1. stereoisomerism 2. chirality 3. naming stereocenters - r/s configuration 4. acyclic molecules...

29
1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with 2 or more stereocenters 6. Properties of Stereocenters 7. Optical activity 8. Separation of Enantiomers, Stereochemistry Stereochemistry OH C H H 3 C F HO C H H 3 C F 20 Chapter 3 a b c

Upload: cori-paul

Post on 05-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

1. Stereoisomerism2. Chirality 3. Naming stereocenters - R/S configuration4. Acyclic Molecules with 2 or more stereocenters5. Cyclic Molecules with 2 or more stereocenters6. Properties of Stereocenters7. Optical activity8. Separation of Enantiomers, Resolution9. Significance of Chirality in the biological world

StereochemistryStereochemistryOH

CH

H3C F

HO

CH

H3CF

20

Chapter 3

a b c

Page 2: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

enantiomersmirror images

non-superposable

diastereomersnon-mirror images(cis/trans)

ISOMERISMsame molecular formula, but different….

conformational isomerschair/boat

configurational isomers

stereoisomers - same connectivitydifferent 3D orientation

constitutionalconnectivity

different

Page 3: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

diastereomers

H

BrCl

H

H

BrH

Cl

trans cis

ClBr

HHCl

H

BrH

Page 4: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

F3C

OC

CC

H

NH

CH3H H

H H

CC

C

H

NH

CH3H H

H HF3C

O

e.g. Prozac - one isomer (“S”) is significantly more active

enantiomers

Page 5: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

- right and left-handed substances - 2 spatial arrangements of atoms- analyze reflections (mirrors)

same (achiral), different (chiral).

plane

chiral -non-superposable, different arrangements in space

mirror

Chirality

Page 6: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

Elements of Elements of SymmetrySymmetry

Plane of symmetry: an imaginary plane passing through an object dividing it such that one half is the mirror image of the other half.

Page 7: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

anti - point of symmetry

CH3

CHO H

H3C

OHHC

syn - plane of symmetry

CH3

CHO H

CH3

CHO H

Elements of SymmetryElements of SymmetryConformations of 2,3-butanediol*

.

If symmetry element is present, substance is achiral

.

*meso or R,S (later)

Page 8: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

Elements of Elements of SymmetrySymmetry

Center of symmetry: a point situated so identical components of the object are located equidistant on opposite sides.

FBr

F Br

Page 9: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

superposable mirror images - same compound - a plane of symmetry - achiral

rotate 180o

Chirality

Page 10: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

Different, non-superposable mirror images, enantiomers

Chirality-sp3 or tetrahedral center with 4 different groups = chiral molecule

Cl

CF

BrH

Cl

CF

BrH rotate e.g. (180o)

see if images aresuperposable, e.g.

Cl

CF

HBr

Page 11: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

Tetrahedral - 4 different substituents (sp3)

Cl

CF

BrH

Cl

CF

BrH

enantiomers

StereocenterStereogenic center

- an atom that interchange of 2 groups gives a stereoisomer

Page 12: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

EnantiomersEnantiomers

Lactic acidC

CO2H

HH3CHO

C

HO2C

HCH3OH

How do we distinguish chiral molecules?

R/SR S

Page 13: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

Priority rules

1. Assign priority to each atom bonded to stereocenter.

higher atomic number

higher priority

R,S ConventionR,S Convention

(1) (6)

-CH3-H

Increasing priority

(7)

-NH2

(8)

-OH(17)

-Cl(35)

-Br(0)

Page 14: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

2. If same atoms bonded to the stereocenter, look to next set of atoms.

Priority to the first point of difference.

R,S ConventionR,S Convention

Z

CH3

CH2CH3

CH2NH2

HOH2C

“Z” stereocenter, 4 gps.

Z

C

CH2CH3

CH2NH2

HOH2C

HH

H(1)

Z

C

C-CH3

CH2NH2

HOH2C

HH

H(1)

H

H

(6)Z

C

C-CH3

C

HOH2C

HH

H(1)

H

H

(6)

(7)H

HNH2

Z

C

C-CH3

C

C

HH

H(1)

H

H

(6)

(7)

(8)

HH

NH2

H

H

H-O O > N > C > H

8 > 7 > 6 > 1

Page 15: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

R/S absolute configuration of chiral compoundsRules:

1. Identify stereogenic center (C - 4 different gps.)2. Assign priority to groups (C - 1, 2, 3, 4)

3

C

2 1

4

3. View C with “4” back; 1, 2, 3 FRONT

2

3

1

4C

4. If 1>2>3 clockwise = R; counterclockwise = S

R

Page 16: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

enantiomers

R & S configuration

OH

Cl

OH

Cl

O Cl

H

OCl

H

R S

Page 17: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

3. Atoms in double (triple) bond viewed as equivalent number of single bonds

(C is a stereogenic center)

R,S ConventionR,S Convention

CC

C

H

F

C H

C

C

H

H H

H HH

H

HH

C

CH

CHH

view asC

C

H

C

C

CH H

Page 18: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

CC

C

H

F

C H

C

C

H

H H

H HH

H

HH

CC

H

C

vs

C

C

H

C

H H

H

H

H H

C

C

HC

C

H

C

CHH

1

4

2

3

vs

C

H

C

C

CH

H

S

priorities and assigning R/S

Page 19: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

O

O

HF

O

Assign R/S to the stereogenic center of the ester

rotate 180o

S

O

O

FH

O

Page 20: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

Assign R or S to carvone O

H

spearmint

S caraway/dill

R

N

H

H

Assign R/S to stereogenic carbon in coniine

Golden pitcher plant

R-(-)-coniine poison hemlock

Page 21: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

For a molecule with n stereocenters, a maximum of 2n

stereoisomers “might” be possible.

Enantiomers & DiastereomersEnantiomers & Diastereomers

For a molecule with 1 stereocenter, 21 = 2 stereoisomers are possible.

For a molecule with 2 stereocenters, a MAXIMUM of 22 = 4 stereoisomers might exist.

Page 22: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

O

O

OH

H

H

H

(sugar-O)3

256 (ignore sugar)

2n

Page 23: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

O

O

HF

O

R|S

earlier

SR

R - RR - SS - RS - S

O

O

HF

O

H

what about a second center?

Page 24: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

Cl

BrMolecules with more than 1 stereocenter

22 = 4trans-1-bromo-2-chlorocyclopropane**

relative stereochemistry - both are ‘trans’

absolute stereochemistry - each is unique, enantiomers

Cl

H

H

H

H

Br

Cl

H

H

H

H

Br

RR S S

(1R,2R)-1-bromo-2-chlorocyclopropane (1S,2S)-1-bromo-2-chlorocyclopropane

Page 25: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

Molecules with more than 1 stereocenter

trans-1-bromo-2-chlorocyclopropane

Cl

H

H

H

Br

H

Cl

H

H

H

Br

H

R S SR

cis-1-bromo-2-chlorocyclopropane Cl

Br

**

22 = 4

Cl

H

H

H

H

Br

Cl

H

H

H

H

Br

RR S S

(1R,2R)-1-bromo-2-chlorocyclopropane (1S,2S)-1-bromo-2-chlorocyclopropane

(1S,2R)-1-bromo-2-chlorocyclopropane (1R,2S)-1-bromo-2-chlorocyclopropane

Page 26: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

Molecules with more than 1 stereocenter

Cl

H

H

H

Br

H

Cl

H

H

H

Br

H

R S SR

Cl

H

H

H

H

Br

Cl

H

H

H

H

Br

RR S S

(1R,2R)-1-bromo-2-chlorocyclopropane (1S,2S)-1-bromo-2-chlorocyclopropane

(1S,2R)-1-bromo-2-chlorocyclopropane (1R,2S)-1-bromo-2-chlorocyclopropane

Page 27: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

Molecules with more than 1 stereocenter

R S SR

RR S S

(1R,2R)-1-bromo-2-chlorocyclopropane (1S,2S)-1-bromo-2-chlorocyclopropane

(1S,2R)-1-bromo-2-chlorocyclopropane (1R,2S)-1-bromo-2-chlorocyclopropane

Cl BrHH Br Cl

HH

Cl H

BrHH Cl

HBr

Page 28: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

CH3

Br

H

Br

H

C CH3C

H3C

H

Br

Br

H

CCCH3 CH3

H

Br

Br

H

C CH3C

2 or more stereocenters with symmetry leads to a meso isomer, superposable mirror images.

Consider 2,3-dibromobutane:

S S

H3C

Br

H

Br

H

CCCH3

S S RR

RR

CH3

Br

H

Br

H

C CH3CCH3

Br

H

Br

H

C CH3C CH3

Br

H

Br

H

C CH3C

Page 29: 1. Stereoisomerism 2. Chirality 3. Naming stereocenters - R/S configuration 4. Acyclic Molecules with 2 or more stereocenters 5. Cyclic Molecules with

2 or more stereocenters with symmetry leads to a meso isomer, superposable mirror images.

Consider 2,3-dibromobutane:

only 3 realized

H3C

H

Br

Br

H

CCCH3 CH3

H

Br

Br

H

C CH3C

H3C

Br

H

Br

H

CCCH3 CH3

Br

H

Br

H

C CH3C

S S R R

S SR R

meso isomer is diastereomeric to enantiomers

meso isomer

part2