525;longitude � Poly c, 280.46645, 36000.76983, 0.0003032 ;anomaly � Poly c, 357.52910, 35999.05030, �0.0001559, �0.00000048 ;inclination � Poly c, 23.43929111, �0.013004167, �0.00000016389, 0.0000005036 ;eccentricity � Poly c, 0.016708617, �0.000042037, �0.0000001236 ;y � TangentDegrees inclination 2 ^2; N y SinDegrees 2 longitude �

�2 eccentricitySinDegrees anomaly �

4 eccentricityy SinDegrees anomalyCosineDegrees 2 longitude � �0.5 y^2 SinDegrees 4 longitude �

�1.25 eccentricity^2 SinDegrees 2 anomaly 2 Pi

Plot 60 24 � EquationOfTime t , t, J2000, J2000 � 365

2.45155×1062.45165×1062.4517×1062.45175×1062.4518×1062.45185×1062.4519×106

-15

-10

-5

5

10

15

��Graphics ��

� ploting

Graphics`ParametricPlot3D`

eot.nb 7

Page 24: 10000 year clock

� The cam is made by wrapping the eqaution around a cylinder, with turns once a year, so that the readout slowly sprirals up the cylinder.

Syntax::tsntxi � : �"�1�" is incomplete ; more input is needed.

cam y_, c_, f_ :� 2 � f Sin 2 y , 2 � f Cos 2 y , c 10

smallcam y_, c_, f_ :� 1 � f Sin 2 y , 1 � f Cos 2 y , c 10

ParametricPlot3D Evaluate cam y, c, 0 , y, 0, 1, .05 , c, �5, 105, 10

-2-1 0 1 2

-2-1

012

0

2.5

5

7.5

10

-1012

��Graphics3D ��

� The real question is the exact rotation rate (days/year)which will effect the shape and the gear train.

rotrate � 365.24231

365.242

eot.nb 8

Page 25: 10000 year clock

ParametricPlot3D Evaluate cam y, c,60 24����������������30

EquationOfTime c 100 � y rotrate ,

y, 0, 1, .03 , c, �5, 105, 10

-2-1 0 1

-2

02

0

2.5

5

7.5

10

2

02

��Graphics3D ��

rotrate � N 84 100 23

365.217

eot.nb 9

Page 26: 10000 year clock

ParametricPlot3D Evaluate cam y, c,60 24����������������30

EquationOfTime c 100 � y rotrate ,

y, 0, 1, .03 , c, �5, 105, 10

-20

2-2

02

0

2.5

5

7.5

10

-2

0

��Graphics3D ��

rotrate � N 107 256 75

365.227

Scale is one inch = 30 min

eot.nb 10

Page 27: 10000 year clock

ParametricPlot3D Evaluate cam y, c,60 24����������������30

EquationOfTime c 100 � y rotrate ,

y, 0, 1, .03 , c, �5, 105, 10

-2 -1 0 1 2

-2

0

2

0

2.5

5

7.5

10

-2

0

��Graphics3D ��

rotrate � N 105 115 83 14 14 14

365.242

eot.nb 11

Page 28: 10000 year clock

ParametricPlot3D Evaluate cam y, c 5,60 24����������������30

EquationOfTime c 100 � y rotrate ,

y, 0, 1, .03 , c, �5, 105, 10

-2-1

01

-2

0

2

00.5

1

1.5

2

-2-1

01

��Graphics3D ��

disk y_, c_, f_ :� 1 � c 10 Sin 2 y , 1 � c 10 Cos 2 y , f

General ::spell1 � : �

Possible spelling error: new symbol name "disk" is similar to existing symbol "Disk".

ParametricPlot3D Evaluate disk y, c 5,60 24����������������30

EquationOfTime c 100 � y rotrate ,

y, 0, 1, .03 , c, �5, 105, 10

-2

0

2-2

0

2

-0.50

0.5

-2

0

2

��Graphics3D ��

FactorInteger 3652

2, 2 , 11, 1 , 83, 1

eot.nb 12

Page 29: 10000 year clock

� the one below looks the most practical, dimensions are in inchesIt needs a 1/2 inch mounting hole up through the center

rotrate � N 105 115 83 14 14 14

365.242

ParametricPlot3D Evaluate cam y, c 2,60 24����������������30

EquationOfTime c 100 � y rotrate ,

y, 0, 1, .03 , c, �5, 105, 10

-2-1

01

-2

0

2

0

2

4

-2-1

01

-2

0

2

��Graphics3D ��

eot.nb 13

Page 30: 10000 year clock

ParametricPlot3D Evaluate smallcam y , c 6,60 24����������������30

EquationOfTime c 100 � y rotrate ,

y, 0, 1, .03 , c, �5, 275, 10

-1-0.50 0.5 1

-1

0

1

0

1

2

3

4

-1

0

1

��Graphics3D ��

ParametricPlot3D Evaluate smallcam y , c 2,60 24����������������30

EquationOfTime c 100 � y rotrate ,

y, 0, 1, .03 , c, �5, 105, 10

-1-0.50 0.5 1

-1

01

0

2

4

-1

01

��Graphics3D ��

eot.nb 14

Page 31: 10000 year clock

rotrate � N 171 173 9 9

365.222

ParametricPlot3D Evaluate cam y, c 2,60 24����������������30

EquationOfTime c 100 � y rotrate ,

y, 0, 1, .03 , c, �5, 105, 10

-2

0

2

-2

0

2

0

2

4

-2

0

2

-2

0

2

��Graphics3D ��

eot.nb 15

Page 32: 10000 year clock

� Here is a smaller one:

ParametricPlot3D Evaluate smallcam y, c 2,60 24����������������60

EquationOfTime c 100 � y rotrate ,

y, 0, 1, .03 , c, �5, 105, 10

-10

1

-1

0

1

0

2

4

-1

0

��Graphics3D ��

eot.nb 16

Page 33: 10000 year clock
Page 34: 10000 year clock
Page 35: 10000 year clock
Page 36: 10000 year clock
Page 37: 10000 year clock
Page 38: 10000 year clock

movement layoutDavid Munro

Page 39: 10000 year clock
Page 40: 10000 year clock
Page 41: 10000 year clock
Page 42: 10000 year clock
Page 43: 10000 year clock
Page 44: 10000 year clock

LN train calcs.xls

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

A B C D E F G H I

Train calculations Long Now clock by David Munro

Wheel # Pitch cd pd od add*2 rotation period90 minute wheel 33 1.650 1.750 0.100 ccw .666/hr

ratio = 1.67 20.0000 2.2001st train idler 55 2.750 2.850 0.100 cw whatever

ratio = 1.00 20.0000 2.7502nd train idler 55 2.750 2.850 0.100 ccw whatever

0.40 20.0000 1.925center pinion 22 1.100 1.200 0.100 cw 1/hrcenter wheel 120 6.000 6.100 0.100 cw 1/hrratio = 6.00 20.0000 3.500scape pinion 20 1.000 1.100 0.100 6/hrScape wheel 10fly pinion 10 20 3.250 0.500 0.6 0.10012 hour pinion 36 0.900 0.950 0.050 2/day

ratio = 4.80556 40.0000 2.613annual int. wheel 173.00 4.325 4.375 0.050

ratio = 19.22 40.0000 2.275annual int. pin 9 0.225 0.275 0.050

ratio = 19.00000 40.0000 2.250annual wheel 171.00 4.275 4.325 0.050

annual driver 80 4.000 4.100 0.100ratio = 4.00 20.0000 2.500

annual idler 20 1.000 1.100 0.100annual ratio 365.22222

ratio = 9.13 20.0000 1.0002nd annual idler 40 2.000 2.100 0.100

ratio = 2.00 20.0000 1.5003rd annual dial 20 1.000 1.100 0.100

mean cannon pinion 65 3.250 3.350 0.100 cw 1/hrratio = 1.00 20.0000 3.250

Minute wheel 65 3.250 3.350 0.100 ccw 1/hrMinute pinion 10 0.500 0.600 0.100 ccw 1/hr

ratio = 12.00 20.0000 3.250Hour wheel 120 6.000 6.100 0.100 cw .0833/hr

Pinion 1 18 1.125 1.250 0.1252.66667 16.0000 2.063

Idler1 wheel 48.00 3.000 3.125 0.125 33.33333 ratioidler 1 pinion 8 0.400 0.500 0.100

12.50000 20.0000 2.700200 year wheel 100.00 5.000 5.100 0.100train count 120.00

90 min wheel 54 3.375 3.500 0.125

ratio = 0.89 16.0000 3.188

first idler 48 3.000 3.125 0.125

ratio = 1.00 16.0000 3.000

second idler 48 3.000 3.125 0.125

ratio = 0.75 16.0000 2.625

"center" pinion 36 2.250 2.375 0.125

"center" wheel 200 12.500 12.625 0.125

ratio = 0.10 16.0000 6.875

warning pinion 20 1.250 1.375 0.125

Page 1

Page 45: 10000 year clock

SKF .9843" bore, 1.4567" OD, .2756" H. p#61805 p.156 in general cat.

BSA screw 1.5" root D with 2" lead. p#PR1520 (std screw) 66"travel 72"overall, nut p#PR1520-2, flange p#1501-3. (BSA 800-882-8857, Ritchie)

Timken LM742749, LM74742710. 8.5" bore, 11.25" OD, 1.8125" H. p#297.

Stainless #35 sprocket.

SKF .9843" bore, 1.8504" OD, .5906" H. p#32005 X p.496 in general cat.

10" tall weight

Outter cage: 8" ID (7.996) sch-40 Stainless Pipe with ~.322" wall, 8.625 OD.

Outter Spiral: 8"OD stainless tube with .25" wall, 7.5 ID. (both from Gately Stainless, John 415-822-6550, cage and spiral cut by 4th axis laser at Donal Machine.)

dt: 11/16/99

nm: 8"Helix_Assy.side

p#.v#: 4700.5sc: 1:8.5

Matl: Stainless Steel, Monel, brass, aluminum

Qty: 2

tol. +/- .005 to be held after plating

The Long Now Foundation

Page 46: 10000 year clock

note: Pie shaped opening are for aesthetic improvement and weight reduction. Tolerances here are not as critical. They have 1.25" wide spokes. Their internal corners are radiused to .25".

sc: 1:3.5

nm: DriveWeights.VLM

Matl: Brass

Qty: 2 assemblies (numbers noted for 2 assy's)

dt: 12/14/99 p#: 1107.2

The Long Now Foundation

tol. +/-.005

Page 47: 10000 year clock

nm: 8"screw.vlm

sc: 1:5

Matl: Steel

Qty: 2 each required

tol. +/- .005 to be held after plating

The Long Now Foundationdt: 11/3/99 p#.v#: 1151.3

Page 48: 10000 year clock

tol. AGMA qual #10, BackLash Class C

other tols as listed

The Long Now Foundation

Qty: 2 each required

Matl: Stainless Steel

nm: RewindRingGear.vlm

sc: 1:2 dt: 5/16/00 p#.v#: 1326.2

Page 49: 10000 year clock

Qty: 2 required, enough material for 3

Matl: Stainless Steel

sc: 1:9 p#.v#: 1190.5

nm: DriveOutterHelix.vlm

dt: 11/16/99

The Long Now Foundation

tol. +/- .005 to be held after plating

note: the helix band is a LEFT HANDED SPIRAL at 1" nominal width. This is not a crucial tolerance, it can be +/- 020". The rest of the tube should be left in for support with tabs that we will cut out later. The whole OD should be turned to fit withing the outter cage tube before laser cutting. Lead on spiral is 57.359" and the pitch angle is 67degrees.

Page 50: 10000 year clock

tol. +/- .005 to be held after plating

The Long Now Foundationdt: 11/16/99

nm: DriveOutterCage.vlm

p#.v#: 1100.5sc: 1:9

Matl: Stainless Steel

Qty: 2 required

Page 51: 10000 year clock

The Long Now Foundation

tol. +/- .005 to be held after plating

Qty: 2 each required

Matl: aluminum, SKF bearings

sc: 1:5 p#.v#: .1

nm: DriveEndCaps8in.vlm

dt: 11/16/99

Page 52: 10000 year clock

(between bearings)

Page 53: 10000 year clock

The Long Now Foundation

tol. +/- .005 to be held after plating

Qty: 2 each required (mirror rt/lt)

Matl: SS, Timken bearings

sc: 1:5 p#.v#: .2

nm: DriveMountRing8in.vlm

dt: 4/28/00

Page 54: 10000 year clock

.5260

.2500 .1250.5260

1.6249

.1250

3.1250

.187516 DIAMETRAL PITCH

20 DEGREE PRESSURE ANGLE

STD ANSI INVOLUTE SPUR GEAR

1.50 PITCH DIA REF.

STD ANSI INVOLUTE SPUR GEAR

16 DIAMETRAL PITCH

20 DEGREE PRESSURE ANGLE

0.375 DIA. BORE WITH 0.125 SQUARE KEYWAY

note: Two 36t Brass .5" ID idler gears should be broached for .125" keys. Two 3" SS handwheels from Reid will need to be modified for .5" shaft and pinned thru. Shaft will be .5" undersized drill rod with key ONLY where gear interacts. New Hub shown above will also be required.

dt: 4/28/00

nm: base8inMod.vlm

p#.v#: .3sc: 1:5

Matl: SS, Timkin bearings

Qty: 2 each required

tol. +/- .005 to be held after plating

The Long Now Foundation

4 roller clutches and 4 ball brngs .5"ID req

Page 55: 10000 year clock

027

116117118119019020021022

023

03703

8039040041

042

043

035

02802903003

103203

303403

6

074075

076

045

046

047

048

049

050

051

052

053

054

055

057058

059060

061

056

024025

113114115

110

096097098

099100

101102

103104

105106

107

108109

064065066067068069070071072073

077078 111

112

094095

044

062063 026

087 088 089 090 091092093

079081 082 083 084 085 086

080

929394959697

91

0607

0809

10

1112

1314

1516171819202122

05

47

53

3839

40

242526272829303132

3334

35

3637

98990001

0203

8081

82

8485

8687

8889

74 7576

77

83

78

48495051

52

54

43444546

5556 90

7323

4142 04

5758

5960 61 62 63 64 65 66 67 68 69 70 71 72

79

Notes: From outside to inside.The two circles on the outter ring denote a channel machined in for aesthetic purposes.The hexagons on the outter ring are bolt heads. On the right hand side the lines there represent where the brass window press fits in to show the current year.The year is depicted with an extra zero in front for showing the year thru 11999 (gregorian)The Horizon indicators are shown here transparentlyThe sun ring imagery is depicted here simplified. It is reverse etched from brass.Eight key moon phases are shown here but we use 32 phases only one of which is visible thru the moon window at any one time.THere are no stars shown on the star field in this drawing.

Page 56: 10000 year clock

Qty: 1 required

The Long Now Foundationsc: 1:4

Matl: SS

tol. +/- .005" on holes .010" on flatness and shape

p#: 5601.1dt: 12/13/98

nm: YearSubSpaceRing.VLMnote: Every other hole is tapped or clearance for 8-32 screws each is 22.5 degrees from the otherspacing evenly around the circle. (eg. This makes a tapped holes 45 degrees from eachother)

PLATING: there are 5 of these total. This is the largest. the smallest is 18.25" OD. Tapped holes DO NOT need plugging as they are unused.

Page 57: 10000 year clock

note:.sc: 1:3.5 dt: 10/22/98 p#: 5511.2

Qty: 2 required

nm: YearSubSpacer.VLM

Matl: 70-75 Aluminum, tumble deburred

tol. +/-.005

The Long Now Foundation

Page 58: 10000 year clock

note: [for etcher: The text within the part is etched (font is garamond). Please call to discuss depth depending on etching method. We can supply the DXF file for this. ] Edge and top finish are most crucial here, these are the most visible parts on the clock, every measure should be taken to be sure they are not scratched or bent. Parts should be flat to within .010". The locater pins underneath should be same material as plate. They can be located by spot facing blind holes from the bottom, pressed in and then loctited in place. Most important is that there is no discoloration or show through to front. They take almost no lateral load and are primarily for location.

929394959697

91

0607

0809

10

1112

1314

1516171819202122

05

47

53

3839

40

242526272829303132

3334

35

3637

98990001

0203

8081

82

8485

8687

8889

74 7576

77

83

78

48495051

52

54

43444546

5556 90

73

23

4142 04

5758

5960 61 62 63 64 65 66 67 68 69 70 71 72

79

Qty: 2 required

nm: Year.VLM

Matl: Stainless Steel

tol. +/- .020 (etch) +/-.005 (locator pins)

The Long Now Foundationsc: 1:3.5 dt: 10/22/98 p#: 5507.2

Page 59: 10000 year clock

p#: 5520.1

p#: 5519.1

p: 5519 & 20.1

Qty: 6 required

dt: 03/31/00sc: 1:3.5The Long Now Foundation

tol. +/-.005

nm: Face Support Mounts.VLM

Matl: 304 SS

Page 60: 10000 year clock

p#: 5520.1

p#: 5519.1

p: 5519 & 20.1

Qty: 6 required

dt: 03/31/00sc: 1:3.5The Long Now Foundation

tol. +/-.005

nm: Face Support Mounts.VLM

Matl: 304 SS

Page 61: 10000 year clock

p#: 5520.1

p#: 5519.1

p: 5519 & 20.1

Qty: 6 required

dt: 03/31/00sc: 1:3.5The Long Now Foundation

tol. +/-.005

nm: Face Support Mounts.VLM

Matl: 304 SS

Page 62: 10000 year clock

note: Dimensions have been put to virtual corners on radiused areas. These are highly visible parts on the clock, every measure should be taken to be sure they are not scratched or bent and that their surface finish be high (N5).

Matl: 304 SS

nm: Face Support.VLM

tol. +/-.005

The Long Now Foundationp#: 5518.2sc: 1:3.5 dt: 11/13/98

Qty: 6 required

Page 63: 10000 year clock

Qty: 1 required

p#: 5605.1

The Long Now Foundation

tol. +/- .005" on holes .010" on flatness and shape

nm: SunSubSpaceRing.VLM

Matl: SS

note: Every other hole is tapped or clearance for 8-32 screws each is 22.5 degrees from the otherspacing evenly around the circle. (eg. This makes a tapped holes 45 degrees from eachother)

sc: 1:4 dt: 12/13/98

Page 64: 10000 year clock

R12.375

R12.500

15.382

2.646

SHEET SIZE:

1

DATE: PART #:1:3 3-24-00 4346.2

STARFIELD.DWG

REV.:D

NAME:

SCALE:

DRAWN BY:

TOLERANCE:

MATL.:

FINISH:

1

QTY.:

AFR

304 Stainless Steel

We supply polished part HANDLE / SHIP WITH CARE SHEET OF 1 1

±0.010" on star locations, see note about spun part

Page 65: 10000 year clock

Stars

This file uses the notebook spherica.nb

SetDirectory "Macintosh HD:Clock" ;

Get ":math:stardata.math" ;

these stars we originaly in the bsd4 format

convertstar rah_, ram_, ras_, dd_, dm_, ds_, mag_ :�

N 15� rah �ram������������60

�ras���������������3600

, dd �dm���������60

�ds

���������������3600

, mag

the file define a variable called medstars, with goedesic coordinates in degree, these need to be filtered and converted to radian

geo2elc p_, m_ :� Tilt p� Degree, Degree , 23.5�° , m

eclstars � geo2elc � medstars;

coord ra_, dec_ , mag_ :� ra, dec

Length brightstars

48

Length medstars

2849

showstars stars_ :� ListPlot unistarproject coord # & � stars, AspectRatio � 1

brighterthan stars_, mag_ :�Cases stars, p_, m_ ; m � mag

magcutoff � 3.5;

northof stars_, l_ :�Cases stars, _, _ ; � l , m_

latcutoff � �60�°

�60 °

stars � brighterthannorthof eclstars, latcutoff , magcutoff ;

Length stars

261

star.nb 1

Page 66: 10000 year clock

ListPlot First � medstars

50 100 150 200 250 300 350

-75

-50

-25

25

50

75

��Graphics ��

ListPlot First � stars

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

1.5

��Graphics ��

star.nb 2

Page 67: 10000 year clock

showstars eclstars

-7.5 -5 -2.5 2.5 5 7.5

-7.5

-5

-2.5

2.5

5

7.5

��Graphics ��

sample � Table eclstars i , i, 2, 500, 25 ;

icon p_, m_ :�With c � unistarproject p ,JoinAbsolutePointSize 2 ,Point c ,crow c, Floor magcutoff � Round m

stardot p_, m_ :�With c � unistarproject p ,JoinAbsolutePointSize 1 � Floor magcutoff � Round m ,Point c

crowsize � .2

0.2

0.2

0.2

crow p_, n_ :� Table Line p, p � crowsize � Sin i , Cos i , i, �n 8, n 8, 4

starimage � Graphics icon � stars

��Graphics ��

star.nb 3

Page 68: 10000 year clock

dotimage � Graphics stardot � stars

��Graphics ��

outercircle � GraphicsLine �baseR, baseR , baseR, baseR ,Circle 0, 0 , baseR ,Line .5, .5 , �.5, �.5 ,Line .5, �.5 , �.5, .5 ,Line 0, baseR � .5 , 0, baseR

��Graphics ��

Table a, 0 , a, 0, 2� , 2 4

0, 0 ,������2, 0 , �, 0 ,

3 �����������2

, 0 , 2 �, 0

elcgraphics � Graphics Join AbsolutePointSize 1 ,Point �Table unistarproject Tilt a, 0 , 23.5�° , a, 0, 2� , 2� 120

��Graphics ��

stargraphics � Show starimage, outercircle, elcgraphics, AspectRatio � 1

��Graphics ��

star.nb 4

Page 69: 10000 year clock

dotgraphics � Show dotimage, outercircle, elcgraphics, AspectRatio � 1

��Graphics ��

retegraphics � Show rete1, rete2, AspectRatio � 1

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

��Graphics ��

SetDirectory "Macintosh HD:Clock:images:dail artwork:"

Macintosh HD:Clock:images:dail artwork

star.nb 5

Page 70: 10000 year clock

Export "star.EPS", stargraphics, "EPS", ImageSize � Floor 2 baseR 72

star.EPS

Export "rete.EPS", retegraphics, "EPS", ImageSize � Floor 14 72

rete.EPS

Export "star.PICT", stargraphics, "PICT", ImageSize � Floor 2 baseR 72

star.PICT

Export "rete.PICT", retegraphics, "PICT", ImageSize � Floor 14 72

rete.PICT

Export "dot.PICT", dotgraphics, "PICT", ImageSize � Floor 2 baseR 72

dot.PICT

baseR 2

15.38

Floor baseR 2 72

1107

Export "dot.PDF", dotgraphics, "PDF", ImageSize � Floor 2 baseR 72

dot.PDF

Export "dot.JPG", dotgraphics, "JPEG", ImageResolution � 100,ImageSize � Floor 2 baseR 72 10

dot.JPG

star.nb 6

Page 71: 10000 year clock

Qty: 1 required

Matl: SS

dt: 12/13/98

The Long Now Foundation

tol. +/- .005" on holes .010" on flatness and shape

nm: ReteSubSpaceRing.VLM

note: Every other hole is tapped or clearance for 8-32 screws each is 22.5 degrees from the otherspacing evenly around the circle. (eg. This makes a tapped holes 45 degrees from eachother)

sc: 1:4 p#: 5604.2

Page 72: 10000 year clock

note:.Pie shaped opening are for aesthetic improvement and weight reduction. Tolerances here are not as critical. They have 1.5" wide spokes with 1" distance from both internal and outter diameters. Their internal corners are radiused to .25".

Qty: 2 required

Matl: 70-75 Al

nm: ReteSubSpacer.VLM

tol. +/-.005

The Long Now Foundation

p#: 5514.2sc: 1:3.5 dt: 11/11/98

Page 73: 10000 year clock

note: I assume that a multi axis wire EDM is the tool for cutting this. We can supply the DXF or IGES file for this. The inital cup shape could be spun or turned but should be sanded smooth to remove all machining marks. (to 800 grit) It could even be welded from two pieces if necessary and the welding ground and sanded out. This part can be made from aluminum if necessary but we would prefer stainless. Grade is only important in considering finish. We want to electropolish it to a high luster.

dt: 10/22/98 p#: 5501.2

The Long Now Foundation

tol. +/- .020 (shape) +/-.005 (pin holes)

Matl: Stainless Steel

Qty: 2 required

sc: 1:3

nm: Rete.VLM

Page 74: 10000 year clock

Ret

e C

alcu

lati

ons

Cit

y La

tN

ame

An

gle

Deg

Lat

Deg

An

gle

Rad

ian

sLa

titu

de

Hei

gh

tO

ffse

tR

adiu

s

Cel

Eq

uat

or

00

00

00

2

Zen

ith

090

01.

5707

9632

71

00

Po

le23

.590

0.41

0152

374

1.57

0796

327

10.

4160

0059

80

Tro

pic

Can

23.5

23.5

0.41

0152

374

0.41

0152

374

0.39

8749

069

0.60

6089

524

1.39

3910

476

Tro

pic

Cap

23.5

-23.

50.

4101

5237

4-0

.410

1523

74-0

.398

7490

691.

5386

4789

63.

5386

4789

6

Mer

idia

n 6

pm66

.50

1.16

0643

953

00

4.59

9685

094

5.01

5685

693

34LA

max

-32.

50

-0.5

6723

2007

00

-1.2

7414

0522

2.37

1378

095

LA M

in79

.50

1.38

7536

755

00

10.7

9103

435

10.9

7480

853

51Lo

nd

on

max

-15.

50

-0.2

7052

6034

00

-0.5

5464

9088

2.07

5484

428

Lon

do

n M

in62

.50

1.09

0830

783

00

3.84

1964

254

4.33

1361

14

37.8

SF m

ax-2

8.7

0-0

.500

9094

950

0-1

.094

9680

162.

2801

2169

8

SF M

in75

.70

1.32

1214

244

00

7.84

6312

588

8.09

7198

357

34LA

max

-32.

50

-0.5

6723

2007

00

-1.2

7414

0522

2.37

1378

095

LA M

in79

.50

1.38

7536

755

00

10.7

9103

435

10.9

7480

853

lon

git

ud

e66

.50

1.16

0643

953

00

4.59

9685

094

5.01

5685

693

2*SQ

RT

(1-G

^2)

/(G

+C

OS(

E))

2*SI

N(E

)/(G

+C

OS(

E))

Page 75: 10000 year clock
Page 76: 10000 year clock

note: The stripe on the right is a machined goove .063" deep. Edge and top finish are most crucial here, these are the most visible parts on the clock, every measure should be taken to be sure they are not scratched or bent. Parts should be flat to within .010". The locater pins underneath should be same material as plate. They can be located by spot facing blind holes from the bottom, pressed in and then loctited in place. Most important is that there is no discoloration or show through to front. They take almost no lateral load and are primarily for location.

sc: 1:4 p#: 5508.5

Qty: 2 required

dt: 1/27/00

nm: OutterSpacer.VLM

Matl: Stainless Steel

tol. +/-.005 (locator pins)

The Long Now Foundation

Page 77: 10000 year clock

note: These are highly visible parts on the clock, every measure should be taken to be sure they are not scratched or bent. Parts should be flat to within .010". The rabbet machined into the inner/upper side of the ring is to .200" depth and needs to press fit onto the link tube p#5503. The outter surface is machined down .150" leaving .100".

tol. +/- .005

nm: MooUprSpacern.VLM

dt: 4/6/00sc: 1:3

Matl: 303 Stainless Steel, Blanchard Ground

Qty: 1 required

p#: 5510.3

The Long Now Foundation

Page 78: 10000 year clock

note:.Pie shaped opening are for aesthetic improvement and weight reduction. Tolerances here are not as critical. They have 1.5" wide spokes with 1" distance from both internal and outter diameters. Their internal corners are radiused to .25".

Qty: 2 required

Matl: 70-75 Al

nm: MoonSubSpacer.VLM

tol. +/-.005 (locator pins)

The Long Now Foundation

p#: 5513.2sc: 1:3.5 dt: 11/4/98

Page 79: 10000 year clock

note: Edge and top finish are most crucial here, these are the most visible parts on the clock, every measure should be taken to be sure they are not scratched or bent. Parts should be flat to within .010". The rabbet machined into the inner/under side of the ring is to .100" depth and needs to press fit onto the link tube p#5503. flat can be left on window opening.

Matl: Stainless Steel, blanchard ground

Qty: 1 required

sc: 1:3 dt: 04/06/00

nm: Moon.VLM

tol. +/- .005

p#: 5502.3

The Long Now Foundation

Page 80: 10000 year clock

tol. +/- .005" on holes .010" on flatness and shape

The Long Now Foundation

Matl: SS

Qty: 1 required

nm: MoonSubSpaceRing.VLM

p#: 5603.1note: Every other hole is tapped or clearance for 8-32 screws each is 22.5 degrees from the otherspacing evenly around the circle. (eg. This makes a tapped holes 45 degrees from eachother)

sc: 1:4 dt: 12/13/98

Page 81: 10000 year clock

p#: 5503.2sc: 1:3 dt: 10/22/98

nm: MoonLinkTube.VLM

The Long Now Foundation

Qty: 2 required

Matl: Stainless Steel, tumble deburred

tol. +/- .005

Page 82: 10000 year clock

sc: 1:3.5

nm: InnerSpacer.VLM

dt: 10/22/98 p#: 5505.2

The Long Now Foundation

tol. +/- .005

Matl: Stainless Steel, bead blasted matte finish

Qty: 2 required

Page 83: 10000 year clock

note: Pie shaped opening are for aesthetic improvement and weight reduction. Tolerances here are not as critical. They have 1.25" wide spokes. Their internal corners are radiused to .25".PLATING: Nickel NO PLUGS all holes clearance.

p#: 5516.4sc: 1:3.5 dt: 4/4/00

The Long Now Foundation

tol. +/-.005

nm: HorizonSubSpacer2.VLM

Matl: 60-61 Al

Qty: 1 required

May need to be c-sunk, from opposite sides, see part being replaced. This part also requires three more risers than the previous one.

Page 84: 10000 year clock

note: Pie shaped opening are for aesthetic improvement and weight reduction. Tolerances here are not as critical. They have 1.25" wide spokes. Their internal corners are radiused to .25".

p#: 5516.3sc: 1:3.5 dt: 10/20/99

The Long Now Foundation

tol. +/-.005

nm: HorizonSubSpacer2.VLM

Matl: 70-75 Al

Qty: 2 required

Page 85: 10000 year clock

notes: This is a display part. Aesthetic appearence is of primary concern. Material should be flat to within spec'd tolerances and have no scratches. Parts should be handled carefully while being machined and finished. Each part should be wrapped individually in bubble wrap or something comparable. Holes shown to .100 depth and are blind with a flat bottoms. They do not pierce through the top surface or show in any way. Dowel pins should be press fit into holes with loctite. Qty: 1 required

Matl: 303 Stainless Steel, blanchard ground

The Long Now Foundationp#: 5522.2

tol. +/- .005 on shape, +/-.001 on holes

nm: HorizonInd1.VLM

dt: 4/4/99sc: 1:3

Matl: bought 3/16, ground to size

Page 86: 10000 year clock

The Long Now Foundation

p#: 5523.2

tol. +/- .005 on shape, +/-.001 on holes

nm: HorizonInd2.VLM

dt: 4/4/00sc: 1:3

Matl: bought 3/16, ground to size

Matl: 303 Stainless Steel, blanchard ground

notes: This is a display part. Aesthetic appearence is of primary concern. Material should be flat to within spec'd tolerances and have no scratches. Parts should be handled carefully while being machined and finished. Each part should be wrapped individually in bubble wrap or something comparable. Holes shown to .100 depth and are blind with a flat bottoms. They do not pierce through the top surface or show in any way. Dowel pins should be press fit into holes with loctite. Qty: 1 required

Page 87: 10000 year clock

nm: DateWindow.VLM

dt: 10/22/98sc: 1:1 p#: 5509.1

Matl: Brass

Qty: 1

tol. +/- .005

The Long Now Foundation

Page 88: 10000 year clock

Qty: 1 required

Matl: SS

The Long Now Foundation

tol. +/- .005" on holes .010" on flatness and shape

nm: CenturyrSubSpaceRing.VLM

sc: 1:4note: Every other hole is tapped or clearance for 8-32 screws each is 22.5 degrees from the otherspacing evenly around the circle. (eg. This makes a tapped holes 45 degrees from eachother)

dt: 12/13/98 p#: 5602.1

Page 89: 10000 year clock

027

116117118119019020021022023

03703

8039040041

042

043

035

02802903003

103203

303403

6

074075

076

045

046

047

048

049

050

051

052

053

054

055

057058

059060

061

056

024025

113114115

110

096097098

099100

101102

103104

105106

107

108109

064065066067068069070071072073

077 078 111112

094095

044

062063 026

087 088 089 090 091092093

079081 082 083 084 085 086

080

note: [for etcher: The text within the part is etched (font is garamond). Please call to discuss depth depending on etching method. We can supply the DXF file for this. ] Edge and top finish are most crucial here, these are the most visible parts on the clock, every measure should be taken to be sure they are not scratched or bent. Parts should be flat to within .010". The locater pins underneathshould be same material as plate. They can be located by spot facing blind holes from the bottom, pressed in and then loctited in place. Most important is that there is no discoloration or show through to front. They take almost no lateral load and are primarily for location.

nm: Century.VLM

Qty: 2 required

Matl: Stainless Steel

tol. +/- .020 (etch) +/-.005 (locator pins)

The Long Now Foundation

p#: 5506.2sc: 1:3.5 dt: 10/22/98

Page 90: 10000 year clock

p#.v#: 2420

tol. +/- 0.005"

Qty: 1 req.

Matl's: invar, tungsten, SS

Torsional Pendulumdt: 10/21/99sc: 1:3

Page 91: 10000 year clock

Qty: 10 each

p#.v#: 2410.2sc: 1:3Torsional Pendulum .25" RibbonSpring

The Long Now Foundation

Matl's: Ni Span C .010" thick comes in .625" wide roll.

dt: 3/2/00

tol. +/- 0.001" (+/-.010 on leng.)

Page 92: 10000 year clock

dt: 10/21/99Torsional Pend.Point&tube flange

tol. +/- 0.005"

Qty: 1 each req.

Matl's: invar

sc: 1:3 p#.v#: 2429.1

Page 93: 10000 year clock

Qty: 1 each req.

sc: 1:3

Note: counter bores should allow the head of the 10-32 SHCS to be completely hidden. 1/16 pin should be slide fit.

dt: 10/21/99

Note: counter bores should allow the head of the 10-32 SHCS to be completely hidden. 1/16 pin should be slide fit.

Matl's: invar

tol. +/- 0.005"

p#.v#: 2428.1Torsional Pendulum Hub

Note: angle of cone should match that of teh hub.

Page 94: 10000 year clock

sc: 1:3Torsional Pendulum Hub

Matl's: invar

Qty: 1 req.

tol. +/- 0.005"

Note: the depth of this c-bore has to allow the head of each screw to be past the center line of the hub so they dont interfere with eachother.

Note: inner arm pieces should fit snug into the counterbores with locktite.

p#.v#: 2427.1dt: 10/21/99

Page 95: 10000 year clock

Torsional Pendulum Outter arm

Matl's: invar

Qty: 3 req.

tol. +/- 0.005"

sc: 1:3 p#.v#: 2425.1dt: 10/20/99

Page 96: 10000 year clock

Qty: 3 req.

Matl's: invar

Torsional PendulumInner armsc: 1:3 p#.v#: 2426.1dt: 10/20/99

tol. +/- 0.005"

Page 97: 10000 year clock

Torsional Pendulum Calculation

Units are pounds, inches, radians

inertia � 13.9 inch pound sec^2;

TotalWeight � 83.6 pound

83.6 pound

� constants

ShearModulus � 11.57*^6 pound inch ^2;

ElasticModulus � 29*^6 pound inch ^2;

ShearModulusRoak � 9.78*^6 pound inch ^2;

TensileStrength � 125000 pound inch^2;

G � 32.16 � 12 inch sec ^2;

ElasticModulus ShearModulus

2.50648

� Rectangular Torsion Spring

h � 0.5�inch;

b � .01�inch;

L � 24 inch;

Appoximatly:

Torsionpedulum4.nb 1

Page 98: 10000 year clock

TorsionSpringConstant� h b3�ShearModulus 3�L

0.0803472 inch pound

accounting forlongitudinal shear (I think this may be wong. SHould depned of angle)

ShearCorrection �ElasticModulush4

���������������������������������������������������������������ShearModulus 120 b2�L2

0.0226642

TorsionSpringConstant� h b3�ShearModulus � 1 � ShearCorrection

0.0821682 inch pound

According to Mark's, (but I think this is wrong)

TorsionSpringConstant � b3�h3�ShearModulus � 3.6 L b2 � h2

0.0669292 inch pound

According to Roak's 6th edition

a � h 2;

z � b 2;

TorsionSpringConstantRoak �

a z3�16��������3

� 3.36z�����a

� 1 �z4

���������������12 a4

ShearModulus L �8��������45

�ElasticModulus

0.0793348 inch pound � 0.00182101 inch pound �2

Torsionpedulum4.nb 2

Page 99: 10000 year clock

TorsionSpringConstantRose �

h b3�ShearModulus 3 � 1.8 b h �L � ElasticModulus h^5 b � L

0.0793945 inch pound � 0.00182101 inch pound �2

TorsionSpringConstantRose 2 TorsionSpringConstantRose . � �

0.0535616

2����������

2

4 �2�������������2

N0

������2 Sin �

2����������

2��

0.46267

� Stress limits of spring

T � TorsionSpringConstant 2

0.105132 inch pound

TorsionStrength � 60000 pound inch^2

60000 pound���������������������������������

inch2

Again according to Mark's

safetorque � 2 b2�h .43 TensileStrength 9� 2

0.298611 inch pound

According to Roak

Torsionpedulum4.nb 3

Page 100: 10000 year clock

safetorque � TorsionStrength 8 a z2 3 1 � .06095z�����a

0.998782 inch pound

safewieght � h � b � TensileStrength 4

156.25 pound

TorsionStress �3 T

���������������������8 a z^2

� 1 � .6095�z�����a

� .8865� z a ^2 � 1.8023 z a

12773.9 pound����������������������������������������

inch2

LinearStress � TotalWeight h b

16720. pound������������������������������������

inch2

TotalStress � PowerExpand LinearStress^2 � TorsionStress^2

21041.2 pound����������������������������������������

inch2

SafetyFactor � 60000 pound inch^2 TotalStress

2.85155

h � b

0.005 inch2

.016 � .006�60

0.00576

� effect of weight on torque

J � 40

a

0

zx^2 � y^2 ��x��y

0.000104208 inch4

Or using Rouke's

Torsionpedulum4.nb 4

Page 101: 10000 year clock

4a3 z������������3

�a z3������������3

0.000104208 inch4

ExtraT � J LinearStress � L

0.0725985 inch pound �

SpringConstant � TorsionSpringConstant � ExtraT �

0.139528 inch pound

CorrectedProtion � TorsionSpringConstant SpringConstant

0.479684

ExtraTRose � LinearStressh3�b � 12�L

0.0725694 inch pound �

� Rate

SpringConstant

0.139528 inch pound

inertia

13.9 inch pound sec2

sln � DSolve �K � t � KI �'' t �, � t , t . Null � 1

Power::indet � : �Indeterminate expression 00 encountered .

� t � C 2 Cos K t��������������KI

� C 1 Sin K t��������������KI

Torsionpedulum4.nb 5

Page 102: 10000 year clock

� t . sln . C 1 � 1 . C 2 � 0

Sin K t��������������KI

period � PowerExpand 2 inertia

��������������������������������������������SpringConstant

62.7129 sec

peakTorque � SpringConstant

0.438339 inch pound

OZINCHES � peakTorque �12 � 16�oz pound

84.1611 inch oz

inertia

13.9 inch pound sec2

� measured results

MeasuredPeriod � 41.987544 sec

41.9875 sec

MeasuredPeriodDisk � 19.948 sec

19.948 sec

MeasuredPeriodWBolts � 20.298424 sec

20.2984 sec

Torsionpedulum4.nb 6

Page 103: 10000 year clock

Ratio1 � period MeasuredPeriod

1.49361

Ratio2 � periodDisk MeasuredPeriodDisk

0.0501303 periodDisk�������������������������������������������������������������

sec

� Lift distance

Lift � h���������2

22 L

0.012851 inch

� Decay Rate

Time for amplitude to decay to 1/2:

halflife � 10 hour 3600 second hour

36000 second

cycles � halflife period

574.044 second�������������������������������������������

sec

pendenergy �0

SpringConstant� ��

0.688542 inch pound

LossPerCycle � pendenergy 2 cycles 16 oz pound

0.00959566 inch oz sec���������������������������������������������������������������

second

LossPerTick � 15 � LossPerSwing

15 LossPerSwing

Torsionpedulum4.nb 7

Page 104: 10000 year clock

LossPerDay �

3����4�SpringConstant

�������������������������������������������������������halflife

� 24hour��������������day

� 3600sec��������������hour

0.789011 inch pound sec������������������������������������������������������������������

day second

SpringConstant

0.139528 inch pound

EscapmentRotsPerYear �

360 day�����������year

�24 hour�����������day

�3600 sec�����������hour

�������������������������������������������������������������������������������

15 cycle�������������rot

�30 sec�������������cycle

69120 rot���������������������������

year

BallScrewRotsPerYEar � EscapmentRotsPerYear 128 � 9

60 rot������������������year

128 � 9

1152

60 7.5

8.

Torsionpedulum4.nb 8

Page 105: 10000 year clock
Page 106: 10000 year clock
Page 107: 10000 year clock
Page 108: 10000 year clock
Page 109: 10000 year clock
Page 110: 10000 year clock
Page 111: 10000 year clock
Page 112: 10000 year clock
Page 113: 10000 year clock
Page 114: 10000 year clock
Page 115: 10000 year clock
Page 116: 10000 year clock
Page 117: 10000 year clock
Page 118: 10000 year clock
Page 119: 10000 year clock
Page 120: 10000 year clock
Page 121: 10000 year clock
Page 122: 10000 year clock
Page 123: 10000 year clock
Page 124: 10000 year clock
Page 125: 10000 year clock
Page 126: 10000 year clock
Page 127: 10000 year clock
Page 128: 10000 year clock
Page 129: 10000 year clock
Page 130: 10000 year clock
Page 131: 10000 year clock
Page 132: 10000 year clock
Page 133: 10000 year clock
Page 134: 10000 year clock
Page 135: 10000 year clock
Page 136: 10000 year clock
Page 137: 10000 year clock
Page 138: 10000 year clock
Page 139: 10000 year clock
Page 140: 10000 year clock
Page 141: 10000 year clock
Page 142: 10000 year clock
Page 143: 10000 year clock
Page 144: 10000 year clock
Page 145: 10000 year clock
Page 146: 10000 year clock
Page 147: 10000 year clock
Page 148: 10000 year clock
Page 149: 10000 year clock

CL

OC

KBi

ts=

27Lo

ngitu

de=

122.

4601

389

hex

digi

ts=

7G

mt o

ffset

=8:

09

PR

OG

RA

Mup

perb

ound

=13

4217

728

Long

itude

=12

2° 2

7' 36

.5as

dec

imal=

8.16

4009

259

leap

cycle

a

Acc

um

ula

tors

Per

iod

day

s/p

erst

eps/

per

step

s/h

our

KH

ex K

per

hou

rB

its

Ofs

set

deg

/h

our

KI

Hex

KI

1342

1196

07F

FE97

8

Zod

iac94

1740

4.85

396

4.25

E-0

757

0000

039

1.59

28E

-06

01.

5928

E-0

667

1088

6440

0000

013

4210

736

07FF

E4B

0

Solar

Yea

r36

5.24

2198

288

3.29

E-0

244

0971

104

3496

F0.

0410

6863

95

0.04

1068

639

6710

8864

4000

000

5368

4661

61F

FFA

118

Cent

ury

3652

4.75

11.

14E

-06

153

0000

099

1.14

078E

-06

104.

0661

4E-0

613

4216

044

7FFF

96C

use

a di

ffene

t valu

e to

min

miz

e da

y slo

wi

2429

600

005E

E8

Mon

th29

.530

5882

324.

52E

-02

6060

054

05C7

816

0.50

7947

891

150.

5079

4789

149

2258

922E

F20A

4ne

xt ti

me

roun

d K

Non

leap

Yea

r36

51

1.14

E-0

415

321

0003

BD9

0.00

0114

079

200.

0004

1095

913

4033

918

7FD

31FE

but l

eave

this

trunc

ated

Leap

Yea

r36

61

1.14

E-0

415

279

0003

BAF

0.04

1068

605

0.00

0409

836

4026

3465

6N

ame

Star

tPr

e Midn

ight

Post

Midn

itght

Tu

rn0

111

1212

4812

7212

9612

9787

6611

8766

12

Yea

r19

9919

9919

9920

0020

0020

0020

0020

0020

9921

00D

ate&

Tim

e12

/31/

99 1

2:30

12/3

1 13

:30

12/3

1 23

:30

1/1

0:30

2/21

12:

302/

22 1

2:30

2/23

12:

302/

23 1

3:30

12/3

1 23

:30

1/1

0:30

Solar

Tim

e12

:30

PM1:

30 P

M11

:30

PM12

:30

AM

12:3

0 PM

12:3

0 PM

12:3

0 PM

1:30

PM

11:3

0 PM

12:3

0 A

ME

OT

-0:0

3:00

GM

T20

:42:

5121

:39:

507:

39:5

08:

39:5

020

:39:

5020

:39:

5020

:39:

5021

:39:

507:

39:5

08:

39:5

0

Sun

(deg

gres

from

top)

Real

7.5

22.5

172.

518

7.5

7.5

7.5

7.5

22.5

172.

518

7.5

Dial

7.5

22.5

172.

518

7.5

7.5

7.5

7.5

22.5

172.

518

7.5

Moo

n(d

egre

es fr

om S

UN

)Re

al66

.001

166

.509

072

.096

478

.191

835

2.11

0827

8.22

0521

6.52

1015

5.32

9410

8.03

8261

.254

9D

ial67

.50

67.5

067

.50

78.7

534

8.75

281.

2521

3.75

157.

5011

2.50

56.2

5D

ial P

ositi

on6

66

731

2519

1410

5Re

al Ph

ase

30%

30%

35%

40%

0%43

%90

%95

%65

%26

%D

ial P

hase

31%

31%

31%

40%

1%40

%92

%96

%69

%22

%So

lar

Yea

r(d

egre

es fr

om w

inte

r sol

stice

)Re

al7.

4319

4786

17.

4730

7.88

377.

9248

58.6

856

59.6

713

60.6

569

60.6

980

8.65

278.

6938

Dial

7.43

7.4

7.4

7.4

58.7

59.9

61.2

61.2

8.7

8.7

Ret

e(m

ark

from

top)

Real

7.52

025

22.4

792

172.

0685

187.

0274

316.

2666

315.

2809

314.

2953

329.

2542

171.

2995

186.

2584

Dial

7.5

22.5

172.

518

7.5

316.

331

5.0

313.

832

8.8

171.

318

6.3

Cal

. Yea

r

Real

99.9

9868

809

99.9

988

99.9

999

0.00

010.

1411

0.14

380.

1465

0.14

660.

0020

0.00

21D

ial99

9999

00

00

099

99C

entu

ry

Real

19.9

9998

6919

.999

9880

19.9

9999

9420

.000

0006

20.0

0141

0620

.001

4380

20.0

0146

5320

.001

4665

21.0

0000

6321

.000

0074

Dial

1919

1920

2020

2020

2020

Zod

iac

(mar

k fr

om to

p)Re

al0.

0052

0833

35.

2099

E-0

35.

2259

E-0

35.

2274

E-0

37.

1961

E-0

37.

2344

E-0

37.

2726

E-0

37.

2742

E-0

31.

4015

E+

001.

4015

E+

00D

ial0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Per

iod

day

s/p

erst

eps/

per

step

s/h

our

KH

ex K

per

hou

rB

its

Ofs

set

deg

/h

our

KI

Hex

KI

Zod

iac

9417

404.

853

964.

2474

5E-0

757

0000

039

1.59

28E

-06

01.

5928

E-0

667

1088

6440

0000

0To

tal

6710

8864

6710

8921

6710

9491

6710

9548

6718

0000

6718

1368

6718

2736

6718

2793

1170

7569

111

7075

748

Adv

ance

s0

00

00

00

00

0N

ext

6710

8921

6710

8978

6710

9548

6710

9605

6718

0057

6718

1425

6718

2793

6718

2850

1170

7574

811

7075

805

Pins

6710

8864

6710

8921

6710

9491

6710

9548

6718

0000

6718

1368

6718

2736

6718

2793

1170

7569

111

7075

748

H

ex40

0000

040

0003

940

0027

340

002A

C40

115E

040

11B3

840

1209

040

120C

96F

A6E

EB

6FA

6F24

Carr

y0

00

00

00

00

0So

lar

Yea

r36

5.24

2198

288

0.03

2854

911

4409

711

0434

96F

0.04

1068

639

50.

0410

6863

967

1088

6440

0000

0To

tal

6710

8864

7151

8575

1156

1568

512

0025

396

2017

1907

230

7552

136

4133

8520

057

8650

4031

3.86

567E

+12

3.86

567E

+12

Adv

ance

s0

00

041

4243

4328

801

2880

1N

ext

7151

8575

7592

8286

1200

2539

612

4435

107

2061

2878

331

1961

847

4177

9491

157

9091

3742

3.86

567E

+12

3.86

568E

+12

Pins

6710

8879

7151

8590

1156

1570

012

0025

379

6750

1359

3911

6695

1073

2031

#N

UM

!#

NU

M!

#N

UM

!

Hex

4000

00F

4434

97E

6E42

7D4

7277

123

405F

D2F

254D

F97

A3C

1FF

#N

UM

!#

NU

M!

#N

UM

!Ca

rry

00

01

00

01

01

Cen

tury

3652

4.75

11.

1407

8E-0

615

300

0009

91.

1407

8E-0

610

4.06

614E

-06

1342

1604

47F

FF96

CTo

tal

1342

1604

413

4216

197

1342

1772

713

4217

880

1344

0698

813

4410

660

1344

1433

213

4414

485

2683

3752

726

8337

680

Adv

ance

s0

00

11

11

11

1N

ext

1342

1619

713

4216

350

1342

1788

013

4218

033

1344

0714

113

4410

813

1344

1448

513

4414

638

2683

3768

026

8337

833

Pins

1342

1619

713

4216

350

1342

1685

630

518

9413

1930

8519

5733

1969

1013

4119

952

1341

2010

5

Hex

7FFF

A05

7FFF

A9E

7FFF

C98

131

2E3E

52F

23D

2FC9

530

12E

7FE

8210

7FE

82A

9Ca

rry

00

10

00

10

00

Mon

th29

.530

5882

320.

0451

5092

460

6005

405

C781

60.

5079

4789

115

0.50

7947

891

4922

5892

2EF2

0A4

Tota

l49

2258

9255

2859

4611

5886

486

1219

4654

076

1217

3284

7757

6145

8079

0305

5876

7909

1159

305.

3123

6E+

125.

3123

7E+

12A

dvan

ces

00

00

5657

5858

3958

039

580

Nex

t55

2859

4661

3460

0012

1946

540

1280

0659

476

1823

3338

7763

6746

3479

0911

5930

7915

1759

845.

3123

7E+

125.

3123

7E+

12Pi

ns49

2238

6655

2839

2011

5884

460

1219

4451

495

9784

9010

7202

058

1184

2562

612

4485

680

#N

UM

!#

NU

M!

H

ex2E

F18B

A34

B90D

06E

841A

C74

4B9C

25B

883F

A66

3C60

A70

F081

A76

B803

0#

NU

M!

#N

UM

!Ca

rry

11

11

11

11

11

Cal

Yea

r36

51

0.00

0114

155

1532

100

03BD

90.

0001

1407

920

0.00

0410

959

1340

3391

87F

D31

FETo

tal

1340

3391

813

4049

239

1342

0244

913

4217

728

1531

0257

215

3469

268

1538

3596

415

3851

243

1355

5736

777

1355

5752

056

7FD

31FE

7FD

6DD

77F

FC45

180

0000

092

028E

C92

5C15

492

B59B

C92

B956

B32

7FC2

0C9

327F

C5C7

8A

dvan

ces

00

01

11

11

100

100

Page 150: 10000 year clock

Nex

t13

4049

239

1340

6456

013

4217

770

1342

3304

915

3117

893

1534

8458

915

3851

285

1538

6656

413

5557

5209

813

5557

6737

7Pi

ns13

4049

239

1340

6456

013

3169

194

1532

118

9001

6519

2668

6119

6335

5719

6488

3613

3979

298

1339

9457

7

Hex

7FD

6DD

77F

DA

9B0

7F00

02A

3BD

912

064C

512

5FD

2D12

B959

512

BD14

47F

C5CA

27F

C985

1Ca

rry

00

10

00

00

00

LEA

P cy

cles

00

00

00

00

2424

LEA

P TI

CKS

00

01

1237

1261

1285

1286

2108

1621

0817

NO

RM T

ICK

S0

111

1111

1111

1166

5795

6657

95

1296

54.0

040

2634

656

8784

1296

5368

3710

517

531

-670

7505

718

528

Page 151: 10000 year clock
Page 152: 10000 year clock
Page 153: 10000 year clock
Page 154: 10000 year clock
Page 155: 10000 year clock
Page 156: 10000 year clock
Page 157: 10000 year clock
Page 158: 10000 year clock
Page 159: 10000 year clock
Page 160: 10000 year clock
Page 161: 10000 year clock
Page 162: 10000 year clock
Page 163: 10000 year clock
Page 164: 10000 year clock
Page 165: 10000 year clock
Page 166: 10000 year clock
Page 167: 10000 year clock
Page 168: 10000 year clock
Page 169: 10000 year clock
Page 170: 10000 year clock
Page 171: 10000 year clock
Page 172: 10000 year clock
Page 173: 10000 year clock
Page 174: 10000 year clock
Page 175: 10000 year clock
Page 176: 10000 year clock
Page 177: 10000 year clock
Page 178: 10000 year clock
Page 179: 10000 year clock
Page 180: 10000 year clock
Page 181: 10000 year clock
Page 182: 10000 year clock
Page 183: 10000 year clock
Page 184: 10000 year clock
Page 185: 10000 year clock
Page 186: 10000 year clock
Page 187: 10000 year clock
Page 188: 10000 year clock
Page 189: 10000 year clock
Page 190: 10000 year clock
Page 191: 10000 year clock
Page 192: 10000 year clock
Page 193: 10000 year clock
Page 194: 10000 year clock
Page 195: 10000 year clock
Page 196: 10000 year clock
Page 197: 10000 year clock
Page 198: 10000 year clock
Page 199: 10000 year clock
Page 200: 10000 year clock
Page 201: 10000 year clock
Page 202: 10000 year clock
Page 203: 10000 year clock
Page 204: 10000 year clock
Page 205: 10000 year clock
Page 206: 10000 year clock
Page 207: 10000 year clock
Page 208: 10000 year clock
Page 209: 10000 year clock
Page 210: 10000 year clock
Page 211: 10000 year clock
Page 212: 10000 year clock
Page 213: 10000 year clock
Page 214: 10000 year clock
Page 215: 10000 year clock
Page 216: 10000 year clock
Page 217: 10000 year clock
Page 218: 10000 year clock
Page 219: 10000 year clock
Page 220: 10000 year clock
Page 221: 10000 year clock
Page 222: 10000 year clock
Page 223: 10000 year clock
Page 224: 10000 year clock

Sinrise 0, 0, 0

General ::spell1 � : �

Possible spelling error: new symbol name "Sinrise" is similar to existing symbol "Sunrise ".

Sinrise 0, 0, 0

Sunrise 0, 0, 0

0.249749

DayLength fixedDay_, lat_ :� Sunset fixedDay, lat, 0 � Sunrise fixedDay, lat, 0

DayLength 0, 0

0.505195

Plot DayLength d, 45 , d, 0, 365, 1

Plot::pllim � : �Limit specification d, 0, 365, 1 is not of the form x, xmin, xmax .

Plot DayLength d, 45 , d, 0, 365, 1

LondonLat � 51;CairoLat � 30;

ListPlot Table DayLength d, LondonLat , d, 1, 365, 1

50 100 150 200 250 300 3500.35

0.45

0.5

0.55

0.6

0.65

��Graphics ��

Max Table DayLength d, LondonLat , d, 1, 365, 1

0.68952

Max Table DayLength d, CairoLat , d, 1, 365, 1

0.586651

DegreesMotion daylength_ :� 90 � 180 � daylength

DegreesMotion .69

�34.2

horizoncam.nb 1

Page 225: 10000 year clock

DegreesMotion .58

�14.4

24 � .69

16.56

24 � .58

13.92

180.0 � 5 24

37.5

NewYearsDay year_ :� ToFixed Gregorian January , 1, year

TimeOff year_ :� 60 � 24 � Calendrica`Private`EquationOfTime NewYearsDay year

TimeOff 1

�0.185134

ListPlot Table TimeOff x , x, 2000, 12000, 100

20 40 60 80 100

6

8

10

12

14

��Graphics ��

horizoncam.nb 2

Page 226: 10000 year clock

ex � Sin 23.5 Degree

0.398749

Plot ArcSin ex Sin x , ArcSin ex Sin x , x, 1, 8

2 4 6 8

-0.4

-0.2

0.2

0.4

��Graphics ��

Plot ArcSin ex Sin x � ArcSin ex Sin x , x, 1, 8

2 4 6 8

-0.004

-0.002

0.002

0.004

��Graphics ��

horizoncam-approx.nb 1

Page 227: 10000 year clock

Plot ArcSin Tan 38 ° Tan ArcSin Sin ex �Sin 2�� t ,t, 0, 1

0.2 0.4 0.6 0.8 1

-0.3

-0.2

-0.1

0.1

0.2

0.3

��Graphics ��

L � 52 °

52 °

Plot ArcSin Tan L Tan ArcSin Sin ex �Sin 2�� t ,ArcSin Tan L Tan ex �Sin 2 � t ,t, 0, 1

0.2 0.4 0.6 0.8 1

-0.4

-0.2

0.2

0.4

��Graphics ��

horizoncam-approx.nb 2

Page 228: 10000 year clock

Plot ArcSin Tan L Tan ArcSin Sin ex �Sin 2�� t �

ArcSin Tan L Tan ex �Sin 2 � t ,t, 0, 1

0.2 0.4 0.6 0.8 1

-0.03

-0.02

-0.01

0.01

0.02

0.03

��Graphics ��

Plot ArcSin Tan L Tan ArcSin Sin ex �Sin 2�� t �

Tan L �Tan ex �Sin 2 � t ,t, 0, 1

0.2 0.4 0.6 0.8 1

-0.03

-0.02

-0.01

0.01

0.02

0.03

��Graphics ��

horizoncam-approx.nb 3

Page 229: 10000 year clock
Page 230: 10000 year clock
Page 231: 10000 year clock
Page 232: 10000 year clock
Page 233: 10000 year clock
Page 234: 10000 year clock
Page 235: 10000 year clock
Page 236: 10000 year clock
Page 237: 10000 year clock
Page 238: 10000 year clock
Page 239: 10000 year clock
Page 240: 10000 year clock
Page 241: 10000 year clock
Page 242: 10000 year clock
Page 243: 10000 year clock
Page 244: 10000 year clock
Page 245: 10000 year clock
Page 246: 10000 year clock
Page 247: 10000 year clock
Page 248: 10000 year clock
Page 249: 10000 year clock
Page 250: 10000 year clock
Page 251: 10000 year clock
Page 252: 10000 year clock
Page 253: 10000 year clock
Page 254: 10000 year clock
Page 255: 10000 year clock
Page 256: 10000 year clock
Page 257: 10000 year clock
Page 258: 10000 year clock
Page 259: 10000 year clock
Page 260: 10000 year clock
Page 261: 10000 year clock
Page 262: 10000 year clock
Page 263: 10000 year clock
Page 264: 10000 year clock
Page 265: 10000 year clock
Page 266: 10000 year clock
Page 267: 10000 year clock
Page 268: 10000 year clock
Page 269: 10000 year clock
Page 270: 10000 year clock
Page 271: 10000 year clock
Page 272: 10000 year clock
Page 273: 10000 year clock
Page 274: 10000 year clock
Page 275: 10000 year clock
Page 276: 10000 year clock
Page 277: 10000 year clock
Page 278: 10000 year clock
Page 279: 10000 year clock
Page 280: 10000 year clock
Page 281: 10000 year clock
Page 282: 10000 year clock
Page 283: 10000 year clock
Page 284: 10000 year clock
Page 285: 10000 year clock
Page 286: 10000 year clock
Page 287: 10000 year clock
Page 288: 10000 year clock
Page 289: 10000 year clock
Page 290: 10000 year clock
Page 291: 10000 year clock
Page 292: 10000 year clock
Page 293: 10000 year clock
Page 294: 10000 year clock
Page 295: 10000 year clock
Page 296: 10000 year clock
Page 297: 10000 year clock
Page 298: 10000 year clock
Page 299: 10000 year clock
Page 300: 10000 year clock
Page 301: 10000 year clock
Page 302: 10000 year clock
Page 303: 10000 year clock
Page 304: 10000 year clock
Page 305: 10000 year clock
Page 306: 10000 year clock
Page 307: 10000 year clock
Page 308: 10000 year clock
Page 309: 10000 year clock
Page 310: 10000 year clock
Page 311: 10000 year clock
Page 312: 10000 year clock
Page 313: 10000 year clock
Page 314: 10000 year clock
Page 315: 10000 year clock
Page 316: 10000 year clock
Page 317: 10000 year clock
Page 318: 10000 year clock
Page 319: 10000 year clock
Page 320: 10000 year clock
Page 321: 10000 year clock
Page 322: 10000 year clock
Page 323: 10000 year clock
Page 324: 10000 year clock
Page 325: 10000 year clock