1-s2.0-s1872497314000040-main

Upload: hugobenitezd

Post on 01-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 1-s2.0-S1872497314000040-main

    1/3

  • 8/9/2019 1-s2.0-S1872497314000040-main

    2/3

    which included questions on their birthplace and that of their

    parents, as well as any other additional information that they may

    have with respect to their paternal pedigree. For the purposes of

    this study, we aimed to select each participant among volunteers

    who were born in Cyprus and/or currently residing in North

    Cyprus, but also born to Turkish Cypriot parents, whereby for the

    large majority of cases both father and mother were born in

    Cyprus, and if not, at least the father was born in Cyprus.

    Considering the relatively recent mass population movements of

    the Turkish Cypriots across the island over the last fifty years or so

    as described above, the traditional paternal birthplace of the

    volunteers were assumed as the origin of each given Y-STR

    haplotype (Ht) observed.

    3. DNA

    extraction

    Genomic DNA extraction was carried out using the PureLinkTM

    Genomic DNA Mini Kit (Invitrogen, Carlsbad, CA, USA) according to

    the manufacturers instructions.

    4. PCR amplification

    PCR for 17 Y-STR loci [DYS456, DYS389I, DYS390, DYS389II,

    DYS458, DYS19, DYS385a/b, DYS393, DYS391, DYS439, DYS635,DYS392, Y-GATA-H4, DYS437, DYS438, and DYS448] was per-

    formed in a multiplex reaction using the AmpFlSTR1 Y-filerTM PCR

    Amplification Kit (Applied Biosystems, Foster City, CA, USA). The

    total amplification reaction volume was 25 ml, which contained9.2 ml of reaction mix,5.0 ml of primer set, 0.8 ml of AmpliTaq GoldDNA Polymerase and 10 ml of genomic DNA (approximately 0.51 ngml1). Amplifications were performed as described in theinstruction manual of the AmpFlSTR1 Y-filerTM PCR Amplification

    Kit and using the Applied Biosystems 2720 Thermal Cycler

    (Applied Biosystems) [2].

    5. Electrophoresis and typing

    Separation and detection of the 17 polymorphic Y-chromo-some-specific PCR amplicons were performed using the ABI 3130

    Genetic Analyzer (Applied Biosystems). Each sample was prepared

    by adding

    1.5

    ml

    of

    PCR

    product

    to

    a

    mixture

    of

    8.4

    ml

    of

    Hi-DiTM

    formamide

    and

    0.6

    ml

    of

    GeneScanTM-500

    LIZTM Internal

    Size

    Standard (both Applied Biosystems). Samples were analyzed using

    GeneMapper v4.0 (Applied Biosystems). Alleles were assigned

    according

    to

    the

    current

    International

    Society

    of

    Forensic

    Genetics

    (ISFG)

    guidelines

    for

    forensic

    Y-STR

    analysis

    [3].

    6. Data analyses

    Among the

    253

    haplotypes

    observed

    in

    the

    Turkish

    Cypriot

    Y-

    STR dataset, 22 haplotypes were each detected in two individuals

    and

    1

    haplotype

    was

    detected

    in

    three

    individuals

    (Table

    S1).Notably,

    2

    out

    of

    the

    3

    individuals

    who

    share

    the

    same

    haplotype

    that was

    observed

    in

    triplicate

    (Ht

    035),

    as

    well

    as

    7

    out

    of

    the

    22

    pairs of individuals who share the samehaplotype in eachpair (Hts

    066, 070, 079, 087, 142, 166, and193),were also found to share the

    same paternal

    geographic

    origins

    (i.e.,

    small,

    isolated

    villages)

    in

    each pair,

    albeit

    without

    any

    evidence

    toward

    close

    paternal

    relatedness. In other words, a total of 8 pairs of seemingly

    unrelated individuals were found to share not only the same

    haplotype

    in

    each

    pair,

    but

    also

    the

    same

    paternal

    geographic

    origin.

    These

    observations

    perhaps

    could

    be

    attributed

    to

    a

    past

    tendency toward patrilocal residence patterns in isolated sub-

    populations of Turkish Cypriots. The Turkish Cypriot Y-STR dataset

    has

    206

    unique

    haplotypes

    (UH)

    (81.42%;

    number

    of

    unique

    haplotypesobserved/total

    number

    of

    samples

    analyzed

    100)

    and

    229 different haplotypes, thus yielding a very high discrimination

    capacity (DC) (0.9051, total number of different haplotypes

    observed/total number of samples analyzed). The most common

    haplotype observed in the dataset is found at a frequency of 1.19%

    (Ht 035, observed in triplicate), which has so far never been

    reported in the YHRD database (as of 22 August 2013) [4].

    While we did not observe any locus duplications or null alleles

    inthe253 samples analyzed,based on the observed fragment sizes,

    we observed 43 allelic variants in total. 25 of the allelic variants

    (9.88% of all haplotypes) we observed were .2 intermediate alleles

    at the DYS458 locus, namely 16.2, 17.2, 18.2, 19.2 and 20.2.

    Presence of this relatively high percentage of DYS458*.2 variants

    (9.88%) in the Turkish Cypriot population compares well with

    those from geographically and/or historically related countries,

    such as Italy (4.5%), Greece (8.2%), Turkey (16.3% and 16.8% for the

    Southeastern Anatolia and Cukurova Regions, respectively) and

    Libya (28.4%) [59]. We also observed 18 other additional allelic

    variants in our haplotype dataset, including some further

    intermediate alleles: 1 haplotype with DYS385*12.2, 2 haplotypes

    with DYS392*10.2, 2 haplotypes with DYS458*21, 1 haplotype

    with DYS458*14.3, 6 haplotypes with DYS458*13, 2 haplotypes

    with DYS456*12, 1 haplotype with DYS635*17, 1 haplotype with

    DYS438*9.4, 1 haplotype with Y-GATA-H4*14, and 1 haplotype

    withDYS437*12. To our knowledge, while the intermediate allelicvariant DYS438*9.4 has never been reported before, either in the

    literature or in databases such as YHRD [4] and STRBase [10], the

    intermediate allelic variant DYS458*14.3 has been reported only

    once in the STRBase. As pointed out in Gusmao et al. [3],

    intermediate alleles of similar type have already been detected

    at these two loci. Nevertheless, the DYS458*14.3 and DYS438*9.4

    variants we have observed in our dataset were confirmed by

    double stranded DNA sequence analysis at the U.S. National

    Institute of Standards and Technology (NIST) (data not shown).

    Allelic variants may not only help better understand regional

    population genetics, but also help increase the discrimination

    power of DNA-based evidence.

    Haplotype frequencies

    were

    calculated

    using

    the

    Arlequin

    software suit v.3.5.1 [11]. Haplotype diversity (HD) was deter-mined according to the Neis formula: HD = n/(n 1)(1 SPi

    2),

    where n is the population size and Pi is the frequency of the ith

    haplotype

    [12]. Haplotype

    diversity

    was

    calculated

    to

    be

    0.9992,

    whereby

    the

    calculations

    excluded

    the

    diploid

    DYS385a/b

    loci

    altogether (Table S1). Gene diversity (GD) (equivalent to the power

    of discrimination) values for each locus were also calculated with

    the

    same

    equation,

    albeit

    using

    allele

    frequencies

    rather

    than

    haplotype frequencies

    (Table

    S2).

    Calculated

    average

    GD

    values

    were 0.6629 when the DYS385a/b was included as a diploid locus

    and 0.6429 when this locus was excluded all together. Pairwise

    genetic

    distance

    comparisons

    of

    the

    Turkish

    Cypriot

    Y-STR

    haplotype

    dataset

    with

    those

    from

    neighbouring

    populations

    [e.g., from Turkey (YA003668, n = 249, 17 loci for the Cukurova

    region;

    YA003727,

    n

    =

    86,

    17

    loci

    for

    the

    Southeastern

    Anatoliaregion;

    YA003265,

    n

    =

    113,

    11

    loci

    for

    the

    Central

    Anatolia

    region),

    Greece

    (YA003465,

    n

    =

    191,

    17

    loci

    for

    the

    Northern

    Greeks),

    Israel/

    Palestinian Authority area (YA003643, n = 155, 17 loci for Christian

    and Muslim Arabs), Egypt (YA003080, n = 83, 9 loci), and Italy

    (YA00372126 &

    YA003744,

    n

    =

    292,

    17

    loci)]

    and

    relatively

    distant

    populations

    [e.g.,

    from

    Lithuania

    (YA003661,

    n

    =

    194,

    17

    loci), Taiwan (YA003500, n = 208, 17 loci for the Paiwan popula-

    tion), and Australia (YA003697, n = 766, 17 loci for the Aboriginal

    population)]

    were

    carried

    out

    using

    the

    online

    tool

    at

    YHRD

    for

    the

    analysis

    of

    molecular

    variance

    (AMOVA)

    [48,1318]

    (Table

    S3).

    TheYHRDAMOVA tool uses theDYS389Ballelic values obtainedby

    subtracting the number of repeats at DYS389I from that of

    DYS389II,

    and

    excludes

    the

    DYS385a/b

    loci.

    Bonferroni

    correction

    was

    also

    applied

    to

    adjust

    for

    potential

    type

    I

    errors

    [19]. Finally,

    K. Teral et al./ Forensic Science International: Genetics 10 (2014) e1e3e2

  • 8/9/2019 1-s2.0-S1872497314000040-main

    3/3

    the SPSS Statistics software was used for MDS (multi-dimensional

    scaling) analysis in two dimensions using the genetic distance

    (Fst) values obtained during the AMOVA calculations (Figure S1)[20]. As summarized in Table S3, AMOVA results suggest that the

    calculatedFstvalues between the Turkish Cypriot population andthose from the neighbouring populations ranged from 0.0064 to

    0.0645, and those from the relatively distant populations ranged

    from 0.1203 to0.4118. Based on theFstvalues, the Turkish Cypriotpopulation was closest to those populations from Turkey that are

    also the closest geographically, i.e. the Southeastern Anatolia

    (Fst= 0.0064) and the Cukurova (Fst= 0.0150) regions. After theBonferroni correction, the P-values observed for the pairwise

    genetic comparisons between the Turkish Cypriot and the

    Southeastern Anatolia (P = 0.0776) and the Cukurova

    (P = 0.0002) populations suggested that the Turkish Cypriot

    population was most closely related to that from the Southeastern

    Anatoliafirst and then to that atCukurova. Indeed, results from the

    MDS analysis confirmed that the Turkish Cypriot population was

    closest to that from the Southeastern Anatolia in both dimensions,

    and less so to those from Cukurova, Northern Greece and Egypt. On

    the MDS plot the Turkish Cypriots dissociated from the Israel/

    Palestinian Authority area, Lithuania and Taiwan populations at

    least in one dimension or in both dimensions from the Central

    Anatolia, Italy and Australia populations. It must be noted that amajor limitationduring our AMOVA and subsequentMDS analyses

    was the relatively limited availability of comparable Y-STR

    datasets from around the Eastern Mediterranean region. To our

    knowledge, the TurkishCypriotY-STRhaplotypedatasetpresented

    hereconstitutes the first of its kind from Cyprus in the literature. In

    this respect, it is expected to contribute to a better understanding

    of the population genetics of the Eastern Mediterranean basin.

    7. Quality control

    All DNA extractions and subsequent Y-STR haplotyping were

    carried out at the Turkish Cypriot DNA Laboratory, whose

    proficiency

    has

    recently

    been

    certified

    through

    participation

    in

    the Y-STR Haplotyping Quality Assurance Exercise 2013 organizedby the YHRD (www.yhrd.org) [4]. Data presented herein have also

    been submitted to the YHRD for further quality checks in advance

    of

    publication

    and

    received

    the

    following

    accession

    number:

    Cyprus

    [Turkish

    Cypriot]

    YA003850.

    8. Other remarks

    This

    manuscript

    follows

    the

    guidelines

    for

    the

    publication

    of

    data requested by the journal [21].

    Acknowledgements

    We gratefully acknowledge Mrs. Gulden Plumer Kucuk, the

    Turkish Cypriot Member of the Committee on Missing Persons inCyprus (CMP), and all her staff, as well as all other volunteers who

    generously participated in this study. Financial support for this

    study has been provided by the CMP Turkish Cypriot Member

    Office (K.T. &C.G.) and the TRNC Presidency (C.G.).We are also very

    grateful to Ms. Carollyn R. Hill and Dr. Peter Vallone, both at NIST,

    for the characterization of the DYS458*14.3 and DYS438*9.4 allelic

    variants by sequencing. The primary purpose of this population

    study is to contribute to the ongoing CMP Project on the

    Exhumation, Identification and Return of Remains of Missing

    Persons, as well as to provide foundations for the forensic genetic

    services in North Cyprus.

    Appendix A. Supplementary data

    Supplementary material related to this article can be found, in the

    online version, at doi:10.1016/j.fsigen.2014.01.003 .

    References

    [1] The Earliest Prehistory of Cyprus: From Colonization to Exploitation, S. Swinny(Ed.), Cyprus American Archaeological Research InstituteMonographSeries, Vol.2, American Schools of Oriental Research Publications, Boston, 2001.

    [2] Applied Biosystems, AmpFlSTR1 Yfiler TM PCR Amplification Kit UsersManual,Foster City, CA, 2004.

    [3] L. Gusmao, J.M. Butler, A. Carracedo, P. Gill, M. Kayser, W.R. Mayr, N. Morling,M.Prinz, L. Roewer, C. Tyler-Smith, P.M. Schneider, DNACommission of theInterna-tional Society of Forensic Genetics (ISFG): an update of the recommendationsonthe use of Y-STRs in forensic analysis, Forensic Sci. Int. 157 (2006) 187197.

    [4] S. Willuweit, L. Roewer, Y chromosome haplotype reference database (YHRD):update, Forensic Sci. Int. Genet. (2007) 8387.

    [5]

    F. Brisighelli, A. Blanco-Verea, I. Boschi, P.Garaghnani, V.L.Pascali,A. Carracedo,C.Capelli, A. Salas, Patterns of Y-STR variation in Italy, Forensic Sci. Int. Genet. 6(2012) 834839.

    [6] L. Kovatsi, J.L. Saunier, J.A. Irwin, Population genetics of Y-chromosomeSTRS in apopulation of Northern Greeks, Forensic Sci. Int. Genet. 4 (2009) e21e22.

    [7] A. Serin,H. Canan, B. Alper, Y. Sertdemir, Haplotype frequencies of 17 Y-chromo-somal short tandemrepeat loci from theCukurova region of Turkey, Croat.Med. J.52 (2011) 703708.

    [8] F. Ozbas-Gerceker,N. Bozman,A. Arslan, A. Serin, Populationdata for17 Y-STRsinsamples from Southeastern Anatolia Region of Turkey, Int. J. Hum. Genet. 13(2013) 105111.

    [9] S. Triki-Fendri, P. Sanchez-Diz, D. Rey-Gonzales, I. Ayadi, S. Alfadhli, A. Rebai, A.Carracedo, Population genetics of 17-Y-STR markers in West Libya (Tripoliregion), Forensic Sci. Int. Genet. 7 (2013) e59e61.

    [10] C.M. Ruitberg, D.J. Reeder, J.M. Butler, STRBase: a short tandem repeat DNAdatabase for the human identity testing community, Nucleic Acids Res. 29(2001) 320322.

    [11] L. Excoffier, H.E. Lischer, Arlequin suite ver 3.5: a new series of programs toperform population genetics analyses under Linux and Windows, Mol. Ecol.

    Resour. 10 (3) (2010) 564567.[12] M. Nei, Molecular Evolutionary Genetics, Columbia University Press, NewYork,

    1987, pp. 176179.[13] A.H.Cakir, A. Celebioglu, E. Yardimci,Y-STRhaplotypes in Central Anatolia region

    of Turkey, Forensic Sci. Int. 144 (2004) 5964.[14] A.T. Fernandes, R. Goncalves, S. Gomes, D. Filon, A. Nebel,M. Faerman, A. Brehm,

    Y-chromosomal STRsin twopopulationsfrom Israeland thePalestinianAuthorityArea: Christian andMuslim Arabs, Forensic Sci. Int. Genet. 5 (2011) 561562.

    [15] F.Manni,P. Leonardi,A. Barakat, H. Rouba,E. Heyer,M. Klintschar, K.Mcelreavey,L. Quintana-Murci, Y-chromosome analysis in Egypt suggests a genetic regionalcontinuity in Northeastern Africa, Hum. Biol. 74 (2002) 645658.

    [16] M. Caplinskiene, A. Pauliukevicius, J. Jankauskiene, D. Bunokiene, J. Kukiene, K.Savanevskyte, A. Jureniene,Autosomal and Y-STRmutations in Lithuanian popu-lation, Forensic Sci. Int. Genet. Suppl. 1 (2008) 237238.

    [17] F.-C. Wu, C.-W.C.-E.P. Ho, K.-Y. Hu, S. Willuweit, L. Roewer, D.H. Liu, Y-chromo-somal STRs inthe TaiwanesePaiwan population, Int. J. LegalMed. 125(2011)3943.

    [18] D.A. Taylor, J.M. Henry,Haplotype data for16 Y-chromosomeSTR loci in Aborigi-

    naland Caucasianpopulationsin SouthAustralia,ForensicSci. Int.Genet. 6 (2012)e187e188.[19] Y. Hochberg, A sharper Bonferroni procedure for multiple tests of significance,

    Biometrika 75 (4) (1988) 800802.[20] SPSS Statistics for Windows, version 21, SPSS Inc., Chicago, IL.[21] A. Carrracedo, J.M. Butler, L. Gusmao, A. Linacre, W. Parson, L. Roewer, P.M.

    Schneider,Newguidelines forthe publication ofgenetic population data,ForensicSci. Int. Genet. 7 (2013) 217220.

    K. Teral et al./Forensic Science International: Genetics 10 (2014) e1e3 e3

    http://www.yhrd.org/http://dx.doi.org/10.1016/j.fsigen.2014.01.003http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0005http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0005http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0005http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0005http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0005http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0005http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0005http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0005http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0010http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0010http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0010http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0010http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0010http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0010http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0015http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0015http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0015http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0015http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0015http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0015http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0015http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0015http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0020http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0020http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0020http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0020http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0020http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0020http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0025http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0025http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0025http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0025http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0025http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0025http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0025http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0025http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0025http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0030http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0030http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0030http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0030http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0035http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0035http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0035http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0035http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0035http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0035http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0035http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0040http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0040http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0040http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0040http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0040http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0040http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0040http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0045http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0045http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0045http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0045http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0045http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0050http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0050http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0050http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0050http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0050http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0055http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0055http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0055http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0055http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0055http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0055http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0055http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0060http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0060http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0065http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0065http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0070http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0070http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0070http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0070http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0070http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0070http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0070http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0075http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0075http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0075http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0075http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0075http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0080http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0080http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0080http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0080http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0080http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0085http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0085http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0085http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0085http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0085http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0085http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0085http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0090http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0090http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0090http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0095http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0095http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0095http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0095http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0105http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0105http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0105http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0105http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0105http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0105http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0105http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0105http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0105http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0105http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0095http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0095http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0090http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0090http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0090http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0085http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0085http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0085http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0080http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0080http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0080http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0075http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0075http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0075http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0070http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0070http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0070http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0065http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0065http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0060http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0060http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0055http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0055http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0055http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0050http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0050http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0050http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0045http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0045http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0045http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0040http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0040http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0040http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0035http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0035http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0035http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0030http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0030http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0025http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0025http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0025http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0020http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0020http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0015http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0015http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0015http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0015http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0010http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0010http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0005http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0005http://refhub.elsevier.com/S1872-4973(14)00004-0/sbref0005http://dx.doi.org/10.1016/j.fsigen.2014.01.003http://www.yhrd.org/