1-s2.0-s0001457513003242-main

Upload: arizhusain94

Post on 02-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 1-s2.0-S0001457513003242-main

    1/7

    Accident Analysis and Prevention 60 (2013) 5056

    Contents lists available at ScienceDirect

    Accident Analysis and Prevention

    journal homepage: www.elsevier .com/ locate /aap

    The killing zone revisited: Serial nonlinearities predict general

    aviation accident rates from pilot total flight hours

    William R. Knecht

    Civil AerospaceMedical Institute, Federal Aviation Administration,MMAC/AAM-510, 6500S.MacArthurBoulevard,OklahomaCity,OK 73079, UnitedStates

    a r t i c l e i n f o

    Article history:

    Received 17 January 2013

    Received in revised form 24 July 2013Accepted14 August 2013

    Keywords:

    General aviation

    Accidents

    Risk

    Flight hours

    Modeling

    Nonlinear

    a b s t r a c t

    Background: Is there a killing zone (Craig, 2001)arange ofpilot flight time overwhichgeneral aviation

    (GA)pilots areatgreatest risk?Morebroadly,canwepredictaccidentrates, givenapilots totalflighthours

    (TFH)? These questions interest pilots, aviation policy makers, insurance underwriters, and researchers

    alike.Most GA research studies implicitly assume that accident rates are linearly related to TFH, but that

    relation may actually be multiply nonlinear. This work explores the ability ofserial nonlinearmodeling

    functions to predict GA accident rates from noisy rate data binned by TFH.

    Method: Two sets ofNational Transportation Safety Board (NTSB)/FederalAviation Administration (FAA)

    data were log-transformed, then curve-fit to a gamma-pdf-based function. Despite high rate-noise, this

    produced weighted goodness-of-fit (R2w) estimates of .654 and .775 for non-instrument-rated (non-IR)and instrument-rated pilots (IR) respectively.

    Conclusion: Serial-nonlinearmodels could be useful to directly predict GA accident rates from TFH, and

    as an independent variable or covariate to control for flight risk during data analysis. Applied to FAA

    data, these models imply that the killing zone may be broader than imagined. Relatively high risk for

    an individual pilot may extendwell beyond the 2000-hmark before leveling offto a baseline rate.

    Published by Elsevier Ltd.

    1. Introduction

    Totalflighthours isoftenused torepresentpilot flightexperience

    and/or risk exposure (e.g., Dionne et al., 1992; Guohua et al., 2003;

    Mills, 2005;Sherman,1997). TFHhasoftenservedas eitheran inde-

    pendent variable (IV) in itsownright or as a statistical covariate, to

    control for the effects of experience or risk.

    However, many investigators have found no reliable relations

    between TFH and their dependent variables-of-interest (DV). This

    may be because most typically assume an underlying linear rela-

    tion( y = a+ bx) between IVandDVfor instancebetweenTFHand

    accident frequency and/or rate.

    Strong evidence is beginning to emerge that some TFH rela-

    tionsmaybe nonlinear. For instance, Bazargan andGuzhva (2007)

    reported that the nonlinear logarithmic transform log(TFH) signif-

    icantly predictedGA fatalities in a logistic regression model.

    In his popular 2001 book, TheKilling Zone, Paul Craig presented

    extensive evidence that GA pilot fatalities and accident frequen-

    cies relate nonlinearly to TFH. Fatalities, for instance, occur most

    frequently at middle ranges of TFH (50350), perhaps because

    pilots are overconfident yet lack actual experience and skill with

    Tel.: +1 405 954 6848.

    E-mail address:[email protected]

    rare, challenging events. Craig supported this hypothesis with his-

    tograms of GA accident frequencies, although not with a formal

    model. In group after group, a similar pattern emerged, one of a

    skewed camel hump with a long tail at higher TFH.

    Following Craig, I investigated a nonlinear model for accident

    frequencycounts (Knecht, 2012). Derived fromNTSB andFAAdata,

    Fig. 1 typifies thelookandfeelof TFHversusfatal accident counts

    for a group of 831 U.S. instrument-rated (IR) GA pilots from 1983

    to 2011.

    This skewed hump is quite durable, persisting whether we

    break out different data categories (e.g., IR vs. non-IR or serious

    vs. fatal accidents) or even combine them. For example, Fig. 2

    shows GA accident data for 832 pilots from2003 to 2007 for NTSB

    SERIOUS+ FATAL accident categories that were combined to boost

    frequency counts.

    These data were successfully modeled by a gamma probabil-

    ity density function (pdf) operating on log-transformed TFH. We

    conclude that frequency count histograms support the notion of a

    nonlinear killing zone somewhere in the lower range of TFH.

    This is useful information. But, it now raises a new question:

    How can webe certain that this relation is not an artifact,merely

    a side-effect of the fact that there are just fewer pilots at higher

    TFH, hence fewer accidents? Fig. 3 shows how frequency counts

    for amatched sampleofnon-accidentpilotsalso drop offmarkedly

    as TFH increase.

    0001-4575/$ seefrontmatter.Published by Elsevier Ltd.

    http://dx.doi.org/10.1016/j.aap.2013.08.012

    http://localhost/var/www/apps/conversion/tmp/scratch_1/dx.doi.org/10.1016/j.aap.2013.08.012http://localhost/var/www/apps/conversion/tmp/scratch_1/dx.doi.org/10.1016/j.aap.2013.08.012http://www.sciencedirect.com/science/journal/00014575http://www.elsevier.com/locate/aapmailto:[email protected]://localhost/var/www/apps/conversion/tmp/scratch_1/dx.doi.org/10.1016/j.aap.2013.08.012http://localhost/var/www/apps/conversion/tmp/scratch_1/dx.doi.org/10.1016/j.aap.2013.08.012mailto:[email protected]://crossmark.crossref.org/dialog/?doi=10.1016/j.aap.2013.08.012&domain=pdfhttp://www.elsevier.com/locate/aaphttp://www.sciencedirect.com/science/journal/00014575http://localhost/var/www/apps/conversion/tmp/scratch_1/dx.doi.org/10.1016/j.aap.2013.08.012
  • 8/10/2019 1-s2.0-S0001457513003242-main

    2/7

    W.R. Knecht/ Accident Analysis andPrevention 60 (2013) 5056 51

    Fig. 1. Frequencyhistogram ofU.S. GA IR fatal accident counts, 19832011 (y-axis)

    as a function of total flight hours (x-axis, binwidth= 100TFH).

    Fig.2. Frequency histogramof GA IRSERIOUS+ FATAL accident counts as a function

    ofTFH (bin width= 100TFH).

    Figs 2 and 3 look suspiciously similar. In fact, the Pearson cor-

    relation between them is .845 (p< .001). This implies that most

    (r2 .71) of the killing zone seen in accident frequency counts

    can beexplained simply by the fact that the numbers of pilots tend

    to decrease as TFH increases.

    With that inmind,whatsupportnow remains forthehypothesis

    of an actual killing zone? And, if it exists, what form does it likely

    Fig. 3. A histogramof GA IRnon-accident pilot countsfromthe same data cohortas

    Fig. 2, showinghow numbers of pilotsdecrease rapidly as TFHincrease.

    Fig. 4. Anoisyhistogramshowingcombined serious+ fatal accident ratesfor all

    GA pilots as a function of TFH (binwidth= 100).

    Data fromKnecht andSmith (2013).

    take? We can address these questions by analyzing accident rate

    histograms, in which the ith data bins rate is

    ratei = accidentsi

    accidentsi + nonaccidentsi(1)

    Rateswill control forthe fact that ourfrequency countsdecrease

    as TFH increases. If a killing zone continues to persist with rates,

    thenwe have gained new insight intoGA flight risk.

    1.1. The problem with rates

    Unfortunately, rate data can be quite noisy, as Fig. 4 depicts.

    Rate-noise results fromsamplingerrorrandomfluctuations in

    rate from one bin to the next. It is a vexing problem at higher TFH

    where Eq. (1)s denominator is small compared to its numerator,

    and even small changes in frequency count can cause substantial

    rate variations.It is nothard toappreciate theusefulness of amodeling function

    here. A good model would smooth the noise in the data, allow-

    ing investigators to better predict rates, given TFH. This would

    be directly useful in areas such as determination of insurance

    premiums,allocation of resources forpilottraining,accident inves-

    tigation staffing, and public relations. To safety researchers, it

    would be useful as an IV or statistical covariate, to either factor

    in or out risk as a function of flight experience. This would have

    broad application in numerous types of aviation research.

    With this inmind, the present workmoves fromfittingGAacci-

    dent frequency countdata to fitting accident rates as a function of

    GA pilot TFH. The calculation of rates is a key step in risk analy-

    sis because rates will control for the actual number of individuals

    within a given data bin.

    2. Method

    2.1. The modeling function

    Ideally, modeling functions should be motivated by theory

    involving causal processes inherent to the data. Unfortunately, in

    aviation accidents, causes tend to be numerous and hard to disen-

    tangle, making theory-basedmodeling difficult.

    We therefore proceed with a less ambitious goal of simply try-

    ing to fit a well-behaved, continuous mathematical function to

    empirical GA accident rate data. Standard techniques are used,

    namely minimization of least-squares residuals between a model

    and empirical data.

  • 8/10/2019 1-s2.0-S0001457513003242-main

    3/7

    52 W.R. Knecht/ Accident Analysis andPrevention60 (2013) 5056

    Fig. 5. pdfwith various values of and .

    The model itself begins with the versatile probability density

    function pdf (Spanier and Oldham, 1987). The x-axis representsTFH. They-axiscanrepresenteither frequencycountor proportion.It contains a shape parameter, >0,and a scale parameter, >0.

    pdf.c(x;,) =ex/ x1

    () (2)

    Thegammafunction() itselfis describedas theEuler integral,defined for >0

    () =

    0

    t1etdt (3)

    Shown in Fig. 5, pdf has the attractive feature of being able

    to represent overdispersion (variance> mean) or underdispersion

    (variance1 =100i50.Note that, in calculating a series of binwise accident rates, we

    are not technically constructing a pdf. Rather, we are constructing

    a rate histogram and using Eq. (4) (which is based on a pdf) to fit

    that histogram.

    Note also that we must openly address the issue of whether

    these data, being a sample of convenience, may contain hidden

    biases that could affect parameterization of Eq. (4). That is not

    impossible. By definition, hiddenbiases areunknown andtypically

    revealed only after more comprehensive data become available.

    Until then, however, we argue there is substantial value in dis-

    cussing serial nonlinearities, and layingoutamethodology for their

    future use.

  • 8/10/2019 1-s2.0-S0001457513003242-main

    4/7

    W.R. Knecht/ Accident Analysis andPrevention 60 (2013) 5056 53

    2.3. Parameter estimation

    The NonlinearModelFit function ofMathematica 7.0 (Wolfram,

    2008) is used for parameter estimation. Specifically, since param-

    eters b, , and of Eq. (4) are constrained to remain >0, theKarushKuhnTucker (KKT) method is used.

    2.4. The problem of noise

    NoisydatasuchasFig.4s posegreatdifficulty forstandardleast-

    squares minimization. Parameters often fail to converge in rugged

    errorscapes, oscillating around a saddlepoint, andmay converge to

    a local minimum rather than a global one.

    To confront the problem of noise, we first tried the simplest

    approach of usingwider data bins. Surprisingly, this hadalmostno

    effect. Accidents within these data tended to bunch up in several

    adjacent bins, leaving noway to smooththemwithout resorting to

    arbitrary bin widths of convenience.

    We next tried dropping outliers greater than 2.53 s (standard

    deviations) from thegroupsamplemeany. Thismethodwas finallyabandoned because it relied on an invalid assumption of distri-

    butional normality, destroyeduseful information, andbecause the

    extremely long tail of the fitting function resulted in an s so small

    that very few of the very noisy values in the long tail were being

    dropped anyway.

    A thirdapproachwasnexttried, involvingdata-smoothingusing

    moving averages.Unfortunately, this also hadtheeffectof destroy-

    ing information by smearing.

    Simulatedannealingwasthe fourthapproach(Kirkpatrick et al.,

    1983)adding noise to each parameter start value before engag-

    ing in error-gradient descent, then cooling the noise, allowing

    parameter estimates to bounce around and out of local minima

    until a global near-minimum could be found. Nonetheless, even

    this approach would unfortunately still leave one major logical

    problem:Allourdata binsincluding thenoisywould have equal

    opportunity to influence the residual sum-of-squares during the

    data-fit. In fact, any one bin, one vote approach would implic-

    itly allowall bins equal influence,nomatter howmany individualseach binrepresentedor what that binsexpectedvariancewas. This

    would confer inordinately large influence to sparsely populated

    bins and those with inherently low reliability.

    After weighing the above considerations, we finally settle on

    the procedure ofweighting empty bins by 0 while weighting non-

    empty bins accident rate ri by the inverse of its sample variance

    (1/s2i). This is easily done in Mathematica by supplying a vector

    Weightsw to NonlinearModelFit, wherew= {w1,w2, . . .,wi}.Since our data are rates are proportions, 0 ri1, the ith bin

    weight wibecomes

    wi =1

    s2i

    =ni 1

    ri(1 ri)(1 ni/Ni) (5)

    ni being the ith bins total frequency count (accidents+ non-accidents) used to derive ri, and Ni being the number of pilots in

    the general populationwith that rangeof TFH.

    Inthisparticularinstance,wedo notknowNi,soweshallassume

    a constant sampling ratio ni/Ni, making the term 1 (ni/Ni) con-

    stant for all bins. Since weights only need to be expressed relative

    to each other during curve-fitting, we can eliminate this constant

    term, leading to a functional weight of

    wi =ni 1

    ri(1 ri) (6)

    Unfortunately, Eq. (6) is ill-behaved when ri =0 or 1, leading to

    divisionbyzero. This canarisewhen eitherTFHbins aretoo narrow

    orwhenTFH is large,making the bin sample sizenitoo small, since

    few pilots have high TFH. Fig. 6 (top) illustrates the problem.

    Fig. 6. (red, solid lines) With Eq. (6), as r0 or 1, 1/(r(1 r)); (top, dashed,

    blue line) With =001, Eq. (7) gives a good approximation across most ofr, from

    around .006< r< .994, but gracefully self-limits at r=0 and 1. (For interpretation of

    the references tocolorin this figurelegend,the readeris referredto thewebversion

    ofthe article.)

    To address this issue, Eq. (6) is modified slightly by adding a

    term designed to constrain behavior at 0 and 1:

    wi =ni 1

    (ri + )(1 ri + ) (7)

    As Fig. 6 shows,when is small, Eq. (7) closelyapproximatesEq.(6) over most of its range but self-limits gracefully at ri =0 and 1.

    2.5. Parameter start values and evolution

    Inmultidimensionalparameterspaceswithunknownlocalmin-

    ima, the choice of start values can be critical. A hybrid approach is

    used here. Start values are first selected that roughly approximate

    the shape of the binned data, namelyA=1, =6, =0.5, =b=0.Toallowparametersto evolveinamannerthatemulatesanneal-

    ing, NonlinearModelFitis setup touse weighted binneddata and to

    runmultiple times insidea For[i=1, >1.0, i= i+1] loop. Inside theFor[] loop, to emulate noise injected at each iteration, the value

    of each parameterpjismultiplied by a randomreal numberdrawn

    fromtherange1.0withstartingat0.02.Duringeach (ith)iter-

    ation of the For[] loop,NonlinearModelFitis itself allowed to run for

    i iterations, afterwhich i is increased by1while is decreasedby asmall fixed amount (.0002).thus emulates thecooling rate. Even-tually,fallsbelow1.0, halting theinjectionofparameternoiseand

    terminating the For[] loop after one final gradient descent.

    Running this method repeatedly on a given dataset, we can

    broadly sample the parameter space. After inspection of the

    graphic data-fit plots verifies a good fit, and multiple runs shows

    parameters similar to at least three significant figures, we can be

    confident that those parameter values represent a near-optimal

    data-fit.

  • 8/10/2019 1-s2.0-S0001457513003242-main

    5/7

    54 W.R. Knecht/ Accident Analysis andPrevention60 (2013) 5056

    Fig. 7. Annualized non-IR GA accident rates (y=predicted rate for x50 TFH,

    medianTFH=250.5).

    2.6. Model evaluation

    Goodness-of-fit can bemeasured by the coefficient of determi-

    nation, R2. The weighted form is usually taken as

    R2

    w = 1

    SSw,error

    SSw,total = 1ni=1wi(yi fi)2

    ni=1

    wi(yi yw)2 (8)

    with weightedmeans, for instanceYw , oftheform

    yw =

    niwiyiniwi

    (9)

    Inour case, since Eq. (8) sometimesthrows values

  • 8/10/2019 1-s2.0-S0001457513003242-main

    6/7

    W.R. Knecht/ Accident Analysis andPrevention 60 (2013) 5056 55

    4.2. A point-estimate of relative GA flight risk

    To estimate an annualized accident rate for a given value of

    TFH=x50, simply populate Eq. (4)s parameters and insert x.2

    To illustrate, for non-IR pilots at the median value of TFH =xNIR =250.5, Eq. (4) becomes

    .00252081+ .0130177

    e(ln(250.5).364805)/.0923902(ln(250.5) .364805)64.37621.092390264.3762

    (64.3762)

    Theresult is approximately.0068(1 in150)expectedaccidents

    per 100 TFH,which we can see is correct fromFig. 7.

    This point-estimatecanbeusedaseitheranIV orcovariatewhen

    our data contain only a single value of TFH for each pilot. Keep in

    mind that, in using such a relative estimate, we implicitly assume

    that (a) all pilots fly exactly 100 TFH per year, and (b) their acci-

    dent rate itself does not change during that time. Naturally, both

    these assumptions are false for most pilots and can only be safely

    ignored where large sample sizes dampen random fluctuations.

    Thismay seem like a grave restriction.But, theexact same assump-

    tionsusuallyunderliethelinearmodel,and aremerely rarely stated

    so explicitly.

    4.3. A definite-product estimate of annual GA flight risk

    In thefortunatecircumstancewhere ourdata contain twoaccu-

    rately time-stamped values of TFH for each pilot,3 we can better

    estimate each pilots absolute predicted accident rate based on

    the general form:

    risk = 1

    TFH2x=TFH1

    (1hourly) (11)

    where risk estimates the chance of having an accident over thetimespan TFH

    2TFH

    1. We calculate the definite product (),

    which simply subtracts from 1.0 the multiplied individual esti-

    mated hourly probabilities ofnothaving an accident (1hourly),with hourlydefined as

    hourly =1

    100

    b+A

    e(ln(x))/(ln(x) )1

    ()

    (12)

    Here, the constant 100normalizes for each of our accident-rate

    bins having been 100TFHwide when parameterized.

    riskavoidsamajor deficiencyof thepoint-estimatebypredict-ing cumulative accident probability over any desired number of

    TFH rather than assuming risk over an arbitrary span of 100 TFH.

    To illustrate, suppose that an IR pilot reports having flown 310

    TFH on6 September,2012, and 433 TFH on29August, 2013(a span

    of 357 days, or .978 years). Eqs. (11) and (12) become

    risk = 1

    433x=310

    1

    1

    100

    .00112073+ .0173821

    e(ln(x)2.24346)/.0890114(ln(x) 2.24346)51.34721.089011451.3472

    (51.3472)

    = 1

    433x=310

    .9999887927

    .0001132895

    (ln(x) 2.24346)50.3472

    x11.23451603

    2 (64.3762)9.460741087. (51.3472)1.188441065. Those using SPSS

    may find only the natural log of, so re-transformas eln(()) .3 Alldatashould befilteredto ensurethatt2> t1and TFH2> TFH1 . Experiencewith

    FAA data provesthat this is usually, butnot always, thecase.

    Here, risk represents a cumulative .0067 chance of having atleast one accident over the TFH range of 310433, with data accu-

    mulated over .978 years. This can be used as-is for some purposes.

    For use as an IV or covariate, it can be annualized by multiplying

    .0067 (1/.978)= .0069.

    5. Discussion

    Can total flight hours predict general aviation accident rates? If

    so, what does that relation look like? Is there a killing zonea

    range of TFH over which GA pilots are at greatest risk? These

    questions are of great interest to pilots, aviation policy makers,

    researchers, and insurance underwriters alike.

    Using accident frequency counts, Craig (2001) proposed that

    such a zone spans a range of approximately 50 to 350 total flight

    hours. The current work revisits the question, using accident rates

    to incorporate the essential additional information of numbers of

    pilots at each level of TFH. Rates, of course, introduce their own

    difficulties, andourmethodology attempts to address these.

    If such a killing zone truly exists, what does it look like? Many

    aviation research studies implicitly assume that accident rates are

    linearly related to TFH. In fact, that relation appearsmarkedly non-

    linear, and may even be a function of serial nonlinearitiesforexample, a log transform of TFH followed by a gamma probabil-

    ity density function-like transform incorporating a base rate (see

    Eq. (4)).

    The present work uses such a serial nonlinear function rateto predict GA accident rates from TFH, given extremely noisy

    real-world data. Two sets of 20032007 NTSB/FAA data pro-

    duce weighted goodness-of-fit (r2w) estimates of .654 and .775 for

    non-instrument-rated and instrument-rated pilots, respectively,

    considered moderately good by convention.

    Shownpreviously, Figs. 7 and 8 illustrate therawrate data with

    the modeling function rate =y=f(x) superimposed. Each model

    y-value represents the estimated probability of having a serious-

    to-fatal accident for a pilot flying 100 TFH (x50) over the course

    of oneyear. Theyellowregionsurrounding themodel curve repre-sents the .95 confidence interval.

    Consistent with our intuition and previous frequency count

    studies, these models suggest that a killing zone may indeed

    exist. Accident rates may increase for GA pilots early in their

    post-certification careers, reach a peak, decline with greater flight

    experience, then asymptote to some baseline level.

    However, thekilling zonemaybe farbroader than earlier imag-

    ined. Relatively high risk for an individual pilot may extend well

    beyond the 2000-hmark before leveling off to a baseline rate.

    For now, we should consider these conclusions tentative. First,

    the 67,687 pilots in these datasets constitute only slightly more

    than 10% of those currently licensed in the U.S. While this might

    represent an excellent dataset size in other venues, the relatively

    tiny number of pilots at high TFH leads to considerable noise in

    high-TFH rates. Data-weighting can overcome part of the problem

    but leads to wide confidence intervals at high TFH, reflecting the

    lower statistical reliability of high-TFH data.

    The net effect is that, at this point in time, we have high con-

    fidence in our data only at relatively low values of TFH. Better

    results await better cross-communication between the FAA and

  • 8/10/2019 1-s2.0-S0001457513003242-main

    7/7

    56 W.R. Knecht/ Accident Analysis andPrevention60 (2013) 5056

    NTSB databases, which will result inmuch larger sample sizes and

    much greater reliability across the full spectrum of TFH.

    Weendwithanappeal tothe FAA andNTSB. The dataneeded to

    compute accident rates such as these come frommultiple sources

    that are hard to access in the U.S. These include the FAA CAIS and

    DIWS databases, as well as the NTSB Aviation Accident Database.

    These databases do not intercommunicate well, and could be

    greatly improved by better record-keeping, andmost particularly

    by sharing a common pilot identifier code. The NTSB has previ-

    ously made similar recommendations (NTSB, 2005) that remain

    outstanding.

    This studyhas exploredamethodologythatwill hopefullyprove

    useful, both in its own right and as a stimulus to further research.

    Many researchers have olddata that canbe easily reanalyzed. And,

    the sooner we challenge our nave assumptions that all indepen-

    dentvariablesrelate linearly to theirdependentvariables, themore

    accurate anduseful aviation risk research will become.

    Acknowledgements

    Deep appreciation is extended to Joe Mooney, FAA (AVP-210),

    for his help reviewing the NTSB database queries that provided

    the accident data used here, to David Nelms, FAA (AAM-300), for

    providing TFH from the DIWS database, and to Dana Broach, FAA

    (AAM-500) forvaluable commentary on this seriesofmanuscripts.

    References

    Bazargan,M., Guzhva,V.S.,2007.Factorscontributingto fatalitiesin generalaviation.World Rev. Intermodal Transp. Res. 1 (2), 170181.

    Chiew, F.H.S., Srikanthan, R., Frost, A.J., Payne, E.G.I., 2005. Reliability of daily andannual stochastic rainfall data generated from different data lengths and data

    characteristics. In: MODSIM 2005 International Congress on Modeling andSimulation, Modeling and Simulation Society of Australia and New Zealand,Melbourne, December2005, pp. 12231229.

    Craig, P.A., 2001.The Killing Zone. McGraw-Hill, NewYork.Dionne, G.,Gagne, R., Vanasse, C.,1992.A Statistical Analysis of Airline Accidentsin

    Canada, 19761987 (Report No. CRT-811). Center for Research on Transporta-tion,Montreal.

    Guohua, L., Baker, S.P.,Grabowski, J.G., Qiang, Y.,McCarthy, M.L.,Rebok, G.W., 2003.Age, flight experience, andrisk of crash involvement in a cohortof professionalpilots. Am.J. Epidemiol. 157 (10), 874880.

    Hogg, R.V., Klugman, S.A., 1984. LossDistributions. Wiley, NewYork.

    Kirkpatrick, S.,Gelatt, C.D., Vecchi,M.P., 1983.Optimizationby simulatedannealing.Science 220,671680.

    Knecht, W.R., 2012. Predicting General Aviation Accident Frequency from PilotTotal Flight Hours (Technical Report No. DOT/FAA/AM-12/15). Federal AviationAdministration,Office of AerospaceMedicine,Washington, DC.

    Knecht, W.R., Smith, J.,2013.Effects of Training School Type andExaminer Type onGeneralAviationFlightSafety (TechnicalReportNo.DOT/FAA/AM-13/4). FederalAviationAdministration, Office of AerospaceMedicine,Washington, DC.

    Mackey, J.B., 1998. Forecasting wet microbursts associated with summertime air-mass thunderstormsover the southeastern United States. Air Force InstituteofTechnology (UnpublishedMS Thesis).

    Mills, W.D., 2005. The association of aviators health conditions, age, gender, andflight hours with aircraft accidents and incidents. University of Oklahoma,Health Sciences Center Graduate College, Norman, OK (Unpublished Ph.D. dis-sertation).

    National Transportation Safety Board, 2005. Current procedures for col-lecting and reporting U.S. general aviation accident and activity data(Safety Report No. NTSB/SR-05/02). NTSB, Washington, DC. Available from:www.ntsb.gov/doclib/reports/2005/sr0502.pdf

    NationalTransportation SafetyBoard, 2011.User-downloadabledatabase. Availablefrom: www.ntsb.gov/avdata

    Sherman, P.J., 1997. Aircrews evaluations of flight deck automation training anduse: measuring and ameliorating threats to safety. The University of Texas atAustin (Unpublished doctoral dissertation).

    Spanier, J.,Oldham, K.B., 1987.AnAtlas of Functions. Hemisphere,New York.Winkelmann, R., 2008.EconometricAnalysisof Count Data,5th ed.Springer-Verlag,

    Berlin.WolframMathematica DocumentationCenter,2008. Somenotes on internal imple-

    mentation. Available from: http://reference.wolfram.com/mathematica/note/SomeNotesOnInternalImplementation.html#20880

    http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0005http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0005http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0005http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0015http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0030http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0035http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0035http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0035http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://www.ntsb.gov/doclib/reports/2005/sr0502.pdfhttp://www.ntsb.gov/avdatahttp://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0075http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0080http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0080http://reference.wolfram.com/mathematica/note/SomeNotesOnInternalImplementation.html#20880http://reference.wolfram.com/mathematica/note/SomeNotesOnInternalImplementation.html#20880http://reference.wolfram.com/mathematica/note/SomeNotesOnInternalImplementation.html#20880http://reference.wolfram.com/mathematica/note/SomeNotesOnInternalImplementation.html#20880http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0080http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0080http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0080http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0080http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0080http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0080http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0080http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0080http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0080http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0075http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0075http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0075http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0075http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0075http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0075http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0075http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0070http://www.ntsb.gov/avdatahttp://www.ntsb.gov/doclib/reports/2005/sr0502.pdfhttp://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0055http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0050http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0045http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0040http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0035http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0035http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0035http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0035http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0035http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0035http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0035http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0035http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0035http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0030http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0030http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0030http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0030http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0030http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0025http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0020http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0015http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0015http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0015http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0015http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0015http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0015http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0010http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0005http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0005http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0005http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0005http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0005http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0005http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0005http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0005http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0005http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0005http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0005http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0005http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0005http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0005http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0005http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0005http://refhub.elsevier.com/S0001-4575(13)00324-2/sbref0005