1-s2.0-s004724849990341x-main

23
Carlos Lorenzo &  Juan Luis Arsuaga Departamento de Paleontologı ´a, Instituto de Geologı ´a Econo ´mica, Faculta d de Ciencias Geolo ´g icas, Universidad Complutense, 28040 Madrid, Spain. E-mail: [email protected]  Jose ´ Miguel Carretero Departamento de Ciencias Histo ´ri cas y Geograf ı ´a,  Facultad de Humanidades y Educacio ´n , Universi dad de Burgos, 09001 Burgos, Spain Received 10 November 1998 Revision received 26 March 1999 and accepted 5 June 1999  Keywords: Early Pleistocene, hand, foot,  Homo antecessor , Gran Dolina, Atapuerca. Hand and foot remains from the Gran Dolina Early Pleistocene site (Sierra de Atapuerca, Spain) We report here the study of the 22 hand and foot remains from the Ear ly Pleistocene lev el TD6 of the Gran Dol ina site at Sierra de Ata pue rca (Bu rgo s, Spain ) recove red from 1994 to 1996. These remains are par aty pes of  Homo antece ssor . Al l of the elements ar e bri ey des cri bed and compar ed wit h oth er fos sil hominids. The capitate has a constricted neck, well developed head, strong attach- ment for the ligamentum interosseum trapezoid-capitate, a palmarly placed trapezoid facet with a distinctive small dorsal trapezoid facet, a hig hly cur ved and obl iqu e orientation of the sec ond met aca rpa l facet, and a transversally oriented dorsodistal border. A hamate with a mode ra tely pr oj ecti ng and li gh tl y built ha mulus; an inferred reduced styloid process on the third metacarpal base; a wide second metacarpal head; and middle phalanges with well marked insertions for the ex or dig ito rum sup ercia lis mus cle and wi de hea ds. The morphology and dimensions of the pedal remains from TD6 are very similar to modern humans; but the base, proximal articular surface and shafts of the proximal hallucal phalanges are more rounded and the midshaft of the proximal toe phalanx is wider. 1999 Academic Press  Journal of Human Evolution (1999)  3 7,  501–522 Article No. jhev.1999.0341 Available online at http://www.idealibrary.com on Introduction From 1994 to 1996 just under 80 human fossi l re mains were recovered from level TD6 of the Early Pleistocene cave si te of  Gran Doli na at the Sier ra de At ap ue rca (Bur gos, Spai n) (Carbonell  et al  ., 1995; Pare ´ s & Pe ´ rez- Gonz a ´ lez , 1995 ;  Be rmu ´ dez de Castro  et al  ., 1997). An invent or y of the 36 human remains found in the 1994 eld season was published by  Carbonell  et al  . (1995).  These rema ins incl ude six hand and ei ght foot re mains, none of which was described or gured in Carbonell  et al  . (1995). Bermu ´ dez de Castro  et al  . (1997)  added 38 new specimens recovere d in 1995 and 1996 fr om TD6, which include six hand and two foot rema ins. Based on cranial, mandibular, and dental traits these remains ha ve be en as cribed to a ne w sp ec ie s of  Homo, Homo antecessor , that may represent the last common anc estor of Nea ndertals and modern humans ( Bermu ´ dez de Castro et al  ., 1997). The 22 hand and foot remains descri be d he re, as we ll as the rest of the postcr anial remains (Carretero  et al  ., 1999), are paratypes of  H. antecessor , but none of  the postcranial features are included in the tr ai ts dening this species (Bermu ´ dez de Castro  et al  ., 1997). Some of these manual and pedal remains bear cut marks, that ha ve be en interpreted as evidence of  deeshing (Fer na ´ ndez -Jal vo  et al  ., 1996, 1999). We report here the rst study of the 22 ha nd an d fo ot remai ns fr om th e Ea rly Pleistocene level TD6 of the Gran Dolina site at Sierra de Atapuerca (Burgos, Spain) recovered from 1994 to 1996. 0047–2484/99/090501+22$30.00/0   1999 Academic Press

Upload: truti

Post on 14-Apr-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1-s2.0-S004724849990341X-main

7/27/2019 1-s2.0-S004724849990341X-main

http://slidepdf.com/reader/full/1-s20-s004724849990341x-main 1/22

Carlos Lorenzo & Juan Luis ArsuagaDepartamento dePaleontologıa, Instituto deGeologıa Economica, Facultad de Ciencias Geologicas,Universidad Complutense,

28040 Madrid, Spain.E-mail:[email protected]

 Jose MiguelCarreteroDepartamento de CienciasHistoricas y Geografıa, Facultad de Humanidades yEducacion, Universidad deBurgos, 09001 Burgos, Spain

Received 10 November1998Revision received 26 March1999and accepted 5 June 1999

 Keywords: Early Pleistocene,hand, foot, Homo antecessor ,Gran Dolina, Atapuerca.

Hand and foot remains from the GranDolina Early Pleistocene site (Sierra deAtapuerca, Spain)

We report here the study of the 22 hand and foot remains from theEarly Pleistocene level TD6 of the Gran Dolina site at Sierra deAtapuerca (Burgos, Spain) recovered from 1994 to 1996. Theseremains are paratypes of  Homo antecessor . All of the elements arebriefly described and compared with other fossil hominids. Thecapitate has a constricted neck, well developed head, strong attach-ment for the ligamentum interosseum trapezoid-capitate, a palmarlyplaced trapezoid facet with a distinctive small dorsal trapezoid facet,a highly curved and oblique orientation of the second metacarpalfacet, and a transversally oriented dorsodistal border. A hamate witha moderately projecting and lightly built hamulus; an inferredreduced styloid process on the third metacarpal base; a wide secondmetacarpal head; and middle phalanges with well marked insertionsfor the flexor digitorum superficialis muscle and wide heads. Themorphology and dimensions of the pedal remains from TD6 are very

similar to modern humans; but the base, proximal articular surfaceand shafts of the proximal hallucal phalanges are more rounded andthe midshaft of the proximal toe phalanx is wider.

1999 Academic Press

 Journal of Human Evolution (1999) 37, 501–522Article No. jhev.1999.0341Available online at http://www.idealibrary.com on

Introduction

From 1994 to 1996 just under 80 human

fossil remains were recovered from level

TD6 of the Early Pleistocene cave site of 

Gran Dolina at the Sierra de Atapuerca

(Burgos, Spain) (Carbonell et al  ., 1995;

Pares & Perez-Gonzalez, 1995; Bermudez

de Castro et al ., 1997).

An inventory of the 36 human remains

found in the 1994 field season was publishedby Carbonell et al . (1995). These remains

include six hand and eight foot remains,

none of which was described or figured in

Carbonell et al . (1995).

Bermudez de Castro et al . (1997) added

38 new specimens recovered in 1995 and

1996 from TD6, which include six hand

and two foot remains. Based on cranial,

mandibular, and dental traits these remains

have been ascribed to a new species of 

Homo, Homo antecessor , that may represent

the last common ancestor of Neandertals

and modern humans (Bermudez de Castro

et al ., 1997). The 22 hand and foot remains

described here, as well as the rest of the

postcranial remains (Carretero et al ., 1999),

are paratypes of  H. antecessor , but none of 

the postcranial features are included in the

traits defining this species (Bermudez de

Castro et al  ., 1997). Some of thesemanual and pedal remains bear cut marks,

that have been interpreted as evidence of 

defleshing (Fernandez-Jalvo et al  ., 1996,

1999).

We report here the first study of the 22

hand and foot remains from the Early

Pleistocene level TD6 of the Gran Dolina

site at Sierra de Atapuerca (Burgos, Spain)

recovered from 1994 to 1996.

0047–2484/99/090501+22$30.00/0 1999 Academic Press

Page 2: 1-s2.0-S004724849990341X-main

7/27/2019 1-s2.0-S004724849990341X-main

http://slidepdf.com/reader/full/1-s20-s004724849990341x-main 2/22

Material and methods

Inventory of TD6 hand and foot remains

A complete inventory of the H. antecessor 

postcranial remains can be found in

Carretero et al  . (1999). The 12 handremains from level TD6 of Gran Dolina

include one complete capitate bone, one

fragment of a hamate bone, a second meta-

carpal, a metacarpal distal epiphysis, plus

four proximal and four middle phalanges.

The ten foot remains include a second meta-

tarsal, a proximal fragment of a metatarsal

base, plus three proximal, three middle and

two distal phalanges (Figures 1 and 2).

 ATD6-23 [Figure 1(a)]. Palmar fragment

of a left hamate with the hamulus well

preserved. It articulates perfectly with the

capitate ATD6-24 and undoubtedly belongs

to the same adult individual. The majority of 

the dorsal surface and the metacarpal facets

are lost but the hamulus is well preserved.

 ATD6-24 [Figure 1(b)]. Complete left

capitate. There is a minor abrasion in the

dorsal border of the distal articular surface.

It belongs to the same adult individual as the

hamate ATD6-23.

 ATD6-25 [Figure 2(b)]. Fragment of a base

of a left second or third metatarsal.

 ATD6-26  [Figure 1(i)]. Distal fragment of 

an adult second metacarpal. Although this

fossil is very fragmentary, the asymmetry of 

the head in distal view and the presence

of an indentation in the dorsoradial border

of the articular surface indicate that it

most probably represents a second left

metacarpal.

 ATD6-27  [Figure 1(d)]. Diaphyseal frag-

ment of a proximal hand phalanx.

 ATD6-28  [Figure 1(j)]. Second or third

middle hand phalanx from an adult

individual.

 ATD6-29 [Figure 1(e)]. Distal fragment of a

proximal hand phalanx.

 ATD6-30  [Figure 2(c)]. Complete left

proximal hallucal phalanx from an adultindividual.

 ATD6-31 [Figure 2(d)]. Complete left

proximal hallucal phalanx. This phalanx

presents scars of the epiphyseal line.

 ATD6-32 [Figure 2(e)]. Distal half of a

proximal pedal phalanx. This phalanx is notfrom the first or fifth ray. A more precise

identification is not possible.

 ATD6-33 [Figure 2(f)]. Complete middle

pedal phalanx from an adult individual.

 ATD6-34 [Figure 2(g)]. Complete middle

pedal phalanx from an adult individual.

 ATD6-35 [Figure 2(h)]. Complete fourth or

fifth middle pedal phalanx from an adult.

 ATD6-36  [Figure 2(i)]. Apical tuberosity

fragment of a distal pedal phalanx. ATD6-44 [Figure 1(l)]. Second or fifth

middle hand phalanx from an adolescent. It

lacks the proximal epiphysis and prob-

ably belongs to the same individual as

ATD6-53.

 ATD6-46  [Figure 1(f)]. Distal fragment of 

the third or fourth middle hand phalanx

from an adult. It presents a longitudinal

fracture along the diaphysis that results in

moderate distortion of the diaphyseal

breadth.

 ATD6-53 [Figure 1(k)]. Third or fourth

middle hand phalanx from an adolescent

individual. It lacks the proximal epiphysis

and probably belongs to the same individual

as ATD6-44.

 ATD6-59  [Figure 1(c)]. A distal fragment

of a left second metacarpal from an adult

individual lacking the proximal base.

 ATD6-67 [Figure 1(g)]. Eroded diaphysis of 

a proximal hand phalanx. ATD6-68  [Figure 2(j)]. Complete distal

pedal phalanx from an adult individual.

 ATD6-70+ 107  [Figure 2(a)]. Left second

metatarsal from an adult. This bone is

composed of three fragments, the base and

the diaphysis (ATD6-107) and the distal

epiphysis (ATD6-70), that were found very

close to one another during excavation. The

base of this metatarsal is eroded.

 ATD6-82 [Figure 1(h)]. Distal half of a leftsecond proximal hand phalanx.

502 . ET AL.

Page 3: 1-s2.0-S004724849990341X-main

7/27/2019 1-s2.0-S004724849990341X-main

http://slidepdf.com/reader/full/1-s20-s004724849990341x-main 3/22

Figure 1. (a) ATD6-23, proximal, dorsal, ulnar, radial, palmar and distal views. (b) ATD6-24, proximal,dorsal, ulnar, radial, palmar and distal views. (c) ATD6-59, dorsal and radial views. (d) ATD6-27, dorsaland palmar views. (e) ATD6-29, dorsal and palmar views. (f) ATD6-46, dorsal and palmar views. (g)

ATD6-67, dorsal and lateral views. (h) ATD6-82, dorsal and palmar views. (i) ATD6-26, distal andlateral views. (j) ATD6-28, dorsal and palmar views. (k) ATD6-53, dorsal and palmar views. (l)ATD6-44, dorsal and palmar views. Scale bar=2 cm.

503

Page 4: 1-s2.0-S004724849990341X-main

7/27/2019 1-s2.0-S004724849990341X-main

http://slidepdf.com/reader/full/1-s20-s004724849990341x-main 4/22

Figure 2. (a) ATD6-70+107, dorsal and medial views. (b) ATD6-25, lateral and medial views. (c)ATD6-30, dorsal, medial and proximal views. (d) ATD6-31, dorsal, medial and proximal views. (e)ATD6-32, dorsal and palmar views. (f) ATD6-33, dorsal and palmar views. (g) ATD6-34, dorsal and

palmar views. (h) ATD6-35, dorsal and palmar views. (i) ATD6-36, dorsal and palmar views. (j)ATD6-68, dorsal and palmar views. Scale bar=2 cm.

504 . ET AL.

Page 5: 1-s2.0-S004724849990341X-main

7/27/2019 1-s2.0-S004724849990341X-main

http://slidepdf.com/reader/full/1-s20-s004724849990341x-main 5/22

Comparison samples

We have studied the originals of the Krapina

collection (Croatian Natural History

Museum, Zagreb), La Ferrassie 1, La

Ferrassie 2, La Chapelle-aux-Saints (Museede L’Homme, Paris), Kebara, Amud 1 (Tel

Aviv University), Tabun C1 (British

Museum of Natural History, London) and

the casts of Regourdou 1 (Natural History

Museum). We have used some raw data

published for La Ferrassie 1 and 2 (Heim,

1982), Kebara 2 (Vandermeersch, 1991),

Shanidar 3, 4, 5, 6 and 8 (Trinkaus, 1983a),

Tabun C1 (McCown & Keith, 1939),

Amud 1 (Endo & Kimura, 1970), Krapina

collection (Musgrave, 1977) and additional

data from other sources (Musgrave,

1973; Trinkaus, 1978; Villemeur, 1994;

Niewoehner et al ., 1997). For the South

African Australopithecus species we have

studied the original material housed in the

Transvaal Museum (Pretoria) and the

University of Witwatersrand Medical School

(Johannesburg). For East African Australo-

 pithecus and the KNM-WT 15000 skeleton

we have studied the casts housed in theLaboratory for Human Evolutionary Studies

(University of California, Berkeley) and in

the Cleveland Museum of Natural History

(Cleveland, Ohio).

We include some original data of the

extensive fossil collection from the Sima de

los Huesos (SH) Middle Pleistocene site,

also at Sierra de Atapuerca (Burgos) with an

approximate age of 300,000 ka (Arsuaga

et al ., 1997a; Bischoff  et al ., 1997). The SHfossils exhibit a number of primitive traits

absent in Late Pleistocene Neandertals, as

well as other traits transitional or close to the

Neandertal morphology. These features are

characteristic of  H. heidelbergensis (Arsuaga

et al ., 1991, 1993, 1997b; Carretero et al .,

1997; Martınez & Arsuaga, 1997).

Finally two samples of modern humans,

Euroamericans and Afroamericans, from the

Hamann-Todd collection housed in theCleveland Museum of Natural History

(Cleveland, Ohio), have been used in the

comparative analysis. Also, some additional

comparative data of modern human samples

from literature has been used.

Variables

We define the hamate and capitate measure-

ments in Tables 1 and 2. We have measured

the metacarpals and hand phalanges follow-

ing Musgrave (1977), adding the proximal

articular height and proximal articular

breadth measurements (Trinkaus, 1983a).

For metatarsals and foot phalanges we fol-

low the same criteria used for the hand

remains.

Results and discussion

 Minimum number of individuals

Based on teeth, six individuals could be

identified in the TD6 level of Gran Dolina

(Carbonell et al ., 1995; Bermudez de Castro

et al ., 1997, 1999): Hominid 1, an early

adolescent around 14 years old; Hominid 2,

a child between 3 and 4 years old; Hominid

3, a juvenile 10–11·5 years old; Hominid 4,a young adult around 20 years old; Hominid

5, another young adult also around 20 years

old; and Hominid 6, represented only by

ATD6-312, a left I2 germ, with an age at

death between 3 and 4 years.

The hand and foot remains from TD6

correspond to a minimum number of four

individuals: one juvenile, one adolescent

and two adults. The left hamate, ATD6-23,

and the left capitate, ATD6-24, both belongto the same adult individual. The hallucal

proximal phalanx ATD6-31 presents scars

of the epiphyseal line which, according to

modern human standards, suggests an age at

death between 13 and 15 years (Hoerr &

Pyle, 1962), and could be assigned to

Hominid 1. Using the modern human

patterns of hand development reported by

Greulich & Pyle (1959) the two middle

hand phalanges, ATD6-44 and ATD6-53,with their proximal epiphyses unfused,

505

Page 6: 1-s2.0-S004724849990341X-main

7/27/2019 1-s2.0-S004724849990341X-main

http://slidepdf.com/reader/full/1-s20-s004724849990341x-main 6/22

could belong to the same immature indi-

viduals, probably to Hominid 3 with an age

at death of around 10–11 years. ATD6-44

could be from the second or fifth ray and

ATD6-53 from the third or fourth ray.

ATD6-26 and ATD6-59 are both meta-

carpals from left second rays from adult

individuals without scars of the epiphyseal

line, and could represent Hominid 4 and

Hominid 5. The rest of the remains could

not be assigned securely to any of the adults

or adolescent individuals. None of the hand

and foot remains belong to either of the two

children (Hominids 2 and 6) identified byteeth (Bermudez de Castro et al ., 1999).

Carpals

Capitate. The overall dimensions of the

ATD6-24 capitate do not diff er substantially

when compared with modern humans,

Neandertals and SH (Table 1). Villemeur

(1994) has reported a slightly higher

maximum height and a lower breadth in the

Neandertal capitates relative to modern

human capitates. ATD6-24 presents a

maximum height/maximum length index

(77·7%) lower than the Neandertal values

(96·56·6, n=8; data from Villemeur,

1994), SH (85·63·0, n=6) and modern

humans (Euroamericans= 83·34·5%, n=20; Afroamericans= 83·45·5%, n=24).

Table 1 Dimensions of the ATD6-24 capitate (in mm and degrees)

ATD6-24 SH NeandertalsEuroamericans

(n=24)Afroamericans

(n=20)

Maximum length (M1) 24·1 22·81·5 22·31·9 22·61·9 22·41·6(n=6) (n=8)

Maximum breadth (M2) 14·1 13·11·1 12·31·1 13·91·1 13·61·2(n=6) (n=8)

Maximum height (M3) 18·8 19·61·8 21·41·6 18·81·5 18·61·2(n=6) (n=7)

Articular length (M4) 22·6 21·71·5 — 21·62·0 21·41·5(n=6)

Head breadth (M5) 13·2 12·81·0 11·31·1 12·31·4 11·91·2(n=6) (n=3)

Head height (M6) 12·3 11·50·9 12·10·9 12·11·1 12·30·9(n=6) (n=8)

MC3 facet height (CMC3Ht)* (15·7) 15·71·3 14·42·0 15·91·3 15·81·1

(n=6) (n=8)MC3 facet breadth (CMC3Br)* 6·1 7·91·1 8·91·4 — —  

(n=6) (n=8)MC2+MC3 facet breadth (CapMxBr)* 10·8 10·21·0 10·61·3 — —  

(n=6) (n=8)MC2 facet height (CMC2Ht)* 13·7 14·21·3 12·91·3 — —  

(n=4) (n=8)MC2 facet breadth (CMC2Br)* 5·3 4·21·0 4·70·9 5·80·7 5·40·7

(n=5) (n=8)MC2 facet depth (CMC2Dp)* 2·3 1·80·2 1·20·3 — —  

(n=3) (n=8)MC2 facet angle (CMC2A)* 48 552·2 6010·1 467·0† — 

(n=4) (n=8) (n=41)

*Definition of variables and comparative data of Neandertals from Niewoehner et al. (1997).†Ameridian date from Niewoehner et al. (1997).M# refers to Martin & Saller (1957) measurements.Sima de los Huesos (SH) sample=AT-1008, AT-1009, AT-1305, AT-1309, AT-1319 and AT-1805.Neandertal sample=Amud 1, Chapelle, La Ferrassie 1, La Ferrassie 2, Kebara 2, Krapina 200, Shanidar 4 and

Tabun 1.

506 . ET AL.

Page 7: 1-s2.0-S004724849990341X-main

7/27/2019 1-s2.0-S004724849990341X-main

http://slidepdf.com/reader/full/1-s20-s004724849990341x-main 7/22

ATD6-24 presents a maximum breadth/

maximum length index (58·5%) between

Neandertal values (55·43·0%, n=8; data

from Villemeur, 1994) and modern

humans (Euroamericans= 61·84·3%, n=

20; Afroamericans= 60·93·0%, n=24),but within the standard deviations of both.

Some authors have observed that

Neandertals have a more parasagittally

oriented capitate–metacarpal 2 facet

(CMC2), even though the articulations

between the capitate and the second and

third metacarpals in Neandertals are similar

to those of modern humans in their relative

dimensions (Riley & Trinkaus, 1989;

Trinkaus et al ., 1991). These authors con-cluded that Neandertals were not well

adapted for resisting oblique joint reaction

forces and inferred that the Neandertals

did not habitually employ tools which

required oblique power grips. In a more ex-

tensive analysis, Niewoehner et al . (1997)

demonstrate that Neandertal and recent

human capitate–metacarpal 2/3 articulations

have significant morphological diff erences,

but their behavioural correlates remainuncertain.

The ATD6-24 capitate presents an angle

between the capitate–metacarpal 2 facet

(CMC2) and the capitate–metacarpal 3

facet (CMC3) of 48 (CMC2A in

Table 1), a value intermediate between the

Neandertals and SH (6010·8 and55·32·2, respectively) and modern

humans (Puebloans=467·0, urbans=

398·9; from Niewoehner et al ., 1997).

Although the samples have overlapping

ranges of variation, Neandertals and SH

have a more parasagittally oriented CMC2

facet than modern humans and the Gran

Dolina capitate. Recently, Leakey et al  .

(1998) reported an almost complete left

capitate (KNM-KP 31724) assigned to Australopithecus anamensis having a facet for

the second metacarpal that faces completely

laterally, a morphology more primitive than

both capitates of  Australopithecus afarensis

from Hadar (Bush et al ., 1982; Johanson

et al  ., 1982) and that of  Australopithecus

africanus from Sterkfontein (McHenry,

1983).

The proximo-ulnar concavity of the

CMC2 facet permits some degree of pronation/supination of the second ray, but

Table 2 Dimensions of the ATD6-23 hamate (in mm)

ATD6-23 SH NeandertalsEuroamericans

(n=25)Afroamericans

(n=21)

Articular length* (19·1) 15·70·7 17·60·7 18·42·5 18·71·7(n=4) (n=5)

Maximum height (M3) (23·5) 22·71·0 26·41·7 21·92·5 23·22·1

(n=3) (n=5)

Hamulus length* 10·8 11·60·3 11·91·5 10·01·7 10·51·4

(n=3) (n=8)

Hamulus thickness* 4·9 5·30·2 6·10·5 4·60·7 5·30·6

(n=3) (n=8)

Hamulus projection (M5) (9·0) 10·40·8 11·71·3 9·21·6 9·51·7(n=3) (n=5)

Hamulus area† 52·9 62·12·5 72·411·3 47·214·1 55·411·5

(n=3) (n=8)

*Definition of variables in Trinkaus (1983a).†Hamulus area=(hamulus lengthhamulus thickness).M# refers to Martin & Saller (1957) measurements.Sima de los Huesos (SH) sample=AT-939, AT-1310, AT-1311 and AT-1313.Neandertal sample=La Ferrassie 1, La Ferrassie 2, Amud 1, Kebara 2, Shanidar 3, 4, 5 and Tabun 1.

507

Page 8: 1-s2.0-S004724849990341X-main

7/27/2019 1-s2.0-S004724849990341X-main

http://slidepdf.com/reader/full/1-s20-s004724849990341x-main 8/22

Neandertals and recent humans do not

diff er in the CMC2 facet curvatures

(Niewoehner et al ., 1997). In ATD6-24 the

relative curvature of the CMC2 facet

[calculated as the ratio of the facet subtenseto its chord (CMC2 depth/CMC2

height100)] is 16·7, a value in the upper

range of variation seen in modern humans

(Puebloan=9·13·4, Urban=9·13·7;

from Niewoehner et al  ., 1997) and

Neandertals (9·22·8; from Niewoehner

et al ., 1997).

In African apes a strong interosseous

MC2–MC3 ligament becomes continuous

with the interosseous ligament betweencapitate and trapezoid, dividing the CMC2

joint in two facets, and giving the CMC3

facet a constricted appearance in distal view

(Lewis, 1973; Marzke, 1983). Conversely,

modern humans present a single concave

CMC2 facet with a weak interosseous liga-

ment attachment. The ATD6-24 capitate

presents a strong attachment for the inter-

osseous ligament in the radial side, but the

groove dividing the CMC2 is absent. There-

fore the CMC2 facet of ATD6-24 is con-

tinuous and concave but the CMC3 facet

is somewhat constricted in distal view

[Figure 1(b)].

In dorsal and palmar view, the capitates of 

the African apes have constricted necks

(Lewis, 1973). The ATD6-24 capitate

shares with A. anamensis, A. afarensis and A.

africanus a less constricted neck than the

apes, but more than most modern humans.

Also the ATD6-24 capitate shows a welldeveloped head [Figure 1(b)].

The capitate–metacarpal 3 joint (CMC3)

in modern humans is relatively immobile,

due to the flat articular surface and to the

presence of the styloid process in the third

metacarpal, which gives more stability to

this joint (Marzke & Marzke, 1987). The

capitates of  A. anamensis and A. afarensis

present dorsal borders of the CMC3 more

perpendicularly oriented, and the styloidprocesses are absent in the third metacarpals

of  A. afarensis (Bush et al ., 1982; Marzke,

1983; Leakey et al ., 1998). However Ricklan

(1987) reported a short styloid process in

the third metacarpal of  A. africanus. The

orientation of the dorsodistal border of theATD6-24 capitate is more perpendicular to

the longitudinal axis and lacks the radial

bevelling for MC3 found in modern

humans. Thus, the ATD6-24 capitate

preserves the primitive morphology of the

dorsodistal border and, although no third

metacarpal was found in the TD6 level, we

infer a small styloid process on the MC3.

The dorsal border of the CMC3 of 

Neandertals is oriented more perpendicularto the shaft and the styloid process is

absolutely and relatively shorter and ori-

ented more radially than in modern humans

(Villemeur, 1994; Riley & Trinkaus, 1989).

Hominid hand bones are scarce in the fossil

record during most of the period when stone

toolmaking and tool use developed. Never-

theless, Marzke & Marzke (1987) noted that

the earliest preserved evidence of a styloid

process is observed in the hands of the

Neandertals, and link the evolution of tool-

making capabilities with a developmental

process producing a styloid process in the

third metacarpal. However, we can observe

that approximately 1·5 million years after

the first appearance of the stone tools, the

ATD6-24 capitate, associated with more

than two hundred tools (Carbonell et al .,

1999), lacks a bevelled dorsodistal border to

accommodate the third metacarpal styloid

process. Therefore, the link between toolmaking and tool use and the presence of 

the styloid process in the third metacarpal is

unclear.

The three capitates from A. afarensis

and A. africanus present dorsally placed

trapezoid facets (McHenry, 1983), contrary

to modern humans and Neandertals, which

exhibit a palmarly placed trapezoid facet.

ATD6-24 exhibits an intermediate mor-

phology with two trapezoid facets. The maintrapezoid facet (7·83·8 mm) is palmarly

508 . ET AL.

Page 9: 1-s2.0-S004724849990341X-main

7/27/2019 1-s2.0-S004724849990341X-main

http://slidepdf.com/reader/full/1-s20-s004724849990341x-main 9/22

placed, and a very small trapezoid facet

(approximately 2 mm2) is dorsally placed,

which is reminiscent of the primitive loca-

tion. Thus, ATD6-24 is the most ancient

fossil with a morphology of the trapezoidfacet transitional between Australopithecus

and later Homo.

Hamate. One of the most striking features

of the Neandertal carpal bones is related to

the depth of the carpal tunnel and the

tendons that pass through (Trinkaus,

1983a). Well-developed scaphoid and

trapezium tubercles, as well as the hamulus,

are traits which reflect this feature because

they provide attachment to the transverse

carpal ligament, which bridges the tunnel

(Trinkaus, 1983a; Villemeur, 1994).

The hamulus of the left hamate ATD6-23

is well preserved and extends distally, pro-

viding the origin of the flexor digiti minimi

and opponens digiti minimi muscles. But

the overall dimensions (Table 2) and the

palmar projection of the ATD6-23 hamulus

are smaller than in Neandertals [see Figure

1(a)]. The cross-sectional area of theATD6-23 hamulus (hamulus length

hamulus thickness= 52·9 mm2) is closer to

modern humans (Euroamericans= 47·2

14·1 mm2; Afroamericans=55·411·5 mm2)

than to Neandertals (76·214·9 mm2,

n=7; data from Trinkaus, 1983a) or SH

(62·52·5 mm2, n=3).

On ATD6-23 the facet for the triquetral is

continuous, meeting the capitate facet at the

sharp proximal border, and we can notdiscern a lunatohamate contact [Figure

1(a)]. In the Viegas et al . (1990) study, 35%

of 165 modern humans lack lunatohamate

contact. Also, the A. afarensis hamate A.L.

333-50 does not seem to have a lunate facet

(Bush et al ., 1982; Marzke et al ., 1994).

The groove of the pisometacarpal liga-

ment for MC3 on the hamate is discernible

in ATD6-23. This ligament stabilizes and

buttresses the joints of the carpal bonesagainst forces associated with tool use

(Marzke, 1996). This groove is also

present in A.L. 333-50 (Marzke & Shackley,

1986).

Second metacarpal morphologyThe bilateral dorsal ridges of the ATD6-59

second metacarpal represent the dorsal

extent of the interosseous muscles [Figure

1(c)]. The ulnar ridge crosses the shaft

dorsally and joins with the radial ridge on

the dorsoradial border. The radial border of 

the diaphysis in ATD-59 where the first

interosseous muscle inserts, presents several

oblique cutmarks.

The metacarpal heads of ATD6-29 and

ATD6-59 are asymmetrical and the dorsal

aspect of the phalangeal facets are narrow

and ulnarly placed. The latter presents two

strong tubercles for the collateral liga-

ments of the metacarpophalangeal joint.

Neandertals present relatively wide meta-

carpal heads and narrow metacarpal mid-

shafts (Musgrave, 1971). ATD6-59 also has

a wide head relative to the shaft breadth

and presents a head index of 50·7—closer

to Neandertals than to modern humans(Table 3).

Hand phalanges

The postcranium of  A. afarensis retains

numerous primitive traits relative to

Homo sapiens, which include middle hand

phalanges with pronounced ridges lateral

to the insertion of the flexor digitorum

superficialis, and also strong impressions for

this muscle; proximal hand phalanges II-Vare slender, curved, and have strong flexor

sheath ridges (McHenry, 1994).

The proximal hand phalanges of  A.

africanus are less curved than those of  A.

afarensis (although Stw 28 is strongly curved

according to Susman, 1988), and have less

strongly developed flexor sheath ridges

(Ricklan, 1987). Two proximal hand

phalanges from Member III of Swartkrans

(SKX 5018 and 22741) are less curved thanthose from Hadar, but a third one (SKX

509

Page 10: 1-s2.0-S004724849990341X-main

7/27/2019 1-s2.0-S004724849990341X-main

http://slidepdf.com/reader/full/1-s20-s004724849990341x-main 10/22

    T   a    b    l   e    3

    D    i   m   e   n   s    i   o   n   s   o    f   t    h   e    A    T    D    6  -    5

    9   s   e   c   o   n    d   m   e   t   a   c   a   r   p   a    l    (    i   n   m   m    )

    S    i    d   e

    M    i    d   s    h   a    f   t

    b   r   e   a    d   t    h

    M    i    d   s    h   a    f   t

    h   e    i   g    h   t

    D    i   s   t   a    l

    b   r   e   a    d   t    h

    D    i   s   t   a    l

    h   e    i   g    h   t

    M    i    d   s    h   a    f   t

    i   n    d   e   x

    D    i   s   t   a    l

    i   n    d   e   x

    H   e   a    d

    i   n    d   e   x

    A    T    D

    6  -    5

    9

    L

    7  ·    7

    8  ·    8

    1    5  ·    2

    1    5  ·    0

    8    7  ·    5

    1    0    1  ·    3

    5    0  ·    7

    A    T  -    1

    2    7    2    (    S    H    )

    L

    7  ·    1

    8  ·    8

    1    3  ·    2

    1    3  ·    6

    8    0  ·    7

    9    7  ·    1

    5    3  ·    8

    A    T  -    1

    3    6    2    (    S    H    )

    R

    7  ·    4

    8  ·    9

    1    3  ·    7

  —

    8    3  ·    2

  —

    5    4  ·    0

    N   e   a   n

    d   e   r   t   a    l   s

    7  ·    4      

    0  ·    9

    8  ·    8      

    1  ·    1

    1    4  ·    2      

    0  ·    8

    1    5  ·    4      

    1  ·    7

    8    3  ·    9      

    4  ·    4

    9    6  ·    3      

    5  ·    1

    5    2  ·    2      

    4  ·    0

    (   n   =    6    )

    (   n   =    6    )

    (   n   =    3    )

    (   n   =    7    )

    (   n   =    6    )

    (   n   =    3    )

    (   n   =    3    )

    E   u   r   o   a   m   e   r    i   c   a   n   s    (   n   =    4    8    )

    8  ·    6      

    1  ·    7

    8  ·    8      

    1  ·    2

    1    4  ·    1      

    1  ·    3

    1    4  ·    1      

    1  ·    4

    9    6  ·    3      

    1    0  ·    4

    1    0    0  ·    3      

    4  ·    4

    5    9  ·    5      

    5  ·    3

    6  ·    8  –    1

    0  ·    3

    6  ·    9  –    1

    0  ·    5

    1    1  ·    4  –    1

    6  ·    9

    1    1  ·    0  –    1

    7  ·    4

    7    5  ·    3  –    1

    1    8  ·    3

    9    1  ·    4  –    1

    1    7  ·    4

    4    9  ·    4  –    7

    3  ·    6

    A    f   r   o   a

   m   e   r    i   c   a   n   s    (   n   =    4    8    )

    8  ·    6      

    1  ·    0

    9  ·    4      

    1  ·    0

    1    4  ·    3      

    1  ·    2

    1    4  ·    3      

    1  ·    2

    9    1  ·    7      

    7  ·    7

    9    9  ·    8      

    4  ·    6

    6    0  ·    4      

    4  ·    4

    7  ·    0  –    1

    1  ·    0

    7  ·    7  –    1

    1  ·    3

    1    2  ·    0  –    1

    7  ·    2

    1    1  ·    5  –    1

    6  ·    3

    7    2  ·    9  –    1

    1    6  ·    7

    8    8  ·    7  –    1

    1    1  ·    0

    5    0  ·    7  –    6

    9  ·    6

    M    i    d   s    h   a    f   t    i   n    d   e   x   =    (   m    i    d   s    h   a    f   t    b   r   e   a    d   t    h    /   m    i    d   s    h   a    f   t    h   e    i   g    h   t    )         1    0    0   ;    d    i   s   t   a    l    i   n    d   e   x   =    (    d    i   s   t   a    l    b   r   e   a    d   t    h    /    d    i   s   t   a    l    h   e    i   g    h

   t    )         1    0    0   ;    h   e   a    d

    i   n    d   e   x   =    (   m    i    d   s    h   a    f   t

    b   r   e   a    d   t    h    /    d    i   s   t   a    l

    b   r   e   a    d

   t    h    )         1    0    0 .

    N   e

   a   n    d   e   r   t   a    l   s   a   m   p    l   e   =    L   a    F   e   r   r   a   s   s    i   e    1 ,    L

   a    C    h   a   p   e    l    l   e ,    R   e   g   o   u   r    d   o   u ,

    K   r   a   p    i   n   a    2

    0    1 .    1 ,

    K   e    b   a   r   a    2 ,

    S    h   a   n    i    d   a   r    3 ,

    4 ,

    6   a

   n    d    T   a    b   u   n    1 .

510 . ET AL.

Page 11: 1-s2.0-S004724849990341X-main

7/27/2019 1-s2.0-S004724849990341X-main

http://slidepdf.com/reader/full/1-s20-s004724849990341x-main 11/22

27431) is as curved as those from Hadar

(Susman, 1988). All of them are attributed

by McHenry (1994) to Paranthropus, but

Susman (1988) attributed SKX 27431 to

Homo even though it derives from Member3 of Swartkrans which contains only

‘‘robust’’ australopithecine craniodental

material (McHenry, 1994). Homo habilis

retains some australopithecine traits in con-

trast to later species of  Homo, including

a hand with robust and curved middle

phalanges with well marked insertions for

flexor digitorum superficialis, and thick and

curved proximal phalanges (Susman &

Creel, 1979; McHenry, 1994).

The dimensions of the ATD6 hand

phalanges are very similar to modern

humans (Tables 4 and 5). Although frag-

mentary, the diaphysis of the proximal hand

phalanges from Gran Dolina (ATD6-27,

ATD6-67 and ATD6-82) seems to be non-

curved [Figure 1(g)]. The well marked

ridges along their shafts reflect the attach-

ment of the fibrous sheaths which hold the

flexor tendons towards the phalangeal shafts

and prevent bowstringing of the musclesduring flexion. The middle hand phalanges

also present marked insertions for the

flexor superficialis in their diaphyses [Figure

1(f,j,k)]. However, ATD6 fossils present

less developed flexor musculature than

the hand phalanges of living apes, Australo-

 pithecus and H. habilis.

A relatively broad head on the manual

phalanges is a typical Neandertal feature

(Musgrave, 1973). In Table 6 we show thatthe trochlear index of hand middle

phalanges ATD6-28 (52·9) and ATD6-46

(52·3) exhibit closer values to Neandertals

and SH than to Euroamericans and Afro-

americans. A broad trochlea is also present

in the middle phalanx WT-15000BO

(Walker & Leakey, 1993) but not in A.

afarensis (Bush et al ., 1982) or Paranthropus

(Susman, 1988). Thus, broad phalangeal

heads seem to be the primitive morphologyfor Homo, ATD6, SH and Neandertals, but

modern humans show derived narrow

phalangeal heads.

 Metatarsal 

The overall dimensions and morphology of the ATD6-70+ 107 second metatarsal are

very similar to that of modern humans

(Table 7). In ATD6-70+107 the dor-

sopalmar diameter of the metatarsal head

includes the proximally projecting plantar

cornua, with the lateral cornua larger

[Figure 2(a)]. A transverse groove separates

the expanded superior surface of the head

from an elevated ridge connecting the two

tubercles for the collateral ligaments of the

metatarsophalangeal joint, with the medial

tubercle more distally located. The A.

afarensis metatarsals from Hadar [A.L. 333-

72, A.L. 333-115(B) and A.L. 333-115(C)]

present a similar metatarsal head mor-

phology. The dorsal surface of the shaft

presents a sharp ridge for the attachment of 

the interosseus muscles. Neandertals

present wider diaphyses than modern

humans, but ATD6-70+ 107 shows a low

midshaft index (Table 7), below theEuroamerican and Afroamerican means.

Hallucal proximal phalanges

Both hallucal proximal phalanges from

Dolina (ATD6-30 and ATD6-31) present

prominent plantar tubercles for the attach-

ment of the collateral ligament. The meta-

tarsal facets are proximodorsally oriented

and the insertion of the extensor digitorum

brevis muscle on the proximodorsal surfaceof the diaphysis is smoothly marked [Figure

2(c) and (d)]. Although their dimensions do

not diff er much from that of the modern

human samples (Table 8), we can identify

some diff erences in the shafts, bases and

proximal articular surfaces. The shaft

breadth relative to shaft height of the Nean-

dertal hallucal proximal phalanges tends to

be larger than that of recent human samples

(Trinkaus & Hilton, 1996). However, theDolina hallucal phalanges exhibit a more

511

Page 12: 1-s2.0-S004724849990341X-main

7/27/2019 1-s2.0-S004724849990341X-main

http://slidepdf.com/reader/full/1-s20-s004724849990341x-main 12/22

    T   a    b    l   e    4

    M   e   a   s   u   r   e   m   e   n   t   s   o    f   t    h   e    T    D    6

    h   a   n    d   a   n    d    f   o   o   t   p    h   a    l   a   n   g   e   s    (    i   n   m   m    )

    L   a    b   e    l

    F    i   n   g   e   r

    S    i    d   e

    M   a   x    i   m   u   m

    l   e   n

   g   t    h

    A   r   t    i   c   u    l   a   r

    l   e   n   g   t    h

    P   r   o   x    i   m   a    l

    b   r   e   a    d   t    h

    P

   r   o   x    i   m   a    l

    h   e    i   g    h   t

    P   r   o   x    i   m   a    l

   a   r   t    i   c   u    l   a   r

    b   r   e   a    d   t    h

    P   r   o   x    i   m   a    l

   a   r   t    i   c   u    l   a   r

    h   e    i   g    h   t

    M    i    d   s    h   a    f   t

    b   r   e   a    d   t    h

    M    i    d   s    h   a    f   t

    h   e    i   g    h   t

    T   r   o   c    h    l   e   a   r

    b   r   e   a    d   t    h

    T   r   o   c    h    l   e   a   r

    h   e    i   g    h   t

    H   a   n    d

   :

    A    T

    D    6  -    2

    7

    P    P

  —

  —

  —

  —

  —

  —

  —

    1    0  ·    4

    6  ·    6

  —

  —

    A    T

    D    6  -    2

    8

    M    P    3    /    4

  —

    2    9

  ·    4

    2    6  ·    8

    1    3  ·    1

    9  ·    6

    1    1  ·    3

    7  ·    1

    (    9  ·    1

    )

    (    5  ·    1

    )

    1    0  ·    2

    5  ·    4

    A    T

    D    6  -    2

    9

    P    P

  —

  —

  —

  —

  —

  —

  —

  —

  —

    1    1  ·    6

    7  ·    5

    A    T

    D    6  -    4

    4    *

    M    P    2    /    5

  —

  —

  —

    (    7  ·    8

    )

    (    5  ·    5

    )

  —

  —

    (    6  ·    6

    )

    (    3  ·    5

    )

  —

  —

    A    T

    D    6  -    4

    6

    M    P

  —

  —

  —

  —

  —

  —

  —

    (    9  ·    7

    )

    (    5  ·    4

    )

    1    0  ·    7

    5  ·    6

    A    T

    D    6  -    5

    3    *

    M    P    3    /    4

  —

    (    2    0

  ·    3    )

  —

    (    1    0  ·    3

    )

    (    7  ·    3

    )

  —

  —

    8  ·    1

    4  ·    5

    7  ·    0

    4  ·    2

    A    T

    D    6  -    6

    7

    P    P

  —

  —

  —

  —

  —

  —

  —

    1    0  ·    3

    6  ·    7

  —

  —

    A    T

    D    6  -    8

    2

    P    P    2    ?

    L    ?

  —

  —

  —

  —

  —

  —

    (    9  ·    8

    )

    (    5  ·    3

    )

    9  ·    5

    6  ·    5

    F   o   o   t   :

    A    T

    D    6  -    3

    0

    P    P    1

    L

    3    6

  ·    6

    3    1  ·    0

    1    8  ·    0

    1    6  ·    7

    1    5  ·    6

    1    4  ·    3

    1    1  ·    8

    1    0  ·    5

    1    5  ·    0

    1    0  ·    7

    A    T

    D    6  -    3

    1

    P    P    1

    L

    3    4

  ·    3

    2    9  ·    1

    1    8  ·    3

    1    7  ·    0

    1    6  ·    9

    1    4  ·    4

    1    1  ·    0

    9  ·    9

    1    6  ·    1

    1    0  ·    8

    A    T

    D    6  -    3

    6

    D    P

  —

  —

  —

  —

  —

  —

  —

  —

  —

    (    8  ·    0    )

    (    5  ·    4

    )

    A    T

    D    6  -    3

    2

    P    P    2    /    4

    R    ?

  —

  —

  —

  —

  —

  —

    (    5  ·    3

    )

    (    5  ·    0

    )

    7  ·    8

    5  ·    6

    A    T

    D    6  -    3

    3

    M    P

  —

    1    4

  ·    9

    1    3  ·    1

    9  ·    6

    8  ·    5

    9  ·    1

    6  ·    2

    7  ·    3

    5  ·    6

    9  ·    5

    5  ·    1

    A    T

    D    6  -    3

    4

    M    P

  —

    1    2

  ·    7

    1    1  ·    7

    8  ·    3

    7  ·    4

    7  ·    9

    4  ·    9

    4  ·    6

    3  ·    9

    8  ·    0

    4  ·    6

    A    T

    D    6  -    3

    5

    M    P

  —

    1    0

  ·    6

    9  ·    5

    7  ·    4

    6  ·    6

    7  ·    1

    4  ·    9

    5  ·    7

    4  ·    2

    7  ·    7

    3  ·    9

    A    T

    D    6  -    6

    8

    D    P

  —

    1    1

  ·    1

    1    0  ·    4

    9  ·    1

    6  ·    3

    8  ·    7

    5  ·    4

    5  ·    3

    5  ·    0

    6  ·    6

    5  ·    0

    P   a   r   e   n   t    h   e   s   e   s    (    )    i   n    d    i   c   a   t   e   e   s   t    i   m   a   t   e    d   v   a    l   u   e   s .    P    P   =   p   r   o   x    i   m   a    l   p    h   a    l   a   n   x   ;    M    P   =   m

    i    d    d    l   e   p    h   a    l   a   n   x   ;    D    P   =    d    i   s   t   a    l   p    h   a    l   a   n   x

 .    *    I   m   m   a   t   u   r   e   p    h   a    l   a   n   x   w    i   t    h   o   u   t   p   r   o   x

    i   m   a    l   e   p    i   p    h   y   s    i   s .

512 . ET AL.

Page 13: 1-s2.0-S004724849990341X-main

7/27/2019 1-s2.0-S004724849990341X-main

http://slidepdf.com/reader/full/1-s20-s004724849990341x-main 13/22

    T   a    b

    l   e    5

    C   o   m   p   a   r    i   s   o   n   s   o    f   t    h   e    A    T    D    6

  -    2    8 ,    A    T    D    6  -    4    6   a   n    d    A    T    D    6  -    5    3   m    i

    d    d    l   e    h   a   n    d   p    h   a    l   a   n   g   e   s    d    i   m   e   n   s    i   o   n

   s    (    i   n   m   m    )

    M   a   x    i   m   u   m

    l   e   n   g   t    h

    A   r   t    i   c   u    l   a   r

    l   e   n   g   t    h

    P   r   o   x    i   m   a    l

    b   r   e   a    d   t    h

    P   r   o   x

    i   m   a    l

    h   e    i   g    h   t

    P   r   o   x    i   m   a    l

   a   r   t    i   c   u    l   a   r

    b   r   e   a    d   t    h

    P   r   o   x    i   m   a    l

   a   r   t    i   c   u    l   a   r

    h   e    i   g    h   t

    M    i    d   s    h   a    f   t

    b   r   e   a    d   t    h

    M    i    d   s    h   a    f   t

    h   e    i   g    h   t

    T   r   o   c    h    l   e   a

   r

    b   r   e   a    d   t    h

    T   r   o   c    h    l   e   a   r

    h   e    i   g    h   t

    A    T    D

    6  -    2

    8

    2    9  ·    4

    2    6  ·    8

    1    3  ·    1

    9  ·    6

    1    1  ·    3

    7  ·    1

    (    9  ·    1

    )

    (    5  ·    1

    )

    1    0  ·    2

    5  ·    4

    A    T    D

    6  -    4

    6

  —

  —

  —

  —

  —

  —

    (    9  ·    7

    )

    (    5  ·    4

    )

    1    0  ·    7

    5  ·    6

    A    T    D

    6  -    5

    3    *

    (    2    0  ·    3

    )

  —

    (    1    0  ·    3

    )

    (    7  ·    3

    )

  —

  —

    8  ·    1

    4  ·    5

    7  ·    0

    4  ·    2

    S    H

    2    8  ·    8      

    1  ·    3

    2    7  ·    3      

    1  ·    1

    1    4  ·    4      

    1  ·    1

    9  ·    6      

    0  ·    9

    1    2  ·    0      

    1  ·    1

    7  ·    6      

    1  ·    1

    9  ·    5      

    0  ·    6

    5  ·    8      

    0  ·    7

    1    1  ·    1          0  ·    8

    5  ·    7      

    0  ·    5

    (   n   =    8    )

    (   n   =    8    )

    (   n   =    7    )

    (   n   =

    6    )

    (   n   =    7    )

    (   n   =    6    )

    (   n   =    8    )

    (   n   =    8    )

    (   n   =    7    )

    (   n   =    7    )

    N   e   a   n    d   e   r   t   a    l   s

    2    8  ·    3      

    2  ·    0

    2    6  ·    2      

    2  ·    4

    1    4  ·    4      

    1  ·    4

    1    0  ·    1      

    1  ·    0

    1    1  ·    8      

    1  ·    3

    6  ·    5      

    0  ·    9

    8  ·    8      

    0  ·    9

    5  ·    7      

    0  ·    7

    1    1  ·    5          1  ·    0

    5  ·    9      

    0  ·    6

    (   n   =    1    7    )

    (   n   =    2    3    )

    (   n   =    2    2    )

    (   n   =

    2    3    )

    (   n   =    1    5    )

    (   n   =    1    8    )

    (   n   =    2    3    )

    (   n   =    2    3    )

    (   n   =    2    3    )

    (   n   =    2    3    )

    E   a   r    l   y   m   o    d   e   r   n    h   u   m   a   n   s

    2    7  ·    7      

    1  ·    7

    2    8  ·    8      

    2  ·    5

    1    3  ·    7      

    1  ·    4

    9  ·    8      

    0  ·    6

  —

  —

    9  ·    3      

    1  ·    4

    5  ·    4      

    0  ·    7

    1    0  ·    1          1  ·    2

    6  ·    2      

    0  ·    8

    (   n   =    3    )

    (   n   =    8    )

    (   n   =    8    )

    (   n   =

    8    )

    (   n   =    9    )

    (   n   =    9    )

    (   n   =    9    )

    (   n   =    9    )

    3   r    d

   a   n    d    4   t    h   r   a   y   s   :

    E   u   r   o   a   m   e   r    i   c   a   n   s    (   n   =    9    6    )

    2    9  ·    2      

    2  ·    3

    2    7  ·    0      

    2  ·    1

    1    3  ·    3      

    1  ·    3

    9  ·    8      

    0  ·    9

    1    1  ·    2      

    1  ·    1

    6  ·    8      

    0  ·    8

    8  ·    6      

    1  ·    1

    5  ·    3      

    0  ·    7

    1    0  ·    1          1  ·    0

    6  ·    0      

    0  ·    7

    2    3  ·    9  –    3

    5  ·    2

    2    2  ·    0  –    3

    2  ·    7

    1    1  ·    0  –    1

    6  ·    8

    7  ·    9  –

    1    2  ·    8

    9  ·    2  –    1

    4  ·    3

    5  ·    1  –    9  ·    3

    6  ·    4  –    1

    1  ·    4

    3  ·    8  –    7  ·    1

    8  ·    3  –    1    2  ·

    8

    4  ·    8  –    7  ·    9

    A    f   r   o

   a   m   e   r    i   c   a   n   s    (   n   =    9    6    )

    3    0  ·    6      

    2  ·    8

    2    8  ·    5      

    2  ·    5

    1    3  ·    5      

    1  ·    2

    9  ·    9      

    0  ·    9

    1    1  ·    3      

    1  ·    1

    7  ·    2      

    0  ·    8

    8  ·    8      

    1  ·    1

    5  ·    4      

    0  ·    8

    1    0  ·    2          0  ·    9

    6  ·    0      

    0  ·    7

    2    4  ·    7  –    3

    7  ·    6

    2    3  ·    9  –    3

    5  ·    2

    1    0  ·    8  –    1

    6  ·    4

    7  ·    7  –

    1    2  ·    0

    9  ·    3  –    1

    3  ·    5

    5  ·    4  –    9  ·    4

    6  ·    4  –    1

    1  ·    7

    3  ·    9  –    7  ·    0

    8  ·    4  –    1    2  ·

    8

    4  ·    6  –    7  ·    6

    P   a   r   e   n   t    h   e   s   e   s    (    )    i   n    d    i   c   a   t   e   e   s   t    i   m   a   t   e    d   v   a    l   u   e   s .    *    I   m   m   a   t   u   r   e    i   n    d    i   v    i    d   u   a    l   w    i   t    h   o   u   t   e   p    i   p    h   y   s    i   s .

    S    i   m   a    d   e    l   o   s    H   u   e   s   o   s    (    S    H    )   s   a   m   p    l   e    i   s   c   o   m   p   o   s   e    d   o    f   a    d   u    l   t   m    i    d    d    l   e   p    h   a    l   a   n   g   e   s

    f   r   o   m   t    h   e   t    h    i   r    d   a   n    d    f   o   u   r   t    h   r   a   y   s    A    T  -    9

    4 ,

    A    T  -    1

    0    7 ,

    A    T  -    2

    6    3 ,

    A    T  -    3

    0    6 ,

    A    T

  -    6    8    3 ,

    A    T  -    6

    8    4 ,

    A    T  -

    8    9    1   a   n    d    A    T  -    1

    0    1    7 .

    N

   e   a   n    d   e   r   t   a    l   s   a   m   p    l   e   =    L   a    F   e   r   r   a   s   s    i   e    1 ,    L   a    F   e   r   r   a   s   s    i   e    2 ,

    K    i    i    k  -    K   o    b   a ,    T   a    b   u   n    1 ,

    K   e    b   a   r   a    2 ,

    S    h   a   n    i    d   a   r    3 ,

    4 ,

    5 ,

    6 ,    K

   r   a   p    i   n   a    2    0    5  ·    1 ,

    2    0    5  ·    2 ,

    2    0    5  ·    3 ,

    2    0    5  ·    4

 ,    2    0    5  ·    5 ,

    2    0    5  ·    6 ,

    2    0    5  ·    8 ,

    2    0    5  ·    1

    2   a   n    d    A   m   u    d    1 .

    E   a   r    l   y   m   o    d   e   r   n    h   u   m   a   n   s   a   m   p    l   e   =    S    k    h   u    l

    I    V ,

    D   o    l   n   ı    ´    V   e   s   t   o   n    i   c   e    3 ,

    C   o   m    b   e  -    C   a

   p   e    l    l   e ,    A   r   e   n   e    C   a   n    d    i    d   e ,    B   a   r   m   a    G   r   a   n

    d   e .

513

Page 14: 1-s2.0-S004724849990341X-main

7/27/2019 1-s2.0-S004724849990341X-main

http://slidepdf.com/reader/full/1-s20-s004724849990341x-main 14/22

rounded section and a taller shaft height

relative to the shaft breadth than those of 

either the modern human samples or

Neandertals (Table 9). The base and the

proximal articular surfaces of both ATD6

hallucal proximal phalanges are very

rounded, as can be observed in the base and

articular indices (Table 9).

Also, the pedal hypertrophy of the

Neandertals is reflected in the musculoliga-

ments’ attachment areas on the bases of the

proximal phalanges, relative to the size of 

the articular area for the metacarpal that

they surround (Trinkaus, 1983b). But this

diff erence is most clear in the lateral digits

and the proximal rugosity index of the Gran

Dolina hallucal proximal phalanges is very

similar to Neandertals, SH and modern

humans (Table 9). The hallucal proximal

phalanges of the Neandertals tend to be

slightly more robust, showing larger diaphy-seal diameters relative to length (Trinkaus,

1983b). Also, the Middle Pleistocene SH

hallucal proximal phalanges present large

robusticity indices, contrary to the robustic-

ity of the ATD6 hallucal proximal phalanges

that are more similar to the modern humans

(Table 9).

Toe phalanges

The proximal foot phalanges of  A. afarensis

are long, curved, broad-based, narrow-

bodied in dorsal view, and have a medi-

olateral flare of the body for the flexor

sheaths and a more highly circumferential

trochlea; the middle foot phalanges are

relatively long also (McHenry, 1994).

It is further demonstrated that Neandertal

proximal pedal phalanges are short relative

to foot length, and exhibit wide diaphyses

compared to that of recent humans

(Trinkaus, 1983a; Trinkaus et al ., 1991;

Trinkaus & Hilton, 1996). We compare thevalues of the proximal pedal phalanx

Table 6 Comparisons of the ATD6-28 and ATD6-46 middle phalanges indices (in mm)

Baseindex

Articularindex

Midshaftindex

Trochlearindex

Robusticityindex

ATD6-28 73·3 62·8 (56·0) 52·9 26·5ATD6-46 — — (55·7) 52·3 —  SH 66·94·0 63·811·0 60·44·5 51·83·1 28·01·7

(n=6) (n=6) (n=8) (n=7) (n=8)Neandertals 71·14·0 55·36·2 65·17·7 51·43·0 27·83·2

(n=22) (n=15) (n=23) (n=23) (n=23)Early modern humans 71·63·7 — 59·15·1 61·04·3 26·32·1

(n=8) (n=9) (n=9) (n=8)3rd and 4th ray:Euroamericans (n=96) 73·93·9 60·94·9 61·54·3 59·03·3 25·82·2

66·7–86·3 49·2–73·2 47·5–70·8 51·5–66·7 20·8–31·3Afroamericans (n=96) 73·72·9 63·35·2 61·45·2 58·94·0 24·82·5

68·4–82·3 51·1–78·8 50·4–71·4 49·1–68·2 19·4–31·1

Parentheses ( ) indicate estimated values.Base index=(proximal height/proximal breadth)100; articular index= (proximal articular height/proximal

articular breadth)100; midshaft index=(midshaft height/midshaft breadth)100; trochlear index=(trochlearheight/trochlear breadth)100; robusticity index=0·5(midshaft breadth+midshaft height)/articular length100.

Sima de los Huesos sample is composed of adult middle phalanges from the third and fourth rays AT-94,AT-107, AT-263, AT-306, AT-683, AT-684, AT-891 and AT-1017.

Neandertal sample=La Ferrassie 1, La Ferrassie 2, Kiik-Koba, Tabun 1, Kebara 2, Shanidar 3, 4, 5, 6, Krapina205·1, 205·2, 205·3, 205·4, 205·5, 205·6, 205·8, 205·12 and Amud 1.

Early modern human sample= Dolnı Vestonice 3, Combe-Capelle, Arene Candide, Barma Grande.

514 . ET AL.

Page 15: 1-s2.0-S004724849990341X-main

7/27/2019 1-s2.0-S004724849990341X-main

http://slidepdf.com/reader/full/1-s20-s004724849990341x-main 15/22

    T   a    b

    l   e    7

    D    i   m   e   n   s    i   o   n   s   o    f   t    h   e    A    T    D    6  -

    7    0   +    1    0    7   s   e   c   o   n    d   m   e   t   a   t   a   r   s   a    l    (    i   n   m

   m    )

    M   a   x    i   m   u   m

    l   e   n   g   t    h

    A   r   t    i   c   u    l   a   r

    l   e   n   g   t    h

    M    i    d   s    h   a    f   t

    b   r   e   a    d   t    h

    M    i    d   s    h   a    f

   t

    h   e    i   g    h   t

    D    i   s   t   a    l

    b   r   e   a    d   t    h

    D    i   s   t   a    l

    h   e    i   g    h   t

    E   p    i   c

   o   n    d   y    l   a   r

    b   r

   e   a    d   t    h

    M    i    d   s    h   a    f   t

    i   n    d   e   x

    D    i   s   t   a    l

    i   n    d   e   x

    R   o    b   u   s   t    i   c    i   t   y

    i   n    d   e   x

    A    T    D

    6  -    7

    0   +    1    0    7

    (    7    9    )

    7    6  ·    3

    7  ·    3

    1    0  ·    0

    1    1  ·    7

    1    7  ·    1

    (    1    2  ·    1

    )

    7    3  ·    0

    6    8  ·    4

    1    1  ·    3

    A    T    D

    6  -    9

    9    2   +    1    1    3    8    (    S    H    )

    7    7  ·    7

    7    4  ·    1

    8  ·    2

    9  ·    4

    1    1  ·    3

    1    6  ·    4

    1    2  ·    8

    8    7  ·    2

    6    8  ·    9

    1    1  ·    9

    N   e   a   n    d   e   r   t   a    l   s

    7    6  ·    4      

    4  ·    9

    6    8  ·    5      

    4  ·    5

    8  ·    4      

    0  ·    9

    8  ·    9          1  ·    2

    1    1  ·    0      

    1  ·    3

    1    5  ·    0

  —

    9    4  ·    0      

    6  ·    4

    6    5  ·    3

    1    2  ·    5      

    0  ·    2

    (   n   =    5    )

    (   n   =    2    )

    (   n   =    8    )

    (   n   =    8    )

    (   n   =    2    )

    (   n   =    1    )

    (   n   =    8    )

    (   n   =    1    )

    (   n   =    2    )

    E   u   r   o   a   m   e   r    i   c   a   n   s    (   n   =    2    2    )

    7    4  ·    7      

    4  ·    7

    7    1  ·    3      

    4  ·    5

    7  ·    3      

    0  ·    9

    9  ·    0          1  ·    0

    1    0  ·    7      

    1  ·    0

    1    5  ·    6      

    1  ·    5

    1    1  ·    4      

    1  ·    5

    8    1  ·    4      

    1    0  ·    5

    6    8  ·    7          7  ·    2

    1    1  ·    4      

    0  ·    9

    6    4  ·    8  –    8

    3  ·    4

    6    1  ·    8  –    7

    9  ·    8

    5  ·    6  –    9  ·    1

    7  ·    5  –    1    0  ·

    6

    8  ·    5  –    1

    2  ·    3

    1    1  ·    6  –    1

    8  ·    7

    8  ·    6

  –    1    5  ·    7

    6    2  ·    9  –    1

    0    3  ·    4

    5    9  ·    0  –    9    7  ·    4

    9  ·    5  –    1

    3  ·    0

    A    f   r   o

   a   m   e   r    i   c   a   n   s    (   n   =    2    5    )

    7    8  ·    7      

    5  ·    0

    7    5  ·    7      

    4  ·    8

    7  ·    7      

    1  ·    1

    9  ·    3          1  ·    1

    1    0  ·    7      

    1  ·    4

    1    5  ·    6      

    2  ·    0

    1    1  ·    6      

    1  ·    2

    8    3  ·    0      

    8  ·    9

    6    8  ·    8          7  ·    0

    1    1  ·    2      

    0  ·    8

    7    0  ·    4  –    8

    6  ·    1

    6    7  ·    7  –    8

    3  ·    0

    6  ·    2  –    1

    1  ·    1

    7  ·    9  –    1    1  ·

    6

    8  ·    5  –    1

    4  ·    0

    9  ·    5  –    1

    9  ·    2

    9  ·    6

  –    1    5  ·    4

    6    0  ·    6  –    9

    7  ·    9

    5    7  ·    1  –    9    2  ·    6

    9  ·    7  –    1

    4  ·    0

    P   a   r   e   n   t    h   e   s   e   s    (    )    i   n    d    i   c   a   t   e   e   s   t    i   m   a   t   e    d   v   a    l   u   e   s .

    M

    i    d   s    h   a    f   t

    i   n    d   e   x   =    (   m    i    d   s    h   a    f   t

    b   r   e   a    d   t    h    /   m    i    d   s    h   a    f   t

    h   e    i   g    h   t    )         1    0    0   ;

    d    i   s   t   a    l

    i   n    d   e   x   =    (    d    i   s   t   a    l    b   r   e   a    d   t    h    /    d    i   s   t   a    l    h   e    i   g    h   t    )         1    0    0   ;

   r   o    b   u   s   t    i   c    i   t   y

    i   n    d   e   x   =    0  ·    5     

    (   m    i    d   s    h   a    f   t

    b   r   e   a

    d   t    h   +   m    i    d   s    h   a    f   t    h   e    i   g    h   t    )    /   a   r   t    i   c   u    l   a   r    l   e   n   g   t    h     

    1    0    0 .

    N

   e   a   n    d   e   r   t   a    l   s   a   m   p    l   e   =    L   a    F   e   r   r   a   s   s    i   e    1 ,    L   a    F   e   r   r   a   s   s    i   e    2 ,

    K    i    i    k  -    K   o    b   a ,    A   m   u    d    1

 ,    T   a    b   u   n    1 ,

    S    h   a   n    i    d   a   r    1 ,

    3 ,

    4 ,

    6   a   n    d

    S   p   y .

515

Page 16: 1-s2.0-S004724849990341X-main

7/27/2019 1-s2.0-S004724849990341X-main

http://slidepdf.com/reader/full/1-s20-s004724849990341x-main 16/22

    T   a    b    l   e    8

    C   o   m   p   a   r    i   s   o   n   s   o    f   t    h   e    A    T    D    6  -    3    0   a   n    d    A    T    D    6  -    3    1    h   a    l    l   u   c   a    l   p   r   o   x    i   m   a    l   p    h   a    l   a   n   g   e   s    d    i   m   e   n   s    i   o   n   s    (    i   n   m   m    )

    M   a   x    i   m   u   m

    l   e   n   g   t    h

    A   r   t    i   c   u    l   a   r

    l   e   n   g   t    h

    P   r   o   x    i   m   a    l

    b   r   e   a    d   t    h

    P   r   o   x    i   m

   a    l

    h   e    i   g    h

   t

    P   r   o   x    i   m   a    l

   a   r   t    i   c   u    l   a   r

    b   r   e   a    d   t    h

    P   r   o   x    i   m   a    l

   a   r   t    i   c   u    l   a   r

    h   e    i   g    h   t

    M

    i    d   s    h   a    f   t

    b   r   e   a    d   t    h

    M    i    d   s    h   a    f   t

    h   e    i   g    h   t

    T   r   o   c    h    l   e   a

   r

    b   r   e   a    d   t    h

    T   r   o   c    h    l   e   a   r

    h   e    i   g    h   t

    A    T    D

    6  -    3

    0

    3    6  ·    6

    3    1  ·    0

    1    8  ·    0

    1    6  ·    7

    1    5  ·    6

    1    4  ·    3

    1    1  ·    8

    1    0  ·    5

    1    5  ·    0

    1    0  ·    7

    A    T    D

    6  -    3

    1

    3    4  ·    3

    2    9  ·    1

    1    8  ·    3

    1    7  ·    0

    1    6  ·    9

    1    4  ·    4

    1    1  ·    0

    9  ·    9

    1    6  ·    1

    1    0  ·    8

    S    H

    3    4  ·    6      

    1  ·    3

    2    8  ·    3      

    1  ·    4

    2    1  ·    1      

    2  ·    0

    1    7  ·    3      

    1  ·    1

    1    8  ·    3      

    1  ·    5

    1    4  ·    1      

    1  ·    1

    1    4  ·    8      

    1  ·    3

    1    2  ·    0      

    0  ·    7

    1    8  ·    4          0  ·

    8

    1    0  ·    3      

    0  ·    4

    (   n   =    4    )

    (   n   =    4    )

    (   n   =    5    )

    (   n   =    5    )

    (   n   =    5    )

    (   n   =    4    )

    (   n   =    4    )

    (   n   =    4    )

    (   n   =    4    )

    (   n   =    4    )

    N   e   a   n

    d   e   r   t   a    l   s

    3    0  ·    4      

    2  ·    4

    2    6  ·    5      

    2  ·    2

    1    7  ·    2      

    1  ·    5

    1    7  ·    1      

    1  ·    5

    1    7  ·    4      

    2  ·    0

    1    3  ·    8      

    1  ·    6

    1    2  ·    9      

    1  ·    3

    9  ·    7      

    0  ·    9

    1    6  ·    9          2  ·

    1

    9  ·    5      

    1  ·    3

    (   n   =    5    )

    (   n   =    1    2    )

    (   n   =    1    2    )

    (   n   =    1    2

    )

    (   n   =    1    4    )

    (   n   =    1    3    )

    (   n   =    1    2    )

    (   n   =    1    2    )

    (   n   =    1    1    )

    (   n   =    1    1    )

     P   a   n    (

   n   =    1    9    )

    3    0  ·    7      

    1  ·    9

    2    7  ·    7      

    1  ·    7

    1    5  ·    9      

    1  ·    1

    1    2  ·    5      

    0  ·    7

    1    2  ·    4      

    0  ·    7

    1    0  ·    5      

    0  ·    9

    9  ·    8      

    0  ·    9

    7  ·    9      

    0  ·    7

    1    2  ·    1          0  ·

    9

    9  ·    1      

    0  ·    6

    2    7  ·    2  –    3

    3  ·    7

    2    4  ·    5  –    3

    0  ·    4

    1    3  ·    8  –    1

    7  ·    9

    1    1  ·    3  –    1

    4  ·    1

    1    1  ·    1  –    1

    3  ·    8

    9  ·    3  –    1

    2  ·    6

    8  ·    2  –    1

    1  ·    5

    6  ·    8  –    9  ·    2

    1    0  ·    5  –    1    4  ·

    1

    7  ·    8  –    1

    0  ·    3

     G   o   r     i     l     l   a    (   n   =    2    4    )

    3    0  ·    9      

    3  ·    8

    2    7  ·    0      

    3  ·    5

    2    0  ·    5      

    2  ·    6

    1    5  ·    0      

    1  ·    6

    1    5  ·    8      

    2  ·    0

    1    2  ·    3      

    1  ·    3

    1    2  ·    7      

    2  ·    0

    9  ·    0      

    1  ·    0

    1    4  ·    9          1  ·

    8

    9  ·    7      

    1  ·    3

    2    3  ·    1  –    3

    6  ·    0

    2    0  ·    1  –    3

    2  ·    3

    1    6  ·    0  –    2

    4  ·    6

    1    2  ·    5  –    1

    7  ·    8

    1    2  ·    7  –    1

    9  ·    9

    9  ·    6  –    1

    4  ·    6

    9  ·    2  –    1

    5  ·    4

    7  ·    0  –    1

    1  ·    0

    1    1  ·    3  –    1    7  ·

    5

    6  ·    8  –    1

    1  ·    8

    E   u   r   o   a   m   e   r    i   c   a   n   s    (   n   =    8    0    )

    3    4  ·    1      

    2  ·    5

    2    8  ·    5      

    2  ·    2

    1    9  ·    8      

    1  ·    7

    1    6  ·    3      

    1  ·    6

    1    7  ·    6      

    1  ·    7

    1    3  ·    6      

    1  ·    5

    1    2  ·    0      

    1  ·    7

    9  ·    7      

    1  ·    2

    1    6  ·    3          1  ·

    6

    1    0  ·    0      

    0  ·    9

    2    9  ·    4  –    3

    9  ·    6

    2    4  ·    1  –    3

    4  ·    5

    1    7  ·    1  –    2

    7  ·    7

    1    2  ·    9  –    2

    2  ·    2

    1    4  ·    6  –    2

    3  ·    9

    1    0  ·    9  –    1

    9  ·    7

    8  ·    7  –    1

    6  ·    9

    7  ·    2  –    1

    3  ·    0

    1    3  ·    0  –    2    1  ·

    6

    8  ·    2  –    1

    2  ·    8

    A    f   r   o   a

   m   e   r    i   c   a   n   s    (   n   =    7    9    )

    3    5  ·    1      

    2  ·    6

    2    9  ·    5      

    2  ·    5

    2    0  ·    1      

    1  ·    7

    1    6  ·    9      

    1  ·    5

    1    7  ·    8      

    1  ·    7

    1    3  ·    8      

    1  ·    6

    1    1  ·    8      

    1  ·    5

    9  ·    9      

    1  ·    2

    1    6  ·    4          1  ·

    5

    1    0  ·    2      

    1  ·    1

    2    9  ·    9  –    4

    0  ·    7

    2    3  ·    5  –    3

    5  ·    9

    1    5  ·    5  –    2

    3  ·    7

    1    3  ·    3  –    2

    1  ·    4

    1    3  ·    8  –    2

    2  ·    5

    1    0  ·    8  –    1

    9  ·    0

    8  ·    5  –    1

    4  ·    7

    7  ·    3  –    1

    3  ·    2

    1    3  ·    0  –    1    9  ·

    5

    7  ·    9  –    1

    2  ·    8

    S    i   m

   a    d   e    l   o   s    H   u   e   s   o   s    (    S    H    )   s   a   m   p    l   e    i   s   c   o   m   p   o   s   e    d   o    f    A    T  -    9

    6 ,

    A    T  -    6

    8    7 ,

    A    T  -    7

    7    2 ,

    A    T  -    8

    9    8   a   n    d    A    T  -    8

    9    9 .

    N   e

   a   n    d   e   r   t   a    l   s   a   m   p    l   e   =    L   a    F   e   r   r   a   s   s    i   e    2 ,    K

    i    i    k  -    K   o    b   a ,    S   p   y    2    5    F    &    G ,

    S    h   a   n    i    d   a   r    1 ,

    3 ,

    4 ,

    6 ,

    8 ,

    K   r   a   p    i   n   a    2    5    0  ·    1 ,

    2    5    0  ·    2

 ,    2    5    0  ·    3 ,

    2    5    0  ·    4 ,

    2    5    0  ·    5 ,

    2    5    3  ·    3   a   n    d    T

   a    b   u   n    1 .

516 . ET AL.

Page 17: 1-s2.0-S004724849990341X-main

7/27/2019 1-s2.0-S004724849990341X-main

http://slidepdf.com/reader/full/1-s20-s004724849990341x-main 17/22

    T   a    b

    l   e    9

    C   o   m   p   a   r    i   s   o   n   s   o    f   t    h   e    A    T    D    6

  -    3    0   a   n    d    A    T    D    6  -    3    1    h   a    l    l   u   c   a    l   p   r   o   x

    i   m   a    l   p    h   a    l   a   n   g   e   s    i   n    d    i   c   e   s    (    i   n   m   m    )

    B   a   s   e

    i   n    d   e   x

    A   r   t    i   c   u    l   a   r

    i   n    d   e   x

    M    i    d   s    h   a    f   t

    i   n    d   e   x

    T   r   o   c    h    l   e   a   r

    i   n    d   e   x

    R   o    b   u   s   t    i   c    i   t   y

    i   n    d   e   x

    P   r   o   x    i   m   a    l

   r   u   g   o   s    i   t   y    i   n    d   e   x

    A    T    D

    6  -    3

    0

    9    2  ·    8

    9    1  ·    7

    8    9  ·    0

    7    1  ·    3

    3    6  ·    0

    7    4  ·    2

    A    T    D

    6  -    3

    1

    9    2  ·    9

    8    5  ·    2

    9    0  ·    0

    6    7  ·    1

    3    5  ·    9

    7    8  ·    2

    S    H

    8    1  ·    5

      

    6  ·    2

    7    7  ·    1      

    2  ·    2

    8    1  ·    1      

    4  ·    5

    5    6  ·    0          2  ·    8

    4    7  ·    6      

    5  ·    4

    7    0  ·    2      

    3  ·    4

    (   n   =    5    )

    (   n   =    4    )

    (   n   =    4    )

    (   n   =    4    )

    (   n   =    4    )

    (   n   =    4    )

    N   e   a   n    d   e   r   t   a    l   s

    8    5  ·    8

      

    4  ·    5

    7    8  ·    9      

    5  ·    0

    7    5  ·    4      

    5  ·    9

    5    6  ·    4          4  ·    8

    4    2  ·    6      

    3  ·    0

    7    4  ·    7      

    7  ·    2

    (   n   =

    1    1    )

    (   n   =    1    2    )

    (   n   =    1    2    )

    (   n   =    1    0    )

    (   n   =    1    2    )

    (   n   =    1    1    )

     P   a   n

    (   n   =    1    9    )

    7    8  ·    3

      

    4  ·    2

    8    4  ·    1      

    6  ·    3

    8    0  ·    7      

    7  ·    4

    7    4  ·    8          4  ·    8

    3    1  ·    9      

    1  ·    9

    6    5  ·    8      

    7  ·    3

    6    8  ·    2

  –    8    5  ·    5

    6    7  ·    4  –    9

    5  ·    0

    6    6  ·    1  –    9

    1  ·    5

    6    1  ·    0  –    8    1  ·    3

    2    8  ·    4  –    3

    6  ·    2

    5    5  ·    5  –    8

    1  ·    5

     G   o   r     i     l     l   a    (   n   =    2    4    )

    7    3  ·    3

      

    4  ·    3

    7    8  ·    6      

    8  ·    2

    7    1  ·    8      

    5  ·    9

    6    5  ·    2          3  ·    6

    4    0  ·    4      

    4  ·    0

    6    4  ·    1      

    8  ·    1

    6    5  ·    9

  –    7    9  ·    2

    6    5  ·    1  –    9

    4  ·    7

    6    3  ·    0  –    8

    8  ·    0

    5    5  ·    3  –    7    0  ·    5

    3    2  ·    4  –    5

    1  ·    2

    3    7  ·    5  –    7

    4  ·    9

    E   u   r   o   a   m   e   r    i   c   a   n   s    (   n   =    8    0    )

    8    2  ·    4

      

    5  ·    6

    7    7  ·    7      

    5  ·    9

    8    1  ·    4      

    7  ·    1

    6    1  ·    5          4  ·    5

    3    8  ·    3      

    5  ·    0

    7    4  ·    1      

    5  ·    4

    7    0  ·    1

  –    9    2  ·    4

    6    2  ·    3  –    9

    1  ·    4

    6    7  ·    3  –    1

    0    0  ·    0

    5    0  ·    0  –    7    2  ·    8

    2    5  ·    7  –    5

    0  ·    2

    5    8  ·    4  –    8

    8  ·    0

    A    f   r   o

   a   m   e   r    i   c   a   n   s    (   n   =    7    9    )

    8    4  ·    3

      

    5  ·    1

    7    7  ·    8      

    5  ·    3

    8    4  ·    3      

    6  ·    0

    6    2  ·    4          5  ·    8

    3    7  ·    0      

    4  ·    6

    7    2  ·    5      

    6  ·    7

    7    0  ·    5

  –    9    8  ·    6

    6    5  ·    3  –    9

    3  ·    2

    7    1  ·    1  –    9

    7  ·    9

    5    0  ·    6  –    8    8  ·    9

    3    0  ·    0  –    5

    4  ·    4

    5    4  ·    8  –    8

    7  ·    3

    B   a   s   e    i   n    d   e   x   =    (   p   r   o   x    i   m   a    l    h   e    i   g    h   t    /   p   r   o   x    i   m   a    l    b   r   e   a    d   t    h    )         1    0    0   ;   a   r   t    i   c   u    l   a   r    i   n    d   e   x   =    (   p   r   o   x    i   m   a    l   a   r   t    i   c   u    l   a   r    h   e    i   g    h   t    /   p   r   o   x    i   m   a    l   a   r   t    i   c   u    l   a   r    b   r   e   a    d   t    h    )         1    0    0   ;   m    i    d   s    h   a    f   t    i   n    d   e   x   =

    (   m    i    d

   s    h   a    f   t    h   e    i   g    h   t    /   m    i    d   s    h   a    f   t    b   r   e   a    d   t    h    )         1

    0    0   ;   t   r   o   c    h    l   e   a   r    i   n    d   e   x   =    (   t   r   o   c    h    l   e   a   r    h   e

    i   g    h   t    /   t   r   o   c    h    l   e   a   r    b   r   e   a    d   t    h    )         1    0    0   ;   r   o    b   u   s   t    i   c    i   t   y    i   n    d   e   x   =    0  ·    5     

    (   m    i    d   s    h   a    f   t    b   r   e

   a    d   t    h   +   m    i    d   s    h   a    f   t

    h   e    i   g    h   t    )    /   a   r   t    i   c   u    l   a   r    l   e   n   g   t    h     

    1    0    0   ;   p   r   o   x    i   m   a    l   r   u   g   o   s    i   t   y    i   n    d   e   x   =    (   p   r   o   x    i   m   a    l   a   r   t    i   c   u    l   a   r    h   e    i   g    h   t    /   p   r   o   x    i   m   a    l   a   r   t    i   c   u    l   a   r    b   r   e   a    d   t    h

    )    /    (   p   r   o   x    i   m   a    l   m   a   x    i   m   u   m    h   e    i   g    h   t    /   p   r   o   x    i   m   a    l   m   a   x    i   m   u   m

    b   r   e   a

    d   t    h    )         1    0    0 .

    S    i   m   a    d   e    l   o   s    H   u   e   s   o   s    (    S    H    )   s   a   m   p    l   e   =    A    T  -    9

    6 ,

    A    T  -    6

    8    7 ,

    A    T  -    7

    7    2 ,

    A    T  -    8

    9    8   a

   n    d    A    T  -    8

    9    9 .

    N

   e   a   n    d   e   r   t   a    l   s   a   m   p    l   e   =    L   a    F   e   r   r   a   s   s    i   e    2 ,    K    i    i    k  -    K   o    b   a ,    S   p   y    2    5    F    &    G ,

    S    h   a   n    i    d   a   r

    1 ,

    3 ,

    4 ,

    6 ,

    8 ,

    K   r   a   p    i   n   a    2    5    0  ·    1 ,

    2    5    0  ·    2

 ,    2    5    0  ·    3 ,

    2    5    0  ·    4   a   n    d    T   a    b   u   n    1 .

517

Page 18: 1-s2.0-S004724849990341X-main

7/27/2019 1-s2.0-S004724849990341X-main

http://slidepdf.com/reader/full/1-s20-s004724849990341x-main 18/22

ATD6-32 with means of phalanges from the

second, third and fourth ray. The foot proxi-

mal phalanx ATD6-32 presents a larger

midshaft breadth than midshaft height and

has a midshaft index (midshaft breadth/midshaft height100=106·0) that is inter-

mediate between Neandertal (114·87·1,

n=11) and modern human means (Euro-

americans=87·413·6, n= 99; Afro-

americans=86·410·9, n=105). The foot

proximal phalanx ATD6-32 also presents a

higher midshaft index when we compare it

to two prehistoric Amerindian samples, who

probably wore little more than protective

footgear (Libben=95·0, n=120; Pecos=95·6, n=136; mean of proximal pedal

phalanges 2, 3 and 4 calculated using mean

values from Trinkaus & Hilton, 1996), but

is very similar to Early modern humans

(104·6, n=23; calculated as previously from

Trinkaus & Hilton, 1996).

The three pedal middle phalanges of Gran

Dolina (ATD6-33, ATD6-34 and ATD6-

35) and the two distal phalanges (ATD6-26

and ATD6-68) have the same morphology

and dimensions of those of modern humans,

Neandertals and SH (Table 10).

Stature estimation

In spite of the problems of using metatarsal

length to estimate stature, we have used it

for this purpose because it is the only bone

available. Byers et al . (1989) provide some

regression formulae using two samples of 

Euroamericans and Afroamericans from

the Terry collection. Using the metatarsal

articular length we estimate the stature of 

the ATD6-70+ 107 individual. The corre-

lation coefficient between the metatarsal

articular length and stature ranges between

r =0·66 and r =0·75 (Byers et al ., 1989).

Applying the combined formula for both

samples and both sexes we obtain a stature

of 169·76·5 cm (r =0·78). Some authors

prefer to apply formulae derived from

European people to estimate the stature of Neandertals, due to their similar body pro-

portions (Vandermeersch & Trinkaus, 1995;

Holliday, 1997; Holliday & Ruff , 1997).

Using the Euroamerican male and female

samples we obtain values of 173·07·0 cm

and 168·95·2 cm respectively, with amean estimate of 170·9 cm. This figure is

very close to a stature of 172·5 cm obtained

using the radius ATD6-43 from eight

diff erent equations (Carretero et al ., 1999).

Summary and conclusions

In spite of the scarcity and the fragmentary

nature of the Gran Dolina fossils we can

observe some characteristics in the handremains: a capitate with a constricted neck,

well developed head, strong attachment for

the ligamentum interosseum trapezoid-

capitate, a palmarly placed trapezoid facet

with a small dorsal trapezoid facet, remi-

niscent of the primitive condition highly

curved and oblique orientation of the second

metacarpal facet, and a transversally ori-

ented dorsodistal border; a hamate with a

less projecting and lightly built hamulus; an

inferred reduced styloid process on the third

metacarpal base; a wide second metacarpal

head; and well marked insertions of the

flexor digitorum superficialis in the middle

phalanges. The morphology and dimensions

of the pedal remains from TD6 fits within

the modern human range of variation

(including an elongated second meta-

tarsal), but the base, proximal articular sur-

face and shaft of the hallucal proximal

phalanges are more rounded; and the mid-

shaft of the proximal toe phalanx is wider.

From a phylogenetic perspective, the

cranial and postcranial evidence from the

SH supports the view that H. heidelbergensis

was an exclusively European species

ancestral to H. neanderthalensis (Arsuaga

et al ., 1991, 1993, 1997b; Carretero et al .,

1997; Martınez & Arsuaga, 1997), and

according to Bermudez de Castro et al .

(1997) and Arsuaga et al  . (1999) H.antecessor  represents the last common

518 . ET AL.

Page 19: 1-s2.0-S004724849990341X-main

7/27/2019 1-s2.0-S004724849990341X-main

http://slidepdf.com/reader/full/1-s20-s004724849990341x-main 19/22

    T   a    b

    l   e    1    0

    C   o   m   p   a   r    i   s   o   n   s   o    f   t    h   e    A    T    D

    6  -    3    3 ,    A    T    D    6  -    3    4   a   n    d    A    T    D    6  -    3    5   m

    i    d    d    l   e    f   o   o   t   p    h   a    l   a   n   x    d    i   m   e   n   s    i   o   n   s    (    i   n   m   m    )

    M   a   x    i   m   u   m

    l   e   n   g   t    h

    A

   r   t    i   c   u    l   a   r

    l   e   n   g   t    h

    P   r   o   x    i   m   a    l

    b   r   e   a    d   t    h

    P   r   o   x    i   m   a    l

    h   e    i   g    h   t

    P   r   o   x    i   m   a    l

   a   r   t    i   c   u    l   a   r

    b   r   e   a    d   t    h

    P   r   o   x    i   m   a    l

   a   r   t    i   c   u    l   a   r

    h   e    i   g    h   t

    M

    i    d   s    h   a    f   t

    b

   r   e   a    d   t    h

    M    i    d   s    h   a    f   t

    h   e    i   g    h   t

    T   r   o   c    h    l   e   a   r

    b   r   e   a    d   t    h

    T   r   o   c    h    l   e   a   r

    h   e    i   g    h   t

    A    T    D

    6  -    3

    3

    1    4  ·    9

    1

    3  ·    1

    9  ·    6

    8  ·    5

    9  ·    1

    6  ·    2

    7  ·    3

    5  ·    6

    9  ·    5

    5  ·    1

    A    T    D

    6  -    3

    4

    1    2  ·    7

    1

    1  ·    7

    8  ·    3

    7  ·    4

    7  ·    9

    4  ·    9

    4  ·    6

    3  ·    9

    8  ·    0

    4  ·    6

    A    T    D

    6  -    3

    5

    1    0  ·    6

    9  ·    5

    7  ·    4

    6  ·    6

    7  ·    1

    4  ·    9

    5  ·    7

    4  ·    2

    7  ·    7

    3  ·    9

    S    H    (   n   =    1    7    )

    1    0  ·    1      

    2  ·    7

    8  ·    5      

    2  ·    4

    9  ·    4      

    1  ·    3

    7  ·    7          1  ·    0

    8  ·    7      

    0  ·    8

    5  ·    7      

    0  ·    7

    7  ·    5      

    1  ·    1

    4  ·    3      

    0  ·    8

    8  ·    6      

    1  ·    0

    4  ·    4      

    0  ·    5

    N   e   a   n    d   e   r   t   a    l   s

  —

    8  ·    8      

    1  ·    5

    1    0  ·    2      

    0  ·    4

    8  ·    5          0  ·    6

    9  ·    4      

    0  ·    3

    6  ·    3      

    0  ·    3

    7  ·    9      

    0  ·    7

    4  ·    7      

    0  ·    4

    9  ·    6      

    0  ·    4

    5  ·    6      

    0  ·    9

    (   n   =    5    )

    (   n   =    6    )

    (   n   =    6    )

    (   n   =    5    )

    (   n   =    5    )

    (   n   =    6    )

    (   n   =    6    )

    (   n   =    6    )

    (   n   =    6    )

    2   n    d

   a   n    d    5   t    h   r   a   y   s   :

    E   u   r   o   a   m   e   r    i   c   a   n   s

    1    1  ·    0      

    3  ·    7

    9  ·    7      

    3  ·    3

    9  ·    2      

    0  ·    9

    7  ·    5          0  ·    8

    7  ·    7      

    1  ·    1

    4  ·    9      

    0  ·    6

    6  ·    7      

    1  ·    3

    4  ·    3      

    0  ·    7

    8  ·    1      

    0  ·    8

    4  ·    9      

    0  ·    7

    (   n   =    1    3    0    )

    (   n   =    1    3    0    )

    (   n   =    1    3    0    )

    (   n   =    1    3    0

    )

    (   n   =    1    3    0    )

    (   n   =    1    3    0    )

    (

   n   =    8    5    )

    (   n   =    8    5    )

    (   n   =    1    3    0    )

    (   n   =    1    3    0    )

    A    f   r   o

   a   m   e   r    i   c   a   n   s

    1    0  ·    8      

    3  ·    4

    9  ·    7      

    3  ·    1

    9  ·    1      

    0  ·    9

    7  ·    5          0  ·    9

    8  ·    0      

    0  ·    9

    5  ·    1      

    0  ·    7

    6  ·    0      

    1  ·    2

    4  ·    0      

    0  ·    6

    8  ·    3      

    0  ·    9

    4  ·    8      

    0  ·    6

    (   n   =    1    4    0    )

    (   n   =    1    3    8    )

    (   n   =    1    4    0    )

    (   n   =    1    4    0

    )

    (   n   =    1    4    0    )

    (   n   =    1    4    0    )

    (   n   =    1    1    1    )

    (   n   =    1    1    0    )

    (   n   =    1    3    6    )

    (   n   =    1    3    7    )

    S    i   m   a    d   e    l   o   s    H   u   e   s   o   s    (    S    H    )   s   a   m   p    l   e    i   s

   c   o   m   p   o   s   e    d   o    f   a    d   u    l   t   m    i    d    d    l   e    f   o   o   t   p    h   a    l   a   n   g   e   s    f   r   o   m   t    h   e   s   e   c   o   n    d   a   n    d    fi    f   t    h   r   a   y   s    A    T  -    8

    8 ,

    A    T  -    1

    0    9 ,

    A    T  -    1

    1    1 ,

    A    T

  -    1    1    5 ,

    A    T  -    2

    1    4 ,

    A    T  -

    2    6    5 ,

    A    T  -    5

    1    4 ,

    A    T  -    5

    1    6 ,

    A    T  -    5

    2    3 ,    A

    T  -    5

    2    4 ,

    A    T  -    9

    0    6 ,

    A    T  -    1

    2    8    5 ,

    A    T  -    1    3

    4    9 ,

    A    T  -    1

    4    3    3 ,

    A    T  -    1

    5    1    0 ,

    A    T  -    1

    5    1    1

   a   n    d    A    T  -    1

    7    6    7 .

    N

   e   a   n    d   e   r   t   a    l   s   a   m   p    l   e   =    S    h   a   n    i    d   a   r    4 ,

    8   a   n

    d    T   a    b   u   n    1 .

519

Page 20: 1-s2.0-S004724849990341X-main

7/27/2019 1-s2.0-S004724849990341X-main

http://slidepdf.com/reader/full/1-s20-s004724849990341x-main 20/22

ancestor for H. sapiens (modern humans)

and H. neanderthalensis.

The H. antecessor  hand and foot remains

display a set of morphological traits that are

more similar to modern humans than tothe later Middle and Late Pleistocene

European hominids. Our results do not

contradict the previous phylogenetic analy-

sis, i.e., that H. antecessor  represents the

last common ancestor for H. sapiens

(modern humans) and H. neanderthalensis

(Neandertals).

Acknowledgements

We thank especially the rest of the

Atapuerca team involved in the excavation

and in the preparation of the remains studied

here. Thanks also to I. Martınez, A. Gracia,

N. Garcıa, L. Lopez-Polın, J. M. Bermudez

de Castro and R. Quam for their discussion,

as well as useful and constructive comments.

M. Marzke and E. Trinkaus provided help-

ful suggestions on this manuscript. We also

thank Leslie Aiello and the editorial staff  of 

 JHE for their invaluable help with the editing

of the text. We thank B. Latimer and L.

 Jellema (Cleveland Museum of Natural

History) for access to the Hamann-Todd

collection; P. Andrews, R. Clarke, F. C.

Howell, R. Kruszynski, M. Laranjeira

Rodrigues de Areia, A. Langaney, H. de

Lumley, J. Radovcic, Y. Rak, C. Stringer, F.

Thackeray, P. Tobias and T. D. White for

access to human fossil remains and skeletal

collections under their care. Help in the field

from the Grupo Espeleologico Edelweiss of 

Burgos was also essential. The first author

received a grant from the Ayuntamiento de

Madrid in the Residencia de Estudiantes.

Field work at the Atapuerca sites is sup-

ported by the Junta de Castilla y Leon, and

this research was funded by the Direccion

General de Ensenanza Superior (PB96-

1026-C03-03), by the Comunidad de

Madrid (06/0037/1997) and by the UnidadAsociada (CSIC-UCM).

References

Arsuaga, J. L., Carretero, J. M., Martınez, I. & Garcia,A. (1991). Cranial remains and long bones fromAtapuerca/Ibeas (Spain). J. hum. Evol. 20, 191– 230.

Arsuaga, J. L., Martınez, I., Gracia, A., Carretero, J. M.& Carbonell, E. (1993). Three new human skullsfrom the Sima de los Huesos Middle Pleistocenesite in Sierra de Atapuerca, Spain. Nature 362, 534– 537.

Arsuaga, J. L., Martınez, I., Gracia, A., Carretero, J. M., Lorenzo, C., Garcıa, N. & Ortega, A. I.(1997a). Sima de los Huesos (Sierra de Atapuerca,Spain). The site. J. hum. Evol. 33, 109–127.

Arsuaga, J. L., Martınez, I., Gracia, A. & Lorenzo, C.(1997b). The Sima de los Huesos crania (Sierra deAtapuerca, Spain). A comparative study. J. hum.Evol. 33, 219–281.

Arsuaga, J. L., Martınez, I., Lorenzo, C., Gracia, A.,Munoz, A., Alonso, O. & Gallego, J. (1999). Thehuman cranial remains from Gran Dolina LowerPleistocene site (Sierra de Atapuerca, Spain).

 J. hum. Evol. 37, 431–457.Bermudez de Castro, J. M., Arsuaga, J. L., Carbonell,

E., Rosas, A., Martınez, I. & Mosquera, M. (1997).A hominid from the Lower Pleistocene of Atapuerca:possible ancestor to Neandertals and modernhumans. Science 276, 1392–1395.

Bermudez de Castro, J. M., Rosas, A. & Nicolas, M. E.(1999). Dental remains from Atapuerca-TD6 (GranDolina site, Burgos, Spain). J. hum. Evol. 37, 523– 566.

Bischoff , J. L., Fitzpatrick, J. A., Leon, L., Arsuaga, J. L., Falgueres, C., Bahain, J. J. & Bullen, T. (1997).Geology and preliminary dating of the hominid-bearing sedimentary fill of the Sima de los HuesosChamber, Cueva Mayor of the Sierra de Atapuerca,Burgos, Spain. J. hum. Evol. 33, 129–154.

Bush, M. E., Lovejoy, C. O., Johanson, D. C. &Coppens, Y. (1982). Hominid carpal, metacarpaland phalangeal bones recovered from the HadarFormation: 1974–1977 collections. Am. J. phys.

 Anthrop. 57, 651–677.Byers, S., Akoshima, K. & Curran, B. (1989). Deter-

mination of adult stature from metatarsal length. Am.

 J. phys. Anthrop. 79, 275–279.Carbonell, E., Bermudez de Castro, J. M., Arsuaga,

 J. L., Dıez, J. C., Rosas, A., Cuenca-Bescos, G.,Sala, R., Mosquera, M. & Rodrıguez, X. P. (1995).Lower Pleistocene hominids and artefacts fromAtapuerca-TD6 (Spain). Science 269, 826–830.

Carbonell, E., Garcıa-Anton, M. D., Mallol, C.,Mosquera, M., Olle, A., Rodrıguez, X. P., Sahnouni,M., Sala, R. & Verges, J. M. (1999). The TD6 levellithic industry from Gran Dolina, Atapuerca (Burgos,Spain): production and use. J. hum. Evol. 37, 653– 693.

Carretero, J. M., Arsuaga, J. L. & Lorenzo, C. (1997).

Clavicles, scapulae and humeri from the Sima de losHuesos site (Sierra de Atapuerca, Spain). J. hum.Evol. 33, 357–408.

520 . ET AL.

Page 21: 1-s2.0-S004724849990341X-main

7/27/2019 1-s2.0-S004724849990341X-main

http://slidepdf.com/reader/full/1-s20-s004724849990341x-main 21/22

Carretero, J. M., Lorenzo, C. & Arsuaga, J. L. (1999).Axial and appendicular skeleton of  Homo antecessor . J. hum. Evol. 37, 459–499.

Endo, B. & Kimura, T. (1970). Postcranial skeleton of the Amud Man. In (H. Suzuki & F. Takai, Eds) The Amud Man and his Cave Site, pp. 231–406. Tokyo:

University of Tokyo.Fernandez-Jalvo, Y., Dıez, J. C., Caceres, I. & Rosell, J.

(1999). Human cannibalism in Early Pleistocene of southern Europe (Gran Dolina, Sierra de Atapuerca,Burgos, Spain). J. hum. Evol. 37, 591–622.

Fernandez-Jalvo, Y., Dıez, J. C., Bermudez de Castro, J. M., Carbonell, E. & Arsuaga, J. L. (1996). Evi-dence of early cannibalism. Science 271, 269–270.

Greulich, W. W. & Pyle, S. I. (1959). Radiographic Atlas of Skeletal Development of the Hand and Wrist .(Second edn). Stanford, California: StanfordUniversity Press.

Heim, J.-L. (1982). Les Hommes fossiles de La Ferrassie.

Tome II. Les squelettes adultes (squelette des membres).Paris: Masson.

Hoerr, N. L. & Pyle, S. I. (1962). Radiographic Atlasof Skeletal Development of the Foot and Ankle.Springfield, Ill.: Thomas Pub.

Holliday, T. W. (1997). Body proportions in LatePleistocene Europe and modern human origins. J. hum. Evol. 32, 423–447.

Holliday, T. W. & Ruff , C. B. (1997). Ecogeographicalpatterning and stature prediction in fossil hominids:comment on M. R. Feldesman and R. L. Fountain,American Journal of Physical Anthropology (1996)100: 207–224. Am. J. phys. Anthrop. 103, 137–140.

 Johanson, D. C., Lovejoy, C. O. Kimbel, W. H.,

White, T. D., Ward, S. C., Bush, M. E., Latimer,B. M. & Coppens, Y. (1982). Morphology of thePliocene Partial Hominid Skeleton (A.L. 288-1)from the Hadar Formation, Ethiopia. Am. J. phys. Anthrop. 57, 403–451.

Leakey, M. G., Feibel, C. S., McDougall, I., Ward, C.& Walker, A. (1998). New specimens and confirma-tion of an early age for Australopithecus anamensis. Nature 393, 62–66.

Lewis, O. J. (1973). The hominoid os capitatum, withspecial reference to the fossil bones from Sterkfonteinand Olduvai Gorge. J. hum. Evol. 2, 1–12.

Martin, R. & Saller, K. (1957). Lehrbuch der Anthropolo-

 gie (Vol. Band 1). Stuttgart: Gustav Fischer Verlag.Martınez, I. & Arsuaga, J. L. (1997). The temporalbones from Sima de los Huesos Middle Pleistocenesite (Sierra de Atapuerca, Spain). A phylogeneticapproach. J. hum. Evol. 33, 283–318.

Marzke, M. W. (1983). Joint functions and grips of the Australopithecus afarensis hand, with special referenceto the region of the capitate. J. hum. Evol. 12,

197–211.

Marzke, M. W. (1996). Evolution of the hand andbipedality. In (A. Lock & C. K. Peters, Eds) Hand-book of Human Symbolic Evolution, pp. 126–154.Oxford: Clarendon Press.

Marzke, M. W. (1997). Precision grips, hand mor-

phology, and tools. Am. J. phys. Anthrop. 102,91–110.

Marzke, M. W. & Marzke, R. F. (1987). The thirdmetacarpal styloid process in humans: origin andfunctions. Am. J. phys. Anthrop. 73, 415–431.

Marzke, M. W. & Shackley, M. S. (1986). Hominidhand use in the Pliocene and Pleistocene: evidencefrom experimental archaeology and comparative

morphology. J. hum. Evol. 5, 439–460.Marzke, M. W., Wullstein, K. L. & Viegas, S. F.

(1994). Variability at the carpometacarpal and mid-carpal joints involving the fourth metacarpal, hamate,and lunate in Catarrhini. Am. J. phys. Anthrop. 93,

229–240.McCown, T. D. & Keith, A. (1939). The Stone Age of 

 Mount Carmel. The fossil human remains from the

Levalloiso-Mousterian (Vol. 2). Oxford: Clarendon Press.

McHenry, H. (1983). The capitate of  Australopithecusafarensis and A. africanus. Am. J. phys. Anthrop. 62,

187–198.

McHenry, H. M. (1994). Early hominid postcrania:

phylogeny and function. In (R. S. Corrucini & R. L.Ciochon, Eds) Integrative Paths to the Past: Paleo-anthropological Advances in Honor of F. Clark Howell ,pp. 251–268. New Jersey: Prentice Hall.

Musgrave, J. H. (1971). How dextrous wasNeanderthal man? Nature 233, 538–541.

Musgrave, J. H. (1973). The phalanges of Neanderthaland Upper Palaeolithic hands. In (M. H. Day, Ed.)Human Evolution, pp. 59–85. London: Taylor &Francis.

Musgrave, J. H. (1977). The Neandertals fromKrapina, northern Yugoslavia: an inventory of thehand bones. Z. Morph. Anthrop. 68, 150–171.

Niewoehner, W. A., Weaver, A. H. & Trinkaus, E.

(1997). Neandertal capitate–metacarpal articularmorphology. Am. J. phys. Anthrop. 103, 219–233.

Pares, J. M. & Perez-Gonzalez, A. (1995). Paleo-magnetic age for hominid fossils at Atapuercaarchaeological site, Spain. Science 269, 830–832.

Ricklan, D. E. (1987). Functional anatomy of the hand of  Australopithecus africanus. J. hum. Evol. 16, 643–664.

Riley, G. & Trinkaus, E. (1989). Neandertal capitate-metacarpal 2 articular morphology and Neandertalmanipulative behavior (abstract). Am. J. phys. Anthrop. 78, 290.

Susman, R. L. (1988). New postcranial fossils fromSwartkrans Member 1: implications for the behavior

of  Paranthropus robustus. Am. J. phys. Anthrop. 75,277.

Susman, R. L. & Creel, N. (1979). Functional andmorphological affinities of the subadult hand(O.H.7) from Olduvai Gorge. Am. J. phys. Anthrop.51, 311–322.

Trinkaus, E. (1978). Les metatarsiens et les phalangesdu pied des Neandertaliens de Spy. Bull. Inst. R. Sci. Nat. Belg. 51, 1–18.

Trinkaus, E. (1983a). The Shanidar Neandertals. NewYork: Academic Press.

Trinkaus, E. (1983b). Functional aspects of Neandertalpedal remains. Foot Ankle 3, 377–390.

Trinkaus, E. & Hilton, C. E. (1996). Neandertal pedal

proximal phalanges: diaphyseal loading patterns. J. hum. Evol. 30, 399–425.

521

Page 22: 1-s2.0-S004724849990341X-main

7/27/2019 1-s2.0-S004724849990341X-main

http://slidepdf.com/reader/full/1-s20-s004724849990341x-main 22/22

Trinkaus, E., Churchill, S. E., Villemeur, I., Riley, K.G., Heller, J. A. & Ruff , C. B. (1991). Robusticityversus shape: the functional interpretation of Neandertal appendicular morphology. J. Anthrop.Soc. Japan 99, 257–278.

Vandermeersch, B. (1991). La ceinture scapulaire et

les membres superieurs. In (O. Bar Yosef & B.Vandermeersch, Eds) Le squelette Mousterien de

 Kebara 2, pp. 157–178. Paris: Euditions duC.N.R.S.

Vandermeersch, B. & Trinkaus, E. (1995). The post-cranial remains of the Regourdou 1 Neandertal: the

shoulder and arm remains. J. hum. Evol. 28, 439– 476.

Viegas, S. F., Wagner, K., Patterson, R. & Peterson, P.(1990). Medial (hamate) facet of the lunate. Am. J.Hand Surg. 15A, 564–571.

Villemeur, I. (1994). La main des Neandertaliens. Com-

 paraison avec la main des hommes de type modernemorphologie et mecanique. Paris: Euditions du C.N.R.S.

Walker, A. & Leakey, R. E. F. (1993). The postcranialbones. In (A. Walker & R. E. F. Leakey, Eds)The Nariokotome Homo erectus skeleton, pp. 95–160.Berlin: Springer-Verlag.

522 . ET AL.