1-s2.0-s100495411400144x-main

Upload: bayu-pramana-putra

Post on 13-Apr-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/26/2019 1-s2.0-S100495411400144X-main

    1/6

    Separation Science and Engineering

    Removal of Aniline from Wastewater Using Hollow Fiber Renewal Liquid Membrane

    Zhongqi Ren , Xinyan Zhu, Wei Liu, Wei Sun, Weidong Zhang, Junteng Liu

    Beijing Key Laboratory of Membrane Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China

    a b s t r a c ta r t i c l e i n f o

    Article history:

    Received 20 April 2013Received in revised form 10 December 2013Accepted 2 January 2014

    Available online xxxx

    Keywords:

    AnilineWastewater treatmentHollow ber renewal liquid membraneMathematic modelMass transfer

    Hollow ber renewal liquid membrane (HFRLM) method was proposed based on the surface renewal theory forremoval of aniline from waste water. The system of aniline + D2EHPA in kerosene + HCl was used. Aqueouslayer diffusion in the feed phase is the rate-control step, and the inuence of lumen side ow rate on the masstransfer is more signicant than that on the shell side. The resistance of overall mass transfer is greatly reducedbecause of the mass transfer intensication in the renewal of liquid membrane on the lumen side. The drivingforce of mass transfer can be considered as a function of distribution equilibrium, and the overall mass transfercoefcient increases with the increase of pH in the feed solution, HCl concentration and D2EHPA concentration,and decreases with the increase of initial aniline concentration. A mass transfer model is developed for HFRLMbased on thesurfacerenewal theory. Thecalculated results agree wellwithexperimental results. TheHFRLMpro-cess is a promising method for aniline wastewater treatment. 2014The Chemical Industry andEngineeringSociety of China,and Chemical Industry Press.All rights reserved.

    1. Introduction

    Aniline and its derivatives are important intermediates in manufac-ture of dyes, rubbers, plastic, and paints [1,2]. Aniline is generally harmfulto public health and environment due to its toxicity and carcinogenicity[3]. Its dissolution in water may reach 3.5%, causing water pollution andthreatening drinking water sources[4].It is critical to treat the anilinewaste prior to its disposal.

    Some efforts have been made to treat aniline wastewater, such asliquidliquid extraction[5,6], adsorption[7], ligand exchanger[8], bio-logical treatment[9], and photodecomposition[10]. These traditionalmethods are associated with high cost, complex operation and second-ary pollution, especially the low efciency in removing solutes fromdilute solutions. It needs to look for alternative methods with high ef-ciency. Liquid membrane technique, based on extraction and strippingprocesses, has been widely used in the aniline wastewater treatmentfor its high selectivity, effectiveness, etc. [1116]. Datta et al. [17]separated aniline in a mixed ow reactor, with the maximum anilineremoval of 98.53%. Devulapalli and Jones[4]removed aniline from anaqueous solution with kerosene and sorbitan monooleate (span 80) as

    the membrane phase and hydrochloric acid as the internal phase, withthe removal of 99.5%. However, lacking of long-time stability, liquidmembrane techniques have not been industrialized to a large scale[18].

    Hollow berrenewal liquid membrane (HFRLM) is a new techniquewith good stability and high mass transfer rate proposed by Zhang et al.

    and Renet al.[1921], based on the surface renewal theory and inte-grates advantagesofber membraneextraction process,liquid lm per-meation process, and other liquid membrane systems. In the process,thinner liquid membrane forms on the internal wall ofbers with thewetting afnity of hydrophobic ber and organic phase, and the masstransfer could be intensied by renewal effect, which is the exchangebetween dispersed organic droplets and the organiclm. HFRLM tech-nique has been successfully used for the removal and recovery of metalions [Cu(II), Cr(VI),etc.] from simulated wastewater containing a singlemetal ion, and the removal efciency is higher than 99.7%.

    In this study, HFRLM process is used to treat aniline wastewater.The system of di-(2-ethylhexyl)phosphoric acid (D2EHPA) in kero-sene + HCl is used. The effects of operating conditions on the masstransfer in the HFRLM are investigated. A mathematical model forthe process is developed based on the surface renewal theory.

    2. Mathematical Model

    The overall mass transfer coefcient based on the feed phase in thehollow ber module is[18]

    1Kf

    1mkR

    1mkm

    1m

    m0

    ks

    : 1

    The mass transfer coefcient on the shell side,ks, is correlated by[22]

    4rhksDRNH2

    0:245 4rhus

    v

    23 v

    DRNH2

    !13

    2

    Chinese Journal of Chemical Engineering xxx (2014) xxxxxx

    Supported by the Programfor NewCentury Excellent Talentsin University (NCET-10-0210) and the National Natural Science Foundation of China (21076011 and 21276012). Corresponding author.

    E-mail address:[email protected](Z. Ren).

    CJCHE-00096; No of Pages 6

    http://dx.doi.org/10.1016/j.cjche.2014.09.035

    1004-9541/ 2014 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.

    Contents lists available atScienceDirect

    Chinese Journal of Chemical Engineering

    j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / C J C H E

    Please cite this article as: Z. Ren,et al, Removal of Aniline from Wastewater Using Hollow Fiber Renewal Liquid Membrane,Chin. J. Chem. Eng.(2014),http://dx.doi.org/10.1016/j.cjche.2014.09.035

    http://dx.doi.org/10.1016/j.cjche.2014.09.035http://dx.doi.org/10.1016/j.cjche.2014.09.035http://dx.doi.org/10.1016/j.cjche.2014.09.035mailto:[email protected]://dx.doi.org/10.1016/j.cjche.2014.09.035http://www.sciencedirect.com/science/journal/http://www.elsevier.com/locate/CJCHEhttp://dx.doi.org/10.1016/j.cjche.2014.09.035http://dx.doi.org/10.1016/j.cjche.2014.09.035http://www.elsevier.com/locate/CJCHEhttp://www.sciencedirect.com/science/journal/http://dx.doi.org/10.1016/j.cjche.2014.09.035mailto:[email protected]://dx.doi.org/10.1016/j.cjche.2014.09.035
  • 7/26/2019 1-s2.0-S100495411400144X-main

    2/6

    wherev is the kinematic viscosity of the stripping phase, which is1.06 106 m2s1, andrhis the hydraulic radius of the shell side,

    rh R

    2N r

    ext 2

    RNrext : 3

    The mass transfer coefcient on the membrane phase can be esti-

    mated by[23]

    km Dm

    dextd int

    =2: 4

    Generally, the mass transfer coefcient on the tube side is describedby the Lvque correlation. In a HFRLM process, the stirred mixture offeed phase and organic phase at a high w/o ratio is pumped throughthe lumen side of the hollow ber module, and the droplets are distrib-uted in the tube uid, so the mass transfer coefcient in the tube isimitedby the Lvque correlation. Dueto theexchangeof organic drop-lets and internal organiclm in the liquid membrane renewal process,the mass transfer is intensied. The amount of organic droplets in thetube is a key factor for the mass transfer. Based on the Lvque correla-

    tion, the surface renewal theory, and the inuence of the amount oforganic droplets, a correlation is proposed for mass transfer on thetube side

    Sh0:9 1 0:7Re0:23 di

    L Sc

    0:335

    whereShis the Sherwood number,Scis the Schmidt number,Reis theReynolds number, and is the hold-up of dispersed organic phase.

    3. Materials and Methods

    3.1. Materials

    Table 1gives all chemicals employed in this work.

    3.2. Experimental procedure

    All experiments were conducted in self-designed systems. The hy-drophobicbers were pre-wetted with organic phase at least 48 h forlling the pores ofbers with organic phase. The stirred mixture offeed phase and organic phase at a high w/o ratio was pumped throughthe lumen side of the hollow ber module. The stripping phase waspumped through the shell side counter-currently. Both sides are in sin-gle path mode. The hollow ber modules are self-assembled in smalllaboratory scale, with two 0300.0 dm3 peristaltic pumps and owme-ters. The polypropylene hollowber membranes are supplied by Hang-zhou Qiushi Membrane Technology Ltd. The specication of thesehollowber membranes and modules is listed inTable 2. The experi-mental set-up is the same as that in reference[21].

    The overall mass transfer coefcient based on the feed phase is

    KfQf C

    outf C

    inf

    AC

    6

    where

    C

    Cinf m

    0

    mC

    outf

    C

    outf

    m0

    mC

    ins

    lnC

    inf

    m0

    mC

    outs

    Coutf m0

    mC

    ins

    : 7

    3.3. Analysis

    Aniline concentration was determined by spectrometric absorptionmeasurements(UV-2000) at 230 nm.The samples were dilutedand an-

    alyzed at pH 7 adjusted by a phosphate buffer. A digital precisionionometer model PXS-450 (Shanghai Dapu Co. Ltd.) with a combinedglass electrode was used for pH measurements (0.01 pH). Themeter was standardized against 4.01, 6.85, and 9.14 standard buffersolutions.

    4. Results and Discussion

    4.1. Inuence of operation mode

    Two operation modes were used to study the mass transfer mecha-nism in the HFRLM process, as listed inTable 3.

    The resistances in the HFRLM process are from the diffusion inthe renewal process of liquid membrane layer on the lumen side

    RR, diffusion in the membrane phaseRmand the aqueous layer dif-fusion on the shell side Rs. The total resistance of mass transfer isR = RR+ Rm + Rs [17]. The calculated resistances are listed inTable 4. The total resistance with Mode 1 is lower than that withMode 2. The overall mass transfer in operation Mode 1 is higher,as shown inFigs. 1 and 2.The resistance of mass transfer is mainlyon the lumen side in operation Mode 1, while in operation Mode 2

    Table 1

    Chemicals, stated purities, and suppliers

    Chemical Purity (mass percentage) Supplier

    Aniline N99.5% GuangFu Chemical ReagentsCompany

    D2EHPA N96.0% Tianjin Jinke Institute of Fine Chemicals

    Sodium hydroxide N96.0% Beijing Chemical WorksHCl 36.0%38.0% Beijing Chemical WorksKerosene Laboratory reagent grade Tianjin Fuchen Chemical

    Reagent Plant

    Table 2

    Characteristic of the hollow ber module

    Shell characteristics

    Material GlassLength,L/cm 30.2Internal diameter,di/cm 2.60Outer diameter,do/cm 2.80Fiber characteristics

    Material PolypropyleneNumber ofbers,N 1000Effective length,L/cm 30.0External diameter,dext/m 450Internal diameter,dint/m 350Effective surface area,A/m2 0.42Membrane tortuosity, 2.00Membrane porosity, 0.82

    Table 3

    Operation mode of HFRLM

    Operation mode Shell side Tube side

    Mode 1 Stripping phase Feed + D2EHPA-keroseneMode 2 Feed phase Stripping + D2EHPA-kerosene

    2 Z. Ren et al. / Chinese Journal of Chemical Engineering xxx (2014) xxxxxx

    Please cite this article as: Z. Ren,et al, Removal of Aniline from Wastewater Using Hollow Fiber Renewal Liquid Membrane,Chin. J. Chem. Eng.(2014), http://dx.doi.org/10.1016/j.cjche.2014.09.035

    http://dx.doi.org/10.1016/j.cjche.2014.09.035http://dx.doi.org/10.1016/j.cjche.2014.09.035
  • 7/26/2019 1-s2.0-S100495411400144X-main

    3/6

    it is mainly on the shell side. In a HFRLM process, the renewal effectcould intensify the mass transfer and reduce the mass transfer resis-tance on the tube side. With Mode 2, the renewal effect reduces themass transfer resistance of aniline transport from the liquid membraneto the stripping phase, which is not dominant. In operation Mode 1, thediffusion of aniline through the aqueous boundary layerof feed phase isintensied by the renewal effectof liquid membrane. Thus the diffusionof aniline through aqueous boundary layer of feed phase is the rate-controlling step.

    4.2. Inuence ofow rates

    The ow rates on both sides are important hydrodynamic operationfactors in a HFRLM process, which determine the mechanism of masstransfer and rate-controlling steps in HFRLM process. Figs. 3 and 4show that the inuence ofow rate on the lumen side is more signi-cant than that on the shell side. It also indicates that the diffusion ofaniline through aqueous boundary layer of feed phase on the tube sideis a dominant step in the whole transport processes.

    4.3. Inuence of pH in the feed phase

    The pH in feed solution has a direct impact on the form of aniline inaqueous solutions. When pH b7, aniline is in the form of aniliniumcations, when pH N7, aniline is basically in molecular form. The pH inthe feed phase has signicant effect on the extraction of aniline fromaqueous and organic solution of D2EHPA-kerosene. As shown inFig. 5,the overall mass transfer coefcient increases with pH in the feedsolution, mainly because the distribution coefcient of aniline betweenorganic and aqueous phases increases with pH in the feed solution. Athigher pH, the media become alkaline, favoring the formationof aniline,

    which is ofbenet to thereaction of D2EHPA with aniline, so theoverallmass transfer coefcient increases.

    4.4. Inuence of initial aniline concentration in the feed phase

    Fig. 6shows that the overall mass transfer coefcient of aniline de-creases with the increase of initial aniline concentration in the feed

    phase, mainly because the interface betweenfeed phase and membranephase is limited under the condition. The liquid membrane is saturatedand the transport of aniline across the membrane phase is limited.

    4.5. Inuence of HCl concentration in the stripping phase

    The HCl concentration in the stripping phase has a signicant effecton the transport of aniline from feed phase to stripping phase.Fig. 7shows the effect of HCl concentration in the stripping phase on themass transfer of HFRLM process in the range of 0.025 molL1 to0.25 molL1. As the HCl concentration in stripping phase increasesfrom 0.025 molL1 to 0.15 molL1, the overall mass transfer coef-cient of aniline increases. When the concentration of HCl increasesfrom 0.15 molL1 to 0.25 molL1, the overall mass transfer coef-

    cient changes little. In this work, the mass transfer driving force is ani-line concentration gradient between feed phase and stripping phase.The increase of HCl concentration in the stripping phase leads to highertransport capacity, because aniline turns to form anilinium cations,which increases the mass transfer driving force in HFRLM process. Asshown inFig. 7, the effect of HCl concentration in the stripping phaseon the mass transfer coefcient is small. Thus a low HCl concentrationin the stripping phase is enough for the facilitated transport process ofaniline by HFRLM.

    Table 4

    Mass transfer resistances for treatment of aniline wastewater by HFRLM

    ut 103/ms1 RR 10

    6/sm1 Rm 104/sm1 Rs 10

    5/sm1 R 106/sm1 RR/R Rm/R Rs/R

    Mode 11.7 2.4 3.3 7.3 3.1 0.754 0.011 0.2352.6 2.1 3.3 7.3 2.9 0.735 0.012 0.2533.3 2.0 3.3 7.3 2.8 0.724 0.012 0.2644.9 1.8 3.3 7.3 2.6 0.704 0.013 0.283

    Mode 2

    1.0 2.7 3.3 29.1 5.6 0.275 0.006 0.7191.7 2.4 3.3 29.1 5.3 0.244 0.006 0.7502.3 2.2 3.3 29.1 5.1 0.228 0.006 0.7663.5 2.0 3.3 29.1 4.9 0.201 0.007 0.7925.2 1.8 3.3 29.1 4.7 0.277 0.007 0.716

    0.00 0.05 0.10 0.15 0.20 0.25 0.301.00x10

    -7

    2.00x10-7

    3.00x10-7

    4.00x10-7

    5.00x10-7

    6.00x10-7

    Mode 1

    Mode 2

    Kf, Cal

    Kf

    m.s

    -1

    uscm.s

    -1

    Fig. 1.Effect of operation mode on mass transfer coefcient of HFRLM. ([D2EHPA] =0.3 molL1, o/w = 1:50, [HCl] = 0.1 molL1; Mode 1: ut= 5.0 mlmin

    1, Mode 2:

    ut= 10.0 mlmin1

    ).

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.00

    2.00x10-7

    4.00x10-7

    6.00x10

    -7

    8.00x10-7

    Mode 1Mode 2

    Kf, Cal

    Kf

    m.s

    -1

    utm.s

    -1

    Fig. 2. Effect of operation modeon mass transfer coefcientof HFRLM at lowerow rates.([D2EHPA] = 0.3 molL1, o/w = 1:50, [HCl] = 0.1 molL1; Mode 1: us =

    4.2 mlmin1

    , Mode 2:us= 9.0 mlmin1

    ).

    3Z. Ren et al. / Chinese Journal of Chemical Engineering xxx (2014) xxxxxx

    Please cite this article as: Z. Ren,et al, Removal of Aniline from Wastewater Using Hollow Fiber Renewal Liquid Membrane,Chin. J. Chem. Eng.(2014),http://dx.doi.org/10.1016/j.cjche.2014.09.035

    http://dx.doi.org/10.1016/j.cjche.2014.09.035http://dx.doi.org/10.1016/j.cjche.2014.09.035
  • 7/26/2019 1-s2.0-S100495411400144X-main

    4/6

    4.6. Inuence of membrane liquid composition

    As in a carrier-facilitated transport process, D2EHPA concentrationin organic phase plays a signicant role in HFRLM process, which hasan importantinuenceon the facilitated transport capacity, the thicknessof liquid membrane layer, mass transfer driving force, chemical reactionequilibrium, the renewal rate of dispersion, etc. Fig. 8 shows the inuenceof D2EHPA concentration on transport process in D2EHPA concentrationrange from 0.05 molL1 to 0.6 molL1. As the D2EHPA concentrationin the membrane phase increases from 0.05 molL1 to 0.4 molL1,theoverall mass transfer coefcientincreases.Higher D2EHPA concentra-tion leads to higher facilitated transport capacity,mainly because the dis-tribution coefcient of aniline between organic phase and aqueous phaseincreases with D2EHPA concentration in membrane phase. The drivingforce of mass transfer from the distribution equilibrium increases withthe D2EHPA concentration, so the mass transfer increases. However, ateven higher D2EHPA concentration, the overall mass transfer coefcientchanges little. The facilitated transport of aniline in the membrane is dif-

    fusion controlled, and higher D2EHPA concentration in the membranephase results in higher viscosity, increasing the diffusion resistance of an-ilinecomplex in themembrane phase. Moreover, higher concentration ofD2EHPAin themembranephasewould increase therisk of emulsicationin the HFRLM process.

    4.7. Recycling experiments of HFRLM

    In order to explore the transport result in the HFRLM process,0.3 molL1 D2EHPA-kerosene was used as liquid membrane. The

    feed solution consisting of 500 ml with an initial aniline concentrationof 1000 mgL1 and 10 ml 0.3 molL1 D2EHPA-kerosene was mixedand owed on the tube side at the volumetric rate of 50 mlmin1.The stripping solution of 250 ml 0.1 molL1 HCl was circulated andcounter-currentlyowed through the shell side at the volumetric rateof 50 mlmin1.

    Fig. 9shows an up-hilleffect occurred after 30 min. At about 5 h,the removal efciency of aniline reached 99.9%, and the recovery ef-ciency reached 94%, indicating an almost complete facilitated transportfrom teed phase to stripping phase. The treatment of wastewater andthe recovery of aniline are simultaneously achieved in the HFRLM.Therefore, it is a promising method for dealing with aniline wastewater.

    4.8. The comparison of calculated and experimental results

    The diffusivityof aniline in aqueous solution, Daq, is estimated by theWilkeChang equation as 1.0 109 m2s1. The diffusivity of aniline-D2EHPA in membrane phase,Dm, is 4.3 10

    10 m2s1.

    As shown in Fig. 10, calculated results agree well with experimentalresults. The weighted standard deviation is calculated by

    S:D:

    ffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffi ffiffiffiXni1

    Kf;Cal.

    Kf;Exp1

    2n1

    vuuut 100% 8

    wherenis the number of experimental data, subscripts Cal and Expare the calculated and experimental values, respectively. The weightedstandard deviation is less than 10%, validating the proposed model.

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.74.00x10

    -7

    5.00x10-7

    6.00x10-7

    7.00x10-7

    8.00x10-7

    K

    f, ExpKf, Cal

    Kf

    m.s

    -1

    ufm.s-1

    Fig. 3. Effect of lumen side ow rate on mass transfer. ([D2EHPA] = 0.3 molL1,o/w = 1:50, [HCl] = 0.1 molL1, us = 4.2 mlmin

    1).

    0.00 0.05 0.10 0.15 0.20 0.25 0.302.00x10

    -7

    3.00x10-7

    4.00x10-7

    5.00x10-7

    6.00x10-7

    Kf, Exp

    Kf, Cal

    Kf

    -1

    usm.s

    -1

    m.s

    Fig. 4.Effect of shell side ow rate on mass transfer. ([D2EHPA] = 0.3 molL1,

    o/w = 1:50, [HCl] = 0.1 molL1

    , ut = 5.0 mlmin1

    ).

    2 4 6 8 10 120.00

    2.00x10-7

    4.00x10-7

    6.00x10-7

    8.00x10-7

    Kf, Exp

    Kf, Cal

    Kf

    m.s

    -1

    pH

    Fig. 5.Effect of pH in the feed phase on overall mass transfer coefcient. ([D2EHPA] =0.3 molL1, o/w = 1:50, [HCl] = 0.1 molL1, ut = 3.7 mlmin

    1, us = 4.4 mlmin1).

    0.00 1000.00 2000.00 3000.00 4000.002.00x10

    -7

    3.00x10-7

    4.00x10-7

    5.00x10-7

    6.00x10-7

    7.00x10-7

    8.00x10-7

    Kf, Exp

    Kf, Cal

    Kf

    m.s

    -1

    Cmg.L-1

    Fig. 6.Effect of initial aniline concentration in the feed phase. ([D2EHPA] = 0.3 molL1,

    o/w = 1:50, [HCl] = 0.1 molL1

    ,ut= 3.8 mlmin1

    ,us= 4.6 mlmin1

    ).

    4 Z. Ren et al. / Chinese Journal of Chemical Engineering xxx (2014) xxxxxx

    Please cite this article as: Z. Ren,et al, Removal of Aniline from Wastewater Using Hollow Fiber Renewal Liquid Membrane,Chin. J. Chem. Eng.(2014), http://dx.doi.org/10.1016/j.cjche.2014.09.035

    http://dx.doi.org/10.1016/j.cjche.2014.09.035http://dx.doi.org/10.1016/j.cjche.2014.09.035
  • 7/26/2019 1-s2.0-S100495411400144X-main

    5/6

    The deviation may result from experimental error, the simplication onthe model with the inuence of non-ideality on the shell side on themasstransfer ignored, and the accuracyof model parameters, especiallyformandm.

    5. Conclusions

    HFRLM was used for the treatment of aniline wastewater with di(2-ethylhexly)-phosphoric acid and kerosene as liquid membrane phase,and HCl solution as stripping phase.

    Aqueouslayer diffusion in the feed phase is the rate-controlling step.When the mixture of feed and D2EHPA-Kerosene is on the lumen side,the resistance for overall mass transfer is greatly reduced becausethe mass transfer is intensied by the renewal effect of the liquid mem-brane. The inuence of lumen side ow rate on the mass transfer isgreater than that on the shell side, and the overall mass transfer co-efcient increases with the ow rate on the lumen side. The overallmass transfer coefcient increaseswith pH value in thefeed solution,mainly because the distribution coefcient of aniline between organ-ic phase and aqueous phase increases with pH. The overall masstransfer coefcient of aniline decreases with the increase of initialaniline concentration, mainly because the interface between feed

    phase and membrane phase is limited under the condition, leadingto the saturation of liquid membrane and limiting the aniline trans-port. The recycling experiment shows that HFRLM can avoid the pol-lutionby wastewater andrecover aniline, so it is a promisingmethodfor aniline wastewater treatment.

    The results from the mass transfer model for HFRLM based on thesurface renewal theory agree well with experiment results.

    Nomenclature

    A effective mass transfer area, m2

    C concentration, mgL1

    D diffusivity, m2s1

    d diameter, mKf overall mass transfer coefcient base on the feed phase,

    ms

    1

    k mass transfer coefcient, ms1

    L effective length, mm distribution coefcient of extraction processm distribution coefcient of back-extraction processQ volumetricow rate, m3s1

    R resistance of mass transfer, sm1

    Re Reynolds numberr radius of hollowber, mrh hydraulic diameter, mSc Schmidt numberSh Sherwood numberu velocity, ms1

    v kinematic viscosity, m2s1

    porosity of hollow ber membrane support

    0.00 0.05 0.10 0.15 0.20 0.25 0.300.00

    2.00x10-7

    4.00x10-7

    6.00x10-7

    8.00x10-7

    Kf, Cal

    Kf, Exp

    Kf

    m.s

    -1

    CHCl

    mol.L-1

    Fig. 7.Effect of HCl concentration in the stripping phase. ([D2EHPA] = 0.3 molL1,o/w = 1:50,ut= 3.7 mlmin

    1,us= 4.4 mlmin1).

    0.0 0.2 0.4 0.6 0.80.00

    2.00x10-7

    4.00x10-7

    6.00x10-7

    8.00x10-7

    Kf, Exp

    Kf, Cal

    Kf

    m.s

    -1

    CD2EHPA

    /mol.L-1

    Fig. 8.Effect of concentration of D2EHPA in membrane liquid phase on mass transfer co-efcient in HFRLM. (o/w = 1:50, [HCl] = 0.1 molL1, ut = 3.7 mlmin

    1, us =4.4 mlmin1).

    0 50 100 150 200 250 3000.00

    500.00

    1000.00

    1500.00

    2000.00

    2500.00

    C/mg.L

    -1

    tmin

    Cf,Cal

    Cs,Cal

    Cf,Exp

    Cs,Exp

    Fig. 9.The aniline concentration in the feed phase and stripping phase. ([D2EHPA] =

    0.3 molL1

    , o/w= 1:50, [HCl]= 0.1 molL1

    , ut = 50.0 mlmin1

    , us = 50.0 mlmin1

    ).

    0.00 2.00x10-7

    4.00x10-7

    6.00x10-7

    8.00x10-7

    0.00

    2.00x10-7

    4.00x10-7

    6.00x10-7

    8.00x10-7

    KExp

    /m.s

    -1

    KCal

    /m.s-1

    Fig. 10.The comparison of calculated value and experimental value.

    5Z. Ren et al. / Chinese Journal of Chemical Engineering xxx (2014) xxxxxx

    Please cite this article as: Z. Ren,et al, Removal of Aniline from Wastewater Using Hollow Fiber Renewal Liquid Membrane,Chin. J. Chem. Eng.(2014),http://dx.doi.org/10.1016/j.cjche.2014.09.035

    http://dx.doi.org/10.1016/j.cjche.2014.09.035http://dx.doi.org/10.1016/j.cjche.2014.09.035
  • 7/26/2019 1-s2.0-S100495411400144X-main

    6/6

    tortuosity of hollow ber membrane support dispersed phase hold-up

    Superscripts

    ext externalin insideint internal

    out outside

    Subscripts

    f feed phasem membrane phaseR renewals shell sidet tube side

    References

    [1] G. Palmiotto, G. Pieraccini, G. Moneti, P. Dolora, Determination of the levels ofaromatic amines in indoor and outdoor air in Italy, Chemosphere43 (2001)355361.

    [2] H.L. An, L.L. Zhang, B.G. Yuan, X.Q. Zhao, Y.J. Wang, Inuence of solvent on reactionpath to synthesis of methyl n-phenyl carbamate from aniline, CO 2and methanol,Chin. J. Chem. Eng.22 (5) (2014) 607610.

    [3] S. Laha, R.G. Luthy, Oxidation of aniline and other primary aromatic amines by man-ganese dioxide,Environ. Sci. Technol.24 (1990) 363373.

    [4] R. Devulapalli, F. Jones, Separation of aniline from aqueous solutions using emulsionliquid membranes,J. Hazard. Mater.70 (1999) 157170.

    [5] X.H. Wu, Z.G. Lei, Q.S. Li, J.Q. Zhu, B.H. Chen, Liquidliquid extraction of low-concentration aniline from aqueous solutions with salts, Ind. Eng. Chem. Res. 49(2010) 25812588.

    [6] C.H. Li, Recovery of aniline from wastewater by nitrobenzene extraction enhancedwith salting-out effect,Biomed. Environ. Sci.23 (2010) 208212.

    [7] F.Q. An, X.Q. Feng, B.J. Gao, Adsorption of aniline from aqueous solution using noveladsorbent PAM/SiO2,Chem. Eng. J.151 (2009) 183187.

    [8] A.A. Grten, S. Ucan, M.A. zler, A. Ayar, Removal of aniline from aqueous solutionby PVC-CDAE ligand-exchanger,J. Hazard. Mater.120 (2005) 8187.

    [9] L. Wang, S. Barrington, J.W. Kim, Biodegradation of pentyl amine and aniline frompetrochemical wastewater,J. Environ. Manag.83 (2007) 191197.

    [10] A. Kumar, N. Mathur, Photocatalytic oxidation of aniline using Ag+-loaded TiO2suspensions, Appl. Catal. A275 (2004) 189197.

    [11] J.D.Gyves, E. Rodrguez, Metal ion separations by supported liquid membranes, Ind.Eng. Chem. Res.38 (1999) 21822193.

    [12] R. Bloch, A. Finkelstein, O. Kedem, Metal ion separation by dialysis through solvent

    membranes,Ind. Eng. Chem. Process. Des. Dev. 6 (1967) 231

    237.[13] P.S. Kulkarni, S. Mukhopadhyay, M.P. Bellary, S.K. Ghosh, Studies on membrane sta-bility and recovery of uranium (VI) from aqueous solutions using a liquid emulsionmembrane process,hydrometallurgy64 (2002) 4958.

    [14] L. Pei,L.M. Wang, Stripping dispersion hollow ber liquid membrane containing PC-88A as carrier and HCl for transport behavior of trivalent dysprosium, J. Membr. Sci.378 (2011) 520530.

    [15] C.B. Xiao, J. Ning, H. Yan, X.D. Sun, J.Y. Hu, Biodegradation of aniline by a newly iso-lated Delftiasp. XYJ6,Chin. J. Chem. Eng. 17 (3) (2009) 500505.

    [16] E. Otal, L.F. Vilches, Y. Luna, R. Poblete, J.M. Garcia-Maya, C. Fernandez-Pereira,Ammonium ion adsorption and settleability improvement achieved in a syntheticzeolite-amended activated sludge,Chin. J. Chem. Eng.21 (9) (2013) 10621068.

    [17] S. Datta, P.K. Bhattacharya, N. Velma, Removal of aniline from aqueous solution in amixed ow reactor using emulsion liquid membrane,J. Membr. Sci.226 (2003)185201.

    [18] Z.Q. Ren, W.D. Zhang, Y. Dai, Y.Q. Yang, Z.S. Hao, Modeling of effect of pH on masstransfer of copper extraction by hollow ber renewal liquid membrane,Ind. Eng.Chem. Res.47 (2008) 42564262.

    [19] W.D. Zhang, A.M. Li, Z.Q. Ren, Study on mass transfer characteristics of hollow ber

    renewal liquid membrane,J. Chem. Eng. China Univ.20 (2006) 843846.[20] Z.Q. Ren, W.D. Zhang, Y.M. Liu, Y. Dai, C.H. Chui, New liquid membrane technology

    for simultaneous extraction and stripping of copper(II) from wastewater, Chem.Eng. Sci.62 (2007) 60906101.

    [21] Z.Q. Ren, W.D. Zhang, Y.Y. Lv, J. Li, Simultaneous extraction and concentration ofpenicillin G by hollow ber renewal liquid membrane, Biotechnol. Prog. 25 (2)(2009) 468474.

    [22] S.Y. Hu, J.M. Wiencek, Emulsion liquid membrane extraction of copper using ahollow ber contactor,AIChE J.44 (1998) 570581.

    [23] R. Prasad, K.K. Sirkar, Dispersion-free solvent extraction with micro-porous hollow-ber modules,AIChE J.34 (2) (1988) 177188.

    6 Z. Ren et al. / Chinese Journal of Chemical Engineering xxx (2014) xxxxxx

    Please cite this article as: Z. Ren,et al, Removal of Aniline from Wastewater Using Hollow Fiber Renewal Liquid Membrane,Chin. J. Chem. Eng.(2014), http://dx.doi.org/10.1016/j.cjche.2014.09.035

    http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0005http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0005http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0005http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0005http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0005http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0005http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0005http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0105http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0105http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0105http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0105http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0105http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0105http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0105http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0105http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0105http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0105http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0010http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0010http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0010http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0010http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0010http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0010http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0015http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0015http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0015http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0015http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0015http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0015http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0020http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0020http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0020http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0020http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0020http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0020http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0020http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0020http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0020http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0025http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0025http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0025http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0025http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0025http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0025http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0030http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0030http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0030http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0030http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0030http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0030http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0030http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0030http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0035http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0035http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0035http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0035http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0035http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0035http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0040http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0040http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0040http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0040http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0040http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0040http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0045http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0045http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0045http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0045http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0045http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0045http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0045http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0050http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0050http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0050http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0050http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0050http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0050http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0050http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0050http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0055http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0055http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0055http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0055http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0055http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0055http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0060http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0060http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0060http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0060http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0060http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0060http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0060http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0065http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0065http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0065http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0065http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0065http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0065http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0065http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0065http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0110http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0110http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0110http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0110http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0110http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0110http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0110http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0110http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0115http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0115http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0115http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0115http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0115http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0115http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0115http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0070http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0070http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0070http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0070http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0070http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0070http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0070http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0070http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0070http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0075http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0075http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0075http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0075http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0075http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0075http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0075http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0075http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0075http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0080http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0080http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0080http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0080http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0080http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0080http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0080http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0080http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0085http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0085http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0085http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0085http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0085http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0085http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0085http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0090http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0090http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0090http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0090http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0090http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0090http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0090http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0090http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0090http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0095http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0095http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0095http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0095http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0095http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0095http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0095http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0095http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0100http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0100http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0100http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0100http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0100http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0100http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0100http://dx.doi.org/10.1016/j.cjche.2014.09.035http://dx.doi.org/10.1016/j.cjche.2014.09.035http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0100http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0100http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0095http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0095http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0090http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0090http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0090http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0085http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0085http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0085http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0080http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0080http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0075http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0075http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0075http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0070http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0070http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0070http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0115http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0115http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0115http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0110http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0110http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0065http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0065http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0065http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0060http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0060http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0060http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0055http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0055http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0050http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0050http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0045http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0045http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0040http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0040http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0035http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0035http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0030http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0030http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0030http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0025http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0025http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0020http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0020http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0020http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0015http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0015http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0010http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0010http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0105http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0105http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0105http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0105http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0005http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0005http://refhub.elsevier.com/S1004-9541(14)00144-X/rf0005