1 siss termodinamica antonio ballarin denti [email protected]

31
1 SISS TERMODINAMICA Antonio Ballarin Denti [email protected]

Upload: isaia-farina

Post on 01-May-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

1

SISS

TERMODINAMICA

Antonio Ballarin [email protected]

Page 2: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

2

Spettro solare ed intensità energetica Sole Terra

Page 3: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

3

Flussi di energia solare

The thickness of the arrows represents the amount of energy absorbed, reflected, or stored per unit time in units of watts W.The U.S. consumption per unit time is approximately 3×1012 W

Only a small amount of the total solar energy reaching the earth is fixed by photosynthesis.

Page 4: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

4

Sistemi aperti,chiusi ed isolati (sistema e ambiente)

Page 5: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

5

CALORE: non ha le stesse proprietà di un fluido

Heat is transmitted through vacuum;

an indefinite amountof heat can be

extracted from asolid by friction.

These observations

were originally made by Benjamin Thompson

(Count Rumford)

A hot block of the same material and

the same size weigh the same!

Page 6: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

6

Esperienza di James Prescott Joule: lavoro e calore

a) b)

By transformating various forms of energy into heat inside a calorimeter (an adiabatic container), Joule showed that:

the same amount of heat appeared in the system when

the same amount of any form of energy was dissipated. Thus, if the mechanical and electrical work done in a) and b) is

the same, the temperature changes in both calorimeters will be

equal.

Page 7: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

7

Il contributo di Joule alla termodinamica fu la scoperta del principio di conservazione dell’energia, ovvero del:

primo principio della termodinamica

∆E = Q-W

Trasformazioni adiabatiche

Trasformazioni isoterme

Trasformazioni isocore

Trasformazioni isobare

Page 8: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

8

LAVORO

Page 9: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

9

CAPACITÀ TERMICA

Se V = cost dE = dQ

Nei gas perfetti : E = E(T) e

A

Page 10: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

10

Se P = cost dQ = dE + PdV

Nei gas perfetti : E = E(T)

B

Per n = 1:

Page 11: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

11

LA DIREZIONE DEI PROCESSI NATURALIEntropia

Although entropy can be calculated only for a reversible process between two equilibrium paths, all other proceses (including

irreversible) that go between the same initial and final states will have the same change in entropy.

Page 12: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

12

The total entropy of the system plus the environment does not change during a reversible heat transfer at constant T

Per un processo irreversibile : produzione interna di entropia

Page 13: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

13

Durante un processo irreversibile:

Entropy and energy behave differently when crossing the boundary of a system. Although the same energy appears inside the system and crosses the boundary, an excess entropy is “generated” inside the system in irreversible processes; we denote this additional amount of entropy by ∆Si

Page 14: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

14

Indichiamo con 1 un processo reversibile e con 2 un processo irreversibile

ENTROPIA E CALORE

Ma: S1 = S2

Se T1 = T2 

Page 15: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

15

ENTROPIA E LAVORO

CASO 1: processi reversibili

CASO 2: processi irreversibili

Page 16: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

16

Essendo E funzione di stato :

Page 17: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

17

Combinando prima e seconda legge:

Vediamo due processi irreversibili

Page 18: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

18

1) Trasferimento di calore Q da un corpo a temperatura T1 (1) ad un corpo a temperatura T2 (2)

Per i processi spontanei : T1 T2

Page 19: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

19

2) Espansione isoterma di un gas perfetto nel vuoto

Essendo : T = cost E = E(T) E = 0

Per un processo spontaneo : V2 V1

Page 20: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

20

ENERGIA LIBERA E POTENZIALI

1. La funzione di stato G ( energia libera di Gibbs )

Introduciamo alcune grandezze fondamentali:

iS = produzione interna di entropia

W’= lavoro utile (al netto del lavoro P – V )

Page 21: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

21

2. Lavoro utile e G

lavoro utile

lavoro dovuto a trasporto di carica elettrica

lavoro dovuto a trasporto

di massa

Page 22: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

22

3. Espressione completa di G

Per T e P costanti :

Page 23: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

23

4. Il potenziale chimico

ni = moli della specie chimica i - esima

Page 24: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

24

I

I

II

II

∆n

∆n

∆nThe change in free

energy when matter moves across a

boundary can be calculated as the

sum of the individual changes in eachcompartment;

∆Gtotal = ∆G1 + ∆G2

Page 25: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

25All’equilibrio : ∆G = 0 1= 2

Page 26: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

26

Nei processi spontanei : 1> 2 (∆G = 0)

Se

Detta C la concentrazione si trova sperimentalmente :

1< 2il processo non può avvenire nel senso ( )

Differenziando e integrando :

Tenendo conto del potenziale standard

Page 27: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

27

5. forma completa del potenziale chimico

Date due regioni con materia a concentrazioni C1 e C2 :

Se T1 = T2 e P1 = P2 e dato che1= 2° °

Page 28: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

28

Se T1 T2 e P1 P2 :

P = differenza di pressione tra il sistema 1 e 2

T = differenza di temperatura tra 1 e 2

S = entropia molare parziale

V = volume molare parziale

Page 29: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

29

6. Il potenziale elettrochimico

The work done when a charge q is transported from a region held at potential 1 to a region held at potential

2 can be broken up into two terms.

Page 30: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

30

Se le masse sono anche cariche

N0 = numero di Avogadro

n = numero di moliz = carica ionee = carica elettrone

F = e N0 = costante di Faraday

Page 31: 1 SISS TERMODINAMICA Antonio Ballarin Denti a.ballarindenti@dmf.unicatt.it

31

Per una mole ( n = 1 ) :

1. Sia T = 0 , = 0 :

2. Sia P = 0 , = 0 :

3. P = 0 , T = 0 :