1-s2.0-0377027387900801-main (1)

Upload: alvaro-osorio-r

Post on 03-Jun-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 1-s2.0-0377027387900801-main (1)

    1/12

    Journ al of Volcanology and Geothermal Research 32 (1987) 287-298 287

    Elsevier Science Publishers B.V., Amsterdam - - Print ed in The Net herlands

    T HE H Y D R O T H E R M A L S Y S T E M O F T HE C A L A B O Z O S

    C A L D E R A C E N T R A L C H IL E AN A N D E S

    ANITA L. G RUNDER 1, J. MICHAEL THOM PSO N 2 and W. HILD RETH 2

    1Geology De par tme nt Oregon Sta te University Corvallis OR 97331 U.S.A.

    zU.S. Geological Surv ey 345 Mid dlefield Road Me nlo Park CA 94025 U.S.A.

    (Rece ived August 4, 1986; revised and accepted January 14, 1987)

    b s t r a c t

    Grunder, A.L., Thompson, J.M. and Hildreth, W., 1987. The hydrothermal system of the Calabozos caldera, central

    Chilean Andes. J. Volcanol. Geotherm. Res. 32: 287-298.

    Active thermal springs associated with the late Pleistocene Calabozos caldera complex occur in two groups: the

    Colorado group which issues along structures related to caldera collapse and resurgence, and the Puesto Calabozos

    group, a nearby cluster that is chemically distinct and probably unrelated to the Colorado springs. Most of the Colorado

    group can be related to a hypothetic al pare nt water co ntaining ~ 400 ppm C1 at ~ 250 C by dilution with > 50% of

    cold meteoric water. The th ermal springs in the most deeply eroded part of the caldera were derived from the same

    parent water by boiling.

    The hydrothermal system has probably been active for at least as long as 300,000 years, based on geologic evidence

    and calculations ofpa leo-he at flow. There is no evidence for economic mineralization at shallow depth. The Calabozos

    hydrothermal system would be an attra ctive geothermal prospect were its location not so remote.

    I n t r o d u c t i o n

    Hot springs and steam vents occur along

    faults associated with collapse and resurgence

    of the Calabozos caldera, a late Pleistocene

    structure on the crest of the central Chilean

    Andes. This active hydrothermal system is of

    interes t for four reasons:

    1) It is the prese nt surface manif estati on of

    a major hydrothe rmal system that has probably

    persi sted for 300,000 yea rs or more.

    2) Similar hot-spring systems are impor-

    tan t targe ts for geothermal exploration.

    3) Sinter deposits associated with hydro-

    therm al systems can bear economic Au and Hg

    mineralization.

    4) It may be the surficial analog of hydro-

    thermal systems that produce Cu-porphyry

    mineralization.

    Chemical analyses of hot waters and associ-

    ated h ydrot hermal deposits from the Calabozos

    region are used to calculate subsurface water

    temperatures and to compare the Calabozos

    system to other active hydrothermal systems.

    Although there is no surficial evidence that eco-

    nomic mineralization is present at shallow lev-

    els in the Calabozos system, the dilute waters

    and high calculated subsurface temperat ures of

    the reservoir make it an attractive geothermal

    exploration target.

    0377-0273/87/ 03.50 1987 Elsevie r Science Publ ishers B.V.

  • 8/12/2019 1-s2.0-0377027387900801-main (1)

    2/12

    288

    E X P L A N A T I O N

    I t Holocene and Pleistocene

    andesi te to rhyodaci te

    lavas and tu f ts

    Loma Seca Tuf f

    Basement of Mesozoic

    sed imentary and vo l -

    canic rocks and late

    Tert iary andesi tes

    dac i tes and p lu tons

    Gypsi ferous Mesozoic

    rocks

    Hot-sp r ing c lus ter

    0

    S t e a m v e n t s

    Cold spr ing

    -~ H o l ocene vo l can i c ven t

    A Pleistocene eruptive

    center

    / J c o n t a c t

    . 4 / f a u l t b a r o n d o w n -

    thrown s ide

    . 4 ca lde ra h inge zone

    . . . . - . r i ver o r s t ream

    2 6 0 0 e l e v a t i o n in m e t e rs

    Fig. 1. Simpli fied geologic map of the Calabozos caldera. RC Rio Colorado; VDC Volc~in Descabezado Chico; CDM Cerro

    del Medio; CN Cerro Negro. Llolli N and Llolli S refer to thermal vents on the north and south banks respectively of the

    Rio Colorado.

    e o l o g ic s e t t i n g

    T h e C a l a b o z o s c a l d e r a i s l o c a t e d a t 3 5 3 0 S

    a t a n e l e v a t i o n o f ~ 2 6 0 0 m ( F i g . 1 ) . I t h a s b e e n

    t h e l o cu s o f v o l u m i n o u s i n t e r m e d i a t e t o s il ic ic

    v o l c a n i s m d u r i n g t h e l a te P l e i s t o c e n e . T h e

    g e o lo g y , p r e s e n t e d b y H i l d r e t h e t a l. ( 1 9 8 4 ) , i s

    s u m m a r i z e d b e l o w .

    R e g i o n a l b a s e m e n t r o c k s , e x p o s e d o n t h e

    n o r t h e r n a n d e a s t e r n s id e o f t h e c a l d e r a, a r e

    c o m p o s e d o f l a t e M e s o z o i c v o l c a n i c l a s t i c se d i -

    m e n t a r y r o c k s i n t e r b e d d e d w i t h l i m e s t o n e s ,

    g y p s u m , a n d t h i n l a v as a n d t u f fs ; a g y p s u m d i a -

    p i r s e v e r a l 1 0 0 m e t e r s i n d i a m e t e r , i s e x p o s e d

    a t L l o l l i ( F i g . 1 ) . T h e M e s o z o i c r o c k s a r e

    u n c o n f o r m a b l y o v e r l a in b y f l a t - ly i n g t o g e n t l y

    w e s t - d i p p i n g , P l e i s t o c e n e a n d e s i t e l a v as . B a s e -

    m e n t r o c k s e x p o s e d t o t h e s o u t h a n d w e s t o f t h e

    c a l d e r a a r e c h i e f l y l a t e T e r t i a r y l a v a s a n d t u f f s

    o f t h e C a m p a n a r i o f o r m a t i o n ( D r a k e , 1 9 7 6 ) ,

    a l s o c a p p e d b y s u b h o r i z o n t a l a n d e s i t e l a v a s .

    L a t e T e r t i a r y g r a n i t o i d i n t r u s i o n s a r e e x p o s e d

    l o ca ll y t h r o u g h o u t t h e r e g io n .

    A t l e a s t t w o m a j o r a s h - f l o w s h e e t s e r u p t e d

    f r o m t h e C a l a b o z o s c a l d e r a 0 . 3 0 a n d 0 . 1 5 M a

    a g o, c o m p o s i n g U n i t V a n d U n i t S , r es p e c -

    t i v el y , o f t h e L o m a S e c a T u f f . A 0 . 8 - M a - o l d a s h -

    f lo w , U n i t L , u n d e r l i e s U n i t V n e a r t h e s o u t h -

    e r n a n d e a s t e r n c a l d e r a m a r g i n a n d i s c o m p o -

    s i t io n a l l y a n d m i n e r a l o g i c a ll y s im i l a r t o U n i t s

    V a n d S , b u t i t h a s n o t b e e n c o n c l u s iv e l y l i n k e d

    t o t h e C a l ab o z o s c al d er a . E a c h u n i t o f t h e L o m a

    S e c a T u f f r e p r e s e n t s 2 0 0 - 3 5 0 k m 3 o f c o m p o s i -

    t io n a l ly z o n e d m a g m a r a n g i n g f r o m r h y o d a c it e

    t o da c i t e .

    T h e p r e s e n t 8 - b y - 2 6 - k m C a l a b o zo s c a l d e r a is

    a c o m p o s i t e t r a p - d o o r c o l la p s e f e a tu r e c a u s e d

    b y e r u p t i o n o f U n i t s V a n d S . O n t h e n o r t h e r n

    a n d e a s t e r n s i d e s o f t h e c a l d e r a ( F i g . 1 ) , c o l -

    l a pse i s de f i ne d by a w e l l - e xpose d se r i e s o f ne a r -

    v e r t ic a l f a u l ts w i t h c o m b i n e d d i s p l a c e m e n t o f

    a t l e a s t 5 0 0 m , w h i c h l e s s e n s s o u t h w a r d . T h e

    w e s t e r n m a r g i n o f t h e c a l d e r a a p p e a r s t o b e a

    f l e x u r a l h i n g e z o n e a n d i s l a r g e ly c o v e r e d b y

    H o l o c e n e l a v a s a n d c o n e s . B r o a d s t e p - f a u l t e d

    r e g i o n s c h a r a c t e r i z e t h e e a s t e r n a n d s o u t h e r n

    m a r g i n s o f t h e c a ld e r a .

    A f t e r c a l d e r a c o l la p s e , m a g m a t i c r e s u r g e n c e

    d o m e d t h e n o r t h e r n h a l f o f t h e c a l d er a. L i k e

  • 8/12/2019 1-s2.0-0377027387900801-main (1)

    3/12

    c o l l a p s e , c a l d e r a r e s u r g e n c e w a s a s y m m e t r i c ,

    w i t h m a x i m u m u p l if t o n t h e e a s t er n s id e o f t h e

    d o m e a n d a n a s y m m e t r ic g r a b e n o n t h e w e s t-

    e r n , h i n g e d s i d e. A c o m p l e x w e b o f n o r m a l

    f a u l t s , m a n y w i t h o f f s e t s a n t i t h e t i c t o u p l i f t ,

    c h a r a c t e r i z e t h e r e s u r g e n t s t r u c t u r e F i g . 1 ) .

    T h e o u t f l o w fa c ie s o f t h e L o m a S e c a T u f f

    o c c u r s a s d e n s e l y w e l d e d , p l a t e a u - c o v e r i n g

    s h e e t s a n d a s t h i c k r e m n a n t s o f f lo w s t h a t o n c e

    f i l l e d d e e p g l a c i a l g o r g e s . W i t h i n t h e n o r t h e r n

    p o r t i o n o f t h e c a l d e r a, U n i t V i s as m u c h a s 5 0 0

    m t h i c k a n d i t s b a s e i s n o w h e r e e x p o s e d . I t i s

    c h i e f ly p o o r l y w e l d e d a n d i s o v e r l a i n b y n o m o r e

    t h a n ~ 1 00 m o f d e n s e l y w e l d e d U n i t S o n t o p

    o f t h e r e s u r g e n t d o m e . A t d e p t h , w i t h i n t h e

    c a l d e r a , U n i t V i s a l m o s t c e r t a i n l y d e n s e l y

    w e l d e d , b a s e d o n c o m p a r i s o n t o d e e p l y e r o d e d

    a s h - f l o w s y s t e m s o f s i m i l a r c o m p o s i t i o n a n d

    d i m e n s i o n e .g ., F r i d r i c h a n d M a h o o d , 1 98 4;

    L i p m a n , 1 9 8 4 ; B o d e n , 1 9 8 6 ) .

    T h e h o t s p r i n g s a r e g e o g r a p h i c a l l y d i v i s a b l e

    i n t o t w o g r o u p s : 1 ) t h e C o l o r a d o h o t s p r i n g s

    t h a t li e a l o n g a n o r t h - t r e n d i n g a r c , c o n c a v e t o

    t h e w e s t, s k i r t i n g t h e b a s e o f t h e r e s u r g e n t

    d o m e ; a n d 2 ) t h e P u e s t o C a la b o z o s g r o u p t h a t

    l ie s a t t h e h e a d o f C a j o n l o s C a l a b o z o s n e a r t h e

    h i n g e d m a r g i n o f t h e c a l d e r a F i g . 1 ). S o l fa -

    t a r ic a c t i v i t y o c c u r s o n l y in t h e n o r t h e r n , m o s t

    d e e p l y e r o d e d p o r t i o n o f t h e a r e a , a t L l o l li a n d

    a t Pe l le jo Fig. 1 ) .

    g e o f t h e h y d r o th e r m a l s y s t e m

    N o d i r e c t e v i d e n c e , s u c h a s K - A r a g e s o f m i n -

    e r a l s w i t h i n a l t e r a t i o n a s s e m b l a g e s , is a v a il a b l e

    t o c o n s t r a i n t h e a g e o f th e C a l ab o z o s h y d r o -

    t h e r m a l s y s t e m . S e v e r a l i n d i r e c t l i n e s o f e v i-

    d e n c e s u g g e s t t h a t i t m a y b e a t l e a s t a s o l d a s

    U n i t V , n a m e l y 3 0 0 , 0 0 0 y e a r s . F o r i n s t a n c e ,

    m o s t o f t h e i n t r a c a l d e r a s e c t io n o f U n i t V i s

    c h a l k y o w i n g t o p e r v a s i v e a r g i ll ic a l t e r a t i o n b y

    a c i d l e a c h i n g . T h e h y d r o t h e r m a l a c t i v i t y t h a t

    c a u s e d t h e a l t e r a t i o n m u s t h a v e e x i s t e d i m m e -

    d i a te l y a f te r e r u p t i o n o f U n i t V , b e c a u s e a n

    o v e r l y i n g i n t r a c a l d e r a l a v a , w h i c h h a s a n i n d i s -

    t i n g u i s h a b l e K - A r a g e i s l o c a l l y u n a l t e r e d .

    289

    E x t e n s i v e l y a l t e r e d r o c k s , i n c l u d i n g U n i t S , a n d

    f o s s i l s i n t e r d e p o s i t s a s s o c i a t e d w i t h t h e c a l d -

    e r a s t r u c t u r e a t t e s t t o t h e p r e s e n c e o f h y d r o t h -

    e r m a l a c t i v i ty s i n c e e r u p t i o n o f U n i t S .

    W h e t h e r o r n o t h y d r o t h e r m a l a c t i v i t y w a s

    c o n t i n u o u s b e t w e e n 0 . 3 a n d 0 .1 5 M a i s u n c e r -

    t a i n , b u t t h e e x i s t e n c e o f a l o n g - l i v e d , d e e p ,

    m e t e o r i c h y d r o t h e r m a l s y s t e m a t t h e C a l a b o -

    z o s c a l d e r a i s i n d i c a t e d b y u n u s u a l l y l o w J l s O

    v a l u e s o f p la g i o c l a s e f r o m f r e s h s a m p l e s o f U n i t

    S 5 . 2 - 5 . 8 ) . T h e s e v a lu e s a r e l o w e r t h a n t h o s e

    t y p i c a l o f s il ic i c v o l c a n i c r o c k s T a y l o r , 1 9 6 8 )

    a n d i n d i c at e t h a t t h e U n i t S m a g m a i n t e r a c t e d

    w i t h l o w - j 1 8 0 r o c k s t h a t h a d b e e n p r e v i o u s l y

    a l t e r e d b y m e t e o r i c w a t e r G r u n d e r , 1 9 8 7 ) .

    T h e s e a l t e r e d r o c k s w e re p r o b a b l y f o r m e d d u r -

    i n g v i g o r o u s h y d r o t h e r m a l a c t i v i t y w i t h i n t h e

    s h a t t e r e d , p e r m e a b l e c a l d e r a - f l o o r r o c k s , a f t e r

    e r u p t i o n o f U n i t V .

    S a m p l i n g a n d a n a l y ti c a l m e t h o d s

    A t o t a l o f 29 h o t a n d c o l d w a t e r s a m p l e s w e r e

    c o l l e c t e d f r o m s p r i n g c l u s t e r s i n t h e C a l a b o z o s

    r e g i o n d u r i n g a u s t r a l s u m m e r 1 9 81 , 1 98 2 , a n d

    1 9 84 T a b l e 1 ) . T h e h o t t e s t s p r i n g i n a n y g i v e n

    c l u s t e r w a s s a m p l e d i n o r d e r t o r e p r e s e n t m o s t

    c l o se l y t h e t h e r m a l w a t e r s a t d e p t h . A l l b u t t h e

    1 98 1 s a m p l e s w e r e c o l l e c t e d u s i n g t h e b a c k -

    p a c k i n g m e t h o d d e s c r i b e d b y T h o m p s o n

    1 9 7 5) . T e m p e r a t u r e a n d p H w e r e m e a s u r e d i n

    t h e f ie l d , a n d s p r i n g d i s c h a r g e r a t e s w e r e e s ti -

    m a t e d . T e m p e r a t u r e s w e r e m e a s u r e d w i t h a

    m a x i m u m r e a d i n g m e r cu r y - in - g l as s th e r m o m -

    e t e r . S p r i n g w a t e r w a s f i l t e r e d t h r o u g h a 0 . 4 5 -

    ]~ m m e m b r a n e ; a 1 2 5 - m L a l i q u o t w a s a c i d i f ie d

    w i t h h y d r o c h l o r i c a c i d f o r c a ti o n a n a l y si s , a n d

    a n o t h e r 2 5 0 - m L p o r t i o n w a s l e ft u n a c i d i fi e d f o r

    a n i o n a n a l y si s . B u b b l e s w e r e o b s e r v e d a t m o s t

    o f t h e t h e r m a l s p r i n g s a n d p r e s u m a b l y r e p r e -

    s e n t C O2 s a t u r a t i o n . O n e c o l d s p r i n g i n t h e C a l -

    a b o z o s g r o u p is q u i t e s tr o n g l y c a r b o n a t e d a n d

    i s r e p u t e d b y l o c a l t r a d i t i o n t o b e a t h e r a p e u t i c

    b e v e r a g e . C o n c e n t r a t i o n s o f N H 3 a n d H 2 S i n

    s a m p l e s c o l l e c t e d d u r i n g 1 9 8 2 w e r e m e a s u r e d

  • 8/12/2019 1-s2.0-0377027387900801-main (1)

    4/12

    2 9 0

    T A B L E 1

    R e p r e s e n t a t i v e a n a l y s e s o f s p ri n g s o f t h e C a l a b o z o s c a ld e r a c o m p l e x

    L o c a t i o n : L l o l l i P e l l e jo P o t r e r i l l o s T r o n c o s C a s a P i e d r a

    S o u t h N o r t h

    S p r in g N o .: L S W 2 L S W 2 0 L S W l 0 L S W l L S W 1 7 L S W 7

    D i s c h a r g e , L / m i n 1 5 1 0 2 0 0 0 2 0 3 0 0 0 3 0 0

    T , C 9 8 . 5 9 5 . 5 5 0 . 5 6 4 5 0 6 8

    F i e l d , p H 8 . 5 4 . 5 6 . 5 6 . 8 6 . 2 7 . 1

    L a b , p H 9 . 3 0 2 . 9 7 7 . 1 5 7 .7 9 8 . 0 3 8 .3 2

    A 1 ( p p b ) 0 . 2 * b l a c k ~ o l i v e ~ 1 . 2

    S i O 2 5 8 2 * 2 3 9 1 3 3 8 4 5 6 4 0

    F e < 0 . 0 5 2 . 8 3 . 8 0 . 8 0 . 1 1 . 3

    M n 0 . 0 3 0 . 8 0 0 . 8 8 0 . 2 2 0 . 0 2 < 0 . 0 5

    C a 9 2 6 1 1 0 9 9 4 3 1 7

    M g < 0 . 0 2 1 8 .1 2 5 . 6 1 0 . 5 2 . 5 0 . 8

    Sr 0 .2 - 1 . 0 2 .2 0 .4 0 .2

    B a 0 .6 - 6 . 4 6 .9 - 1 . 4

    N a 3 8 1 3 4 2 3 5 2 0 7 1 3 1 1 9 1

    K 56 9 .3 16 .2 6 .6 4 .5 1 .9

    L i 3 . 5 < 0 . 0 2 1 . 0 0 . 5 0 . 2 0 .4

    R b 0 . 3 0 . 1 0 . 8 < 0 . 0 2 < 0 . 0 2 0 . 8

    C s 0 . 5 0 . 1 0 . 6 < 0 . 0 2 0 . 2 0 . 5

    H z S 0 . 2 - 0 . 0 4 0 . 1 - 0 . 0 5

    NH ~ 1 .7 - 3 . 3 1 .8 - 0 . 5

    H C 0 3 9 8 5 . 3 H 5 6 1 2 1 1 2 8 8 2 5 6

    S O 4 1 4 4 6 3 0 1 1 1 3 9 0 6 0 6 6

    C 1 5 4 9 4 1 9 6 1 0 9 4 9 1 0 7

    F 3 .8 0 .1 2 .3 2 .9 3 .1 1 .0

    B 14 0 .9 1 .5 0 .6 0 .3 0 .8

    ~ D - 89 - - 96 - 96 - - 96

    eilSOH~ o --9 .8 - - - 13.5 -- 13.3 - - - 13.2

    is Oso4 -- 4.5 - - - 0.2 - - - 2.8

    N a / K 6 . 1 3 . 7 1 4 . 5 3 1 . 4 2 9 . 5 8 9 . 1

    K / L i 1 6 . 0 - 1 6 . 2 1 3 . 2 1 8 . 9 4 . 8

    N a / C a 4 0 . 6 1 . 3 2 . 1 2 . 1 3 . 1 1 0 . 1

    C I / H C O 3 5 . 6 - 0 . 3 0 . 5 0 . 2 0 . 4

    C I / S O 4 3 . 8 0 . 0 1 . 8 0 . 3 0 . 8 1 . 6

    C l / B 3 9 4 1 3 1 1 8 2 1 6 3 1 3 4

    C 1 / F 1 4 5 3 5 8 5 3 8 1 6 1 0 7

    A n a l y t i c a l d a t a i n p p m e x c e p t A1 ( i n p p b ) . I s o t o p i c d a t a a r e i n s t a n d a r d d e l t a n o t a t i o n r e l a ti v e t o S M O W .

    C o l d s p r i n g s i d e n t i f ie d b y n a m e o f n e a r e s t t h e r m a l s p r i n g ( F ig . 1 ) . R i o C . = R i o C o l o r a d o s a m p l e d n e a r P o t r e r il l o s .

    S e e T h o m p s o n ( 1 9 8 5 ) f o r a n a l y t ic a l m e t h o d s : C a , M g , M n , a n d F e b y a t o m i c a b s o r p t i o n s p e c tr o s c o p y ; N a , K , L i, C s , R b ,

    S t , a n d B a b y f l a m e e m i s s i o n s p e c t r o s c o p y ; S i O 2 , A 1, a n d B b y s p e c t r o p h o t o m e t r i c m e t h o d s . F b y F - s p e c i f i c el e c t r o d e ; S O 4

    b y i o n c h r o m a t o g r a p h y ; C 1 a n d H C O 3 b y t i t r a m e t r i c m e t h o d s a n d f i e l d C 1 c o n c e n t r a t i o n s ( n o t s h o w n h e r e ) b y u s e o f

    Q u a n t a b i n d i c a t o r s. L a b o r a t o r y a n d f i e ld C I d e t e r m i n a t i o n s a r e i n c lo s e a g r e e m e n t .

    R i n d i c a t e s t h a t t h e v a l u e c i t e d i s f o r a c i d i t y .

  • 8/12/2019 1-s2.0-0377027387900801-main (1)

    5/12

    291

    Alga Aguas Calabozos Cold springs Est imat ed

    Blanca Calientes error

    Pellej o Lloll i Rio C. _+

    LSW8 LSWl2 LSW23 LSWl8 LSW ll LSW6

    5000 4000 30 75 60 300 60,000 20

    39 40 78 80 22 4 10 0.5

    6.3 6.2 5.9 5.9 5.9 6.0 5.7 0.1

    7.63 8.22 8.47 7.97 8.29 7.67 7.54 0.05

  • 8/12/2019 1-s2.0-0377027387900801-main (1)

    6/12

  • 8/12/2019 1-s2.0-0377027387900801-main (1)

    7/12

    TABLE 2

    Chemical geothermometry of Calabozos waters

    293

    Location: Llolli Pellejo

    Sample: LSW2 LSW20 LSWl0

    Potre rillos Tronco s Casa Alga Aguas Calabozos

    Piedra Blanca Calientes

    LSW l LSWl7 LSW7 LSW8 LSWl2 LSW4 LSW23

    Orifice temp. C 98 95 50 64 50 68 39 40 78 80

    SiO2

    (1) cond.-qtz 240 192 154 128 107 92 107 95 160 155

    (2) max. st m-qt z 221 178 147 125 107 94 107 97 152 147

    (3) chalcedony 237 173 129 100 78 61 77 65 137 130

    Na/K

    Fournier 252 322* 187 {136) (139) (77) (108) (102) (132) 158

    Ellis 233 329* 151 (91) (95) (27) (61) (54) (86) (117)

    Arn6r sson 238 * 160 101 107 - 72 60 98 126

    Na-K-Ca

    fl = 4/3 235 79 87 59 60 57 53 54 88 97

    fl = 1/3 233 205 153 118 120 85 102 98 125 142

    61s0 S04 H20

    (4) conductive 280 133 144 172 148

    (5) adiabati c 238 122 139 156 140

    (6) con tin uous 250 124 139 160 141

    x/'Mg-Li 351 59 67 57 65 58 47 48 83 94

    Sample numbe rs as in Table 1.

    The silica geothermometer applied according to Fournier and Rowe (1966); (1) is the value if cooling is conductive (for

    springs well below boiling) a nd the water is in equi libriumwith quartz, ( 2 ) cooling is with max imum steam loss (for springs

    near boiling), and (3) the water is in equilibrium with chalcedony.

    The Na /K geothermometers are after Fourni er (1981), Ellis (1970), and Arn6rsson et al. (1983). *indicates 'not applicable'

    because the water is acidic. Values in paren theses are below the cited limit s of applicab ility (150 ~C). ' -' indicates the

    calculated temperature < measured orifice temperature.

    The Na-K-Ca geothermometer is from Fournier and Truesdell (1973).

    The oxygen isotope geothermometer is taken from McKenzie and Truesdell (1977) ; (4) is the value if cooling is conductive

    (best for springs below boiling, viz., all but Llolli), (5) if there is one episode of steam separation (best for springs near

    boiling), and (6) if there is continuous steam loss (best for springs associated with fumaroles).

    The ~- Li geothermometer is taken from Kharaka and Mariner (1987).

    P u e s t o C a l a b o z o s a n d L l o ll i w a t e r s a r e th e m o s t

    c o n c e n t r a t e d a n d f o r m d i st i n c t c o m p o s i t io n a l

    c l us t er s . O n e L lo ll i w a t e r S a m p l e L S W 2 0 ) ,

    w h i c h w a s c o l l ec t e d a m i d s t a b a n k o f s t e a m

    v e n t s , h a s v e r y l o w c o n c e n t r a t i o n s o f C1, B , K ,

    a n d N a T a b l e 1 ) , s u g g e s t i n g t h e w a t e r c o n -

    d e n s e d f r o m s t e a m . I t s a c i d p H a n d r e l a t i v e l y

    e l e v a t e d S O4 c o n c e n t r a t i o n a r e c o n s i s t e n t w i t h

    s t e a m c o n d e n s a t i o n a c c o m p a n i e d b y o x i d a t io n

    o f H 2 0 S t o H2SO4.

    eothermometry

    B o t h m e a s u r e d o r i fi ce t e m p e r a t u r e s a n d c a l -

    c u l a te d s u b s u r f a c e t e m p e r a t u r e s o f t h e C o l o-

    r a d o s u i t e d e c r e a s e s o u t h w a r d a s e l e v a t i o n

    i n c r e a s e s F i g . 4 ) . I t a p p e a r s th a t e r o s i o n h a s

    a f f o r d e d a c r o s s s e c t i o n o f a v e r t i c a l ly , t h e r -

    m a l l y z o n e d h y d r o t h e r m a l s y s t e m . E s t i m a t e d

    s u b s u r f a c e t e m p e r a t u r e s r a n g e f r o m ~ 2 5 0 t o

    < 10 0 C T a b l e 2 ). SiO 2, N a / K , N a - K - C a , a n d

    S O 4 - H e O o x y g e n i s o t o p e g e o t h e r m o m e t e r s

    a g r e e w e l l f o r t h e L l o ll i s p r in g , L S W - 2 T a b l e

    2 ) a n d i n d i c a t e t h e w a t e r c a m e f r o m a r e s e r v o i r

    a t ~ 2 5 0 C , w h i c h c o r r e s p o n d s t o t h e l o w e r r e s-

    e r v o ir t e m p e r a t u r e e s t i m a t e d p r e v i o u s l y b y

    T h o m p s o n e t a l. 1 9 8 3 ). T h i s te m p e r a t u r e i s

    i n t e r m e d i a t e t o v a l u e s p r e d i c t e d i f c o o l in g o f th e

  • 8/12/2019 1-s2.0-0377027387900801-main (1)

    8/12

    294

    w a t e r d u r i n g as c e n t is a d ia b a ti c ( m a x i m u m

    s t e a m l o s s ) o r c o n d u c t i v e ( T a b l e 2 a n d F i g . 4 ) .

    H i g h t e m p e r a t u r e s c a l cu l a te d w i th t h e N a / K

    g e o t h e r m o m e t e r f o r s p ri n g L S W - 2 0 m a y r e fl ec t

    a c i d l e a c h i n g o f w a l l r o c k s , w h i c h m a k e s t h e

    g e o t h e r m o m e t e r u n r e l ia b l e .

    T h e r e m a i n i n g s p r i n g s r e c o r d lo w e r t e m p e r -

    a t u r e s, s u g g e s t i n g t h a t t h e y h a v e b e e n d i l u t e d

    w i t h c o ld w a t e r ( F ig . 4 ) . T h e N a - K - C a g e o-

    t h e r m o m e t e r u s i n g f l = 1 / 3 w a s u s e d , a s r e c-

    o m m e n d e d f o r m i x e d w a t e rs b y F o u r n i e r

    ( 1 9 8 1 ) . F o r t h e C o l o r a d o su i te , th e t h e r m o m e -

    t e r s b a s e d o n S iO 2 c o n t e n t , m o d e l l e d w i t h o u t

    s t e a m l o s s , a n d N a - K - C a ( fl = 1 / 3 ) a r e i n g o o d

    a g r e e m e n t . R e s e r v o i r t e m p e r a t u r e s f o r t h e

    P u e s t o C a l a b o z o s g r o u p c l u s t e r b e t w e e n 1 4 0 a n d

    1 5 0 C a n d d o n o t f o ll o w t h e t e m p e r a t u r e v e r -

    s u s e l e v a t i o n t r e n d d e f i n e d b y t h e C o l o r a d o

    g r o up . T h e ~ M - g - L i g e o t h e r m o m e t e r o f K h a r -

    a k a a n d M a r i n e r ( 1 98 7 ) y i e ld s t e m p e r a t u r e s

    s i m i l a r t o m e a s u r e d o r i f i c e t e m p e r a t u r e s

    ( e x c e p t f o r L l o l li w a t e r ) ( T a b l e 2 ) a n d s u g -

    g e s t s t h a t M g c o n t e n t i n t h e s p r i n g s i s c o n -

    t r o l l e d b y c h e m i c a l r e a c t i o n s n e a r t h e s u r f a c e .

    m o d e l

    A s i m p l e m o d e l c a n b e d e r i v e d f o r th e C o lo -

    r a d o s p r i n g s u s i n g a p l o t o f e n t h a l p y v e r s u s

    c h l o r i d e ( F i g . 5 ) . F l u i d f r o m a p a r e n t r e s e r v o i r

    w i t h e n t h a l p y o f ~ 1 10 0 J g - 1 a n d C 1 c o n t e n t

    o f ~ 4 0 0 p p m e v o lv e s b y b o il i n g ( e v a p o r a t i v e

    c o n c e n t r a t i o n ) t o y i el d t h e L l o ll i h o t s p r i n g s

    a n d b y d i l u t io n w i t h m e t e o r i c w a t e r t o p r o d u c e

    t h e t h e r m a l s p r i n g s b e t w e e n A g u a s C a l i e n t e s

    a n d P o t r e r il l o s . S u c h a m o d e l is s u p p o r t e d b y

    t h e f a c t t h a t t h e m a i n L l ol li s p r i n g ( L S W - 2 a n d

    2 2, T a b l e 2 ) y i e ld s a s u b s u r f a c e t e m p e r a t u r e

    e s t i m a t e o f a p p r o x i m a t e l y 2 5 0 C , t h e t e m p e r -

    a t u r e i n d i c a t e d b y t h e i n t e r s e c t i o n o f th e d i lu -

    t i o n a n d b o i l i n g t r e n d s ( F ig . 5 ) . M o r e o v e r ,

    L l o l li w a t e r i s e n r i c h e d i n 1 8 0 r e l a t iv e t o m e t e o r -

    i c w a t e r ( F i g . 2 ) , c o n s i s t e n t w i t h a h i s t o r y o f

    s t e a m l o ss .

    I f t h e L l o l l i w a t e r i s i n f a c t d e r i v e d b y b o i l i n g

    f r o m a r e s e r v o i r a t 2 5 0 C , t h e n a m i n i m u m

    d e p t h o f 50 0 m t o t h e r e s e r v o i r c a n b e e s t i m a t e d

    t steg h y p o t h e t i c o l

    ' h~

    I

    ~ o l l i I o l l i

    c_[ _ / a i l o t i o % - , - - - d

    l H I I~ I J ~ ~ ~ ~ ~ C a l a b o z o s

    4 To.~,, ' --~:. ~,

    J ~ - ~ -

    e l le }o

    o

    o ,5o zSo sSo 4 6 0 sSo 6bo

    CI ppm)

    Fig. 5. Enthalpy-chloride plot of the Calabozos hydrother-

    mal system, constructed according o Fournier 1979). Open

    circles = cold waters, filled circles = thermal waters. Data

    from Tables 1 and 2 and sources referenced in Fig. 3.

    Enthalpy-te mperature conversions are taken from steam

    tables Keenan et al., 1969).

    f r o m t h e b o i l in g c u rv e o f W h i t e ( 1 9 6 8 ) , b y

    a s s u m i n g t h a t t h e w a t e r s a r e s u f f i c ie n t l y d i l u t e

    t o b e h a v e l i k e p u r e w a t e r .

    T h e P e l le j o s p r i n g d o e s n o t f a l l o n t h e s a m e

    d i l u t i o n t r e n d a s t h e o t h e r C o l o r a d o s p r i n g s

    ( F ig . 5 ) . W e i n f e r t h a t i ts d e p a r t u r e f r o m t h e

    d i l u t i o n t r e n d i n F i g . 5 i s t h e r e s u l t o f c o n d u c -

    t i v e co o l i n g . I t i s a l t e r n a t i v e l y p o s s i b l e t h a t t h e

    P e l le j o w a t e r e v o l v e d b y m i x i n g b e t w e e n a b o i l e d

    w a t e r , l i k e t h e L l o l li w a t e r , a n d m e t e o r i c w a t e r

    ( F i g . 5 ) , b u t b e c a u s e i t s c h e m i c a l s i g n a t u r e

    ( F ig . 3 ) i s c o n s i s t e n t w i t h t h e d i l u t io n t r e n d

    d e f i n e d b y th e r e m a i n i n g C o l o r a d o s p r i n g s th e

    h y p o t h e s i s o f c o n d u c t i v e c o o l in g i s p r e f e r re d .

    T h e C a l ab o z o s t h e r m a l s p r i n g s , if d e r i v e d f ro m

    t h e s a m e o r a s i m i l a r r e s e rv o i r , r e p r e s e n t w a t e r s

    e v o l v e d la r g e ly b y b o i l in g w i t h o n l y a m i n o r

    c o m p o n e n t o f d i l u ti o n o r c o n d u c t i v e c o ol in g .

    T h e c o n s t a n t r a t i o o f L i to C 1 o f th e C o l o r a d o

    g r o u p b e a r s o u t t h e d i l u t i o n a n d b o i l i n g m o d e l

    ( F i g . 3 a ) . L i a n d C1 a r e h i g h l y s o lu b l e e l e m e n t s

    a n d t h e i r p r o p o r t i o n s h o u l d n o t b e a f f e c te d b y

    r e m o v a l o f s t e a m o r a d d i t i o n o f c o ld w a t e r l o w

    i n C1 a n d L i . B a s e d o n t h e L i /C 1 t r e n d s t h e

    s o u t h e r n C o l o r ad o w a t e rs r e p r e s e n t m i x t u r e s o f

    a s m u c h a s 5 0 ( P e l l e j o ) t o 3 0 ( P o t r e r i l l o s )

    a n d t o a s l i tt l e a s 10 o f h o t , c o n c e n t r a t e d r e s -

    e r v o i r w a t e r w i t h c o l d w a t e r o f t h e r e g io n . T h e

    L i c o n t e n t o f t h e p a r e n t r e s e r v o ir w o u l d b e 1 .9

  • 8/12/2019 1-s2.0-0377027387900801-main (1)

    9/12

    p p m a c c o r d in g to t h i s m o d e l. S u c h a h i g h L i

    c o n t e n t i s c o n s i s t e n t w i t h t h e r e s er v o i r w a t e r

    h a v i n g i n t e r a c t e d w i t h , o r b e i n g h o s t e d i n , si li -

    c ic v o l c a n i c r o c k s ( E l l is a n d M a h o n , 1 9 7 7 ) .

    C o m p o s i t i o n a l d a t a o f t h e C a l a bo z o s t h e r m a l

    w a t e r s c l u s t e r o f f o f t h e L i- C1 t r e n d , w h i c h i n

    a d d i t i o n t o t h e i r lo w e r J l s O a n d J D v a l u e s , a n d

    d e v i a t i o n f r o m t h e e n t h a l p y - C 1 t r e n d s ( F ig . 5 ) ,

    s u g g e s t s t h a t t h e y a r e f r o m a d i f f e r e n t g e o -

    t h e r m a l r e s e r v o i r t h a n t h e C o l o r a d o t h e r m a l

    s p r i n g s .

    T h e c o n t e n t s o f B a n d S 0 4 o f t h e C o l o r a d o

    s p r i n g s d o n o t f o l lo w t h e s i m p l e t r e n d d e f i n e d

    b y L i v e r s u s C 1 (F i g . 3 ) . T h e L l o l l i s p r i n g s d a t a

    a r e h i g h i n B w i t h r e s p e c t t o t h e C o l o r a d o d i lu -

    t i o n t r e n d , w h i c h m a y r e f l e c t t h a t t h e w a t e r

    p a s s e d t h r o u g h s e d i m e n t a r y ro c k s ( E l li s a n d

    M a h o n , 1 9 7 7, p . 2 1 9 ) ; o f a ll t h e s p r i n g s , L l o l l i i s

    n e a r e s t t o e x p o s e d M e s o z o i c s e d i m e n t a r y r o ck s .

    T h e p r e s e n c e o f g y p s u m n e a r t h e L l o ll i sp r i n g s

    a p p e a r s t o h a v e n o m a j o r e ff e c t o n t h e c h e m i c a l

    c o m p o s i t i o n o f s p r i n g L S W 2 , o n t h e s o u t h e r n

    s i d e o f t h e R i o C o l o r a d o . I n c o n t r a s t , S p r i n g

    L S W 2 0 o n t h e n o r t h b a n k o f t h e r i v e r h a s r e l-

    a t i v e l y e l e v a t e d M g a n d C a , i n a d d i t i o n t o e l e -

    v a t e d S 0 4 , w h i c h m a y r e f l e c t t h e l e a c h i n g o f

    g y p s u m a t s h a l l o w l e v e ls b y a c i d w a t er . P o t r e r -

    i l l o s w a t e r i s s i m i l a r l y e l e v a t e d i n S 0 4 f r o m

    w h i c h i t m i g h t b e i n f e r r e d t h a t t h e w a t e r i s

    i n t e r a c t i n g w i t h g y p s i f e r o u s d e p o s i t s a t d e p t h .

    e p o s i t s a s s o c i a t e d w i t h t h e s p r i n g s

    M o s t o f t h e a c t i v e s p r i n g s i n t h e C a l a b o z o s

    s y s t e m i s s u e i n t o s m a l l p o o l s o r r i v u l e t s t h a t

    h a v e b a n k s a n d b o t t o m s c o a t e d w i t h o ra n g e F e -

    o x id e m u d . A l t e r n a t i n g l a m i n a e o f m u d a n d

    c a r b o n a c e o u s m a t e r i a l i n d i c a t e t h a t m u d a n d

    a l ga e , w h i c h a r e c o m m o n i n t h e s p r i n g s , re p e a t -

    e d l y c o v e r e a c h o t h e r . C a l c a r e o u s s i n t e r i s

    a c t i v e l y d e p o s i t i n g a t T r o n c o s ( F i g . 1 ) , a n d s il -

    i c e o u s s i n t e r a n d i n c r u s t a t i o n s , l o c a ll y w i t h

    y e l lo w s p e c k s o f n a t i v e s u l f u r, a r e f o r m i n g a t

    L l o ll i. A c t i v e s in t e r s o f b o t h k i n d s o c c u r i n t h e

    R i o C o l o r a d o f a u l t z o n e a n d t e r r a c e s a r e t y p i -

    c a l ly 1 00 m 2 a n d 0 . 5 - 2 m t h i c k . E x t e n s i v e b a n k s

    295

    o f F e - r i c h c a l c a re o u s t e r r a c e s w i t h a l t e r n a t i n g

    l i m o n i t i c a n d h e m a t i t i c l a m i n a e a r e f o u n d a l o n g

    f a u l t s n e a r P e l le j o ( F i g . 1 ) . T h e m o s t c o m m o n

    d e p o s i t s r e l a t e d t o p a s t a n d p r e s e n t h y d r o -

    t h e r m a l a c t i v i t y a r e s i l i c i f i e d a n d F e - o x i d e

    e n c r u s t e d v o l c a n i c l a s t i c b r e c c ia s .

    R e p r e s e n t a t i v e s a m p l e s o f i n c r u s t a t i o n s ,

    s i n t e r s a n d v a r i o u s l y a l t e r e d r o c k s w e r e a n a -

    l y z ed fo r p r e c i o u s - a n d b a s e - m e t a l s . T h e h i g h -

    e s t A u , A g , a n d H g v a l u e s ( 0 . 0 7 , 0 . 0 2 , a n d 8 . 7

    p p m , r e s p e c t i v e l y ) o c c u r i n s i l ic e o u s i n c r u s t a -

    t i o n s a t L l o l l i n e a r L S W - 2 0 . C a l c i u m - c a r b o n -

    a t e - c o a te d c r u s t s o f F e - ox i d e m u d f r o m t h e

    C a l a b o z o s g r o u p y ie l d e d > 1 0 00 p p m A s a n d 6 8

    p p m S b , b u t n o o t h e r s i g n i f i c a n t a n o m a l i e s w e r e

    d e te c te d . T h e c o n c e n t r a ti o n o f t h e c o m m o n

    m e t a l - c o m p l e x - f o r m i n g sp e c ie s C l - a n d S 2 -

    ( B a r n e s , 1 9 79 ) ( < 0 . 0 8 % N aC 1 , a n d < 1 0 - 6

    m o l e s k g - 1 , r e s p e c t i v e l y ) a r e l o w e r t h a n t y p i -

    c a l fo r a c ti v e m e t a l - r i c h h y d r o t h e r m a l s y s t e m s

    s u c h a s B r o a d l a n d s , N e w Z e a l a n d ( s a l i n i t y :

    > 0 . 3 7 % N a C1 a n d 2 - : 3 1 0 - 5 t o

    5X10 4;

    W e i s s b e r g, 1 9 6 9 ) , a n d s a l i n it i e s a re l o w e r t h a n

    t h o s e i n f e r r e d f o r o r e f l u i d s i n o r e d e p o s i t s

    p r o b a b l y r e l a t e d t o h o t - s p r i n g s y s t e m s i n t h e

    G r e a t B a s i n ( 0 .2 % t o 7 .3 % ; W h i t e a n d H e r o -

    p o u l o s , 19 8 3 ) . T h u s t h e C a l a b o z o s s y s t e m i s

    l i k e ly to b e b a r r e n a t s h a l l o w d e p t h . T h e

    a b s e n c e o f h i g h m e t a l c o n c e n t r a t i o n s a t t h e

    s u r f a c e d o e s n o t p r e c l u d e t h e e x i s t e n c e o f ec o -

    n o m i c m i n e r a l i z a ti o n a t g r e a t e r d e p t h b e c a u s e

    h y d r o t h e r m a l o r e d e p o s i ts a re c o m m o n l y

    s t r o n g l y v e r t ic a l l y z o n e d ( W h i t e , 1 98 1 ) .

    G e o t h e r m a l p o t e n t ia l a n d h e a t f lo w

    T h e C a l a bo z o s h y d r o t h e r m a l s y s te m i s a n

    a t t r a c t i v e t a r g e t f o r g e o t h e r m a l e x p l o r a t i o n f o r

    t h e f o l lo w i n g r e a s o n s:

    ( 1) T h e c a l c u l a te d r e s er v o ir t e m p e r a t u r e

    c o m p a r e s f a v o r a b ly w i t h t e m p e r a t u r e s o f t h e

    C o s o g e o t h e r m a l p r o j e c t in C a l i f o r n ia

    ( 2 4 0 - 2 5 0 C ; F o u r n i e r e t al ., 1 98 0 ) a n d t h e

    R o o s e v e l t h o t s p r i n g s g e o t h e r m a l p r o s p e c t i n

    U t a h ( 2 7 0 ; C a p u a n o a n d C o l e , 1 9 8 2 ) .

    ( 2 ) T h e d i l u te n a t u r e o f t h e w a t e r , t h e v e ry

  • 8/12/2019 1-s2.0-0377027387900801-main (1)

    10/12

    296

    m gm chombe~

    T = 8 o o o c ~ q l ~ : L

    i ~ c . ~ ', : 5 ,, o S p o i ~ e ~ :

    t

    l T L l O 0 0 C f q 5 / 7 2 = 0 5 p i s e

    F ig . 6 . L a y e re d mo d e l o f t h e C a la b o z o s ma g ma c h a mb e r

    p r i o r t o e r u p t i o n o f b o t h U n i t V 0 .3 0 M a ) a n d U n i t S

    0 .1 5 M a ) s i m p l i f i e d f r o m t h e d a t a o f G r u n d e r 1 9 8 6 ).

    V e r t i c a l s c al e i s a rb i t r a ry .

    reason why it is a poor prospect for mineral

    exploration, would facilitate geothermal

    exploitation because conduits and turbines

    would not be encumbered by excessive mineral

    deposition.

    3) The Calabozos caldera has collapsed at

    least twice an d the subsided block is likely to be

    severely fractured, and is probably capped by

    relatively impermeable densely welded tuff,

    thereby providing a good reservoir for the

    hydro thermal fluid, as at Los Humeros, Mexico

    Ferriz, 1982).

    4) Silicic magmat ism and hydro thermal

    activity at the Calabozos center are long-lived.

    Paleo-heat flow of ~ 10 -5 cal

    c m - 2 s

    1 at the

    Calabozos caldera complex can be est imated for

    the time immediately preceding eruption of

    Units V and S based on a layered model of the

    compositionally zoned magma chamber Fig.

    6). Composition, viscosity, density, and tem-

    perature are simplified from the data of Grun-

    der 1986). Assuming tha t heat transfe r is only

    vertical, and no heat is generated within a layer,

    then, at steady state, heat flow at the surface

    must equal heat flow across each horizontal

    boundary. Heat transfer within the magma is

    domina ted by convection because the Rayleigh

    number of the magma is far greater than criti-

    cal if the thickness of a layer is greater than 10

    m. In fact, the thickness of the magma layers is

    probably on the order of 1 km, based on esti-

    mated eruptive volumes of several hundred km 3.

    When heat tra nsfe r within the layer is by con-

    vection, hea t flow can be expressed as:

    \Rc}

    where ~; =t he rm al conduc tivity 5 X 10 -3 cal

    cm -1 s -1 K -l ), AT= the temperature gra-

    dient across the layer, z=layer thickness,

    R = Rayleigh number, an d Rc = the critical Ray-

    leigh nu mb er = 2000 Sleep and Langen, 1981;

    Christensen, 1985). Substitution of the Ray-

    leigh number:

    R_z ATo~pg

    P

    from Bartlett, 1969; a= 5 10 5 OK-l,

    p = density, v = viscosity, g = gravi tationa l

    acceleration) results in removal of thickness as

    a variable. Calculated heat flows are:

    qi=4X10 -Sa ndq2 =7 10 5calcm ~s - l for

    densities and viscosities summarized in Fig. 6.

    Comparable heat flows, i.e. between 10 -4 and

    10 5 cal c m - 2 s 1 have been measured in the

    hydro thermall y active Lassen and Medicine

    Lake volcanic regions Mase and Sass, 1980),

    in the Long Valley caldera region Sorey et al.,

    1978), and have been estimated by Fournier and

    Pit t 1985) for the Yellowstone caldera system.

    In spite of the many factors that make the

    Calabozos caldera system an interesting geo-

    thermal target, geothermal exploitation of the

    Calabozos system is unlikely in the nea r futu re

    owing to the inaccessibility of the Calabozos

    caldera 40 km to the nearest road) and the

    existing hydroelectric potential of the centra l

    Chilean Andes.

    u m m a r y a n d c o n c lu s io n

    The Calabozos hydrot hermal system is asso-

    ciated with voluminous, late Pleistocene, cal-

    dera-related magmatism. It has been active,

    perhaps intermittently, for at least as long as

    300,000 years and is presently expressed as a

    suite of thermal springs and steam vents issu-

    ing along caldera-rel ated structures in the Rio

    Colorado fault zone. A nearby cluster of hot

    springs, the Puesto Calabozos group, are chem-

    ically distinct and are not directly related to the

  • 8/12/2019 1-s2.0-0377027387900801-main (1)

    11/12

    C o l o r a d o t h e r m a l w a t e r s . T h e y m a y b e r e l a t ed

    t o V o lc ~i n D e s c a b e z a d o C h i c o ( F ig . 1 ) , t h e m o s t

    r e c e n t l y a c t i v e c o n e in th e i m m e d i a t e v i c i n i t y

    o f t h e C a l a b o z o s c a l d e r a .

    T h e R i o C o l o r a d o s p r i n g s c a n a l l b e r e l a t e d

    t o o n e r e s e r v o i r w a t e r c o n t a i n i n g ~ 4 00 p p m C 1

    n e a r 2 5 0 C a n d a t a m i n i m u m d e p t h o f 5 0 0 m .

    H o t s p r in g s w a t e r i n th e n o r t h e r n , m o s t d e e p l y

    e r o d e d p a r t o f t h e c a l d e r a s y s t e m , w e r e e v o l v e d

    f r o m t h e p a r e n t a l r e s e r v o i r b y bo i l i n g ; r e s e rv o i r

    w a t e r d i l u te d w i t h > 5 0 r e g io n a l m e t e o r i c

    w a t e r i s s u e s a s s p r i n g s a l o n g th e e a s t e r n m a r -

    g i n o f t h e r e s u r g e n t d o m e .

    N o n e o f t h e t h e r m a l w a t e r s n o r r e l a te d s i n -

    t e r s a n d i n c r u s t a t i o n s i n t h e C a l a b o z o s r e g io n

    h a v e s i g n i f i c a n t l y e l e v a t e d m e t a l c o n c e n t r a -

    t i o n s , so th e a r e a i s n o t a p r o m i s i n g m i n e r a l

    p r o s p e c t a t s h a l l o w d e p t h s . T h e d i l u t e w a t e r

    c o m p o s i t i o n s a n d t h e h ig h c a l c u l a t e d r e s e r v o i r

    t e m p e r a t u r e , c o u p l e d w i t h t h e l o n g e v i ty o f t h e

    s y s t e m , e a r m a r k t h e C a l a b o z o s h y d r o t h e r m a l

    s y s t e m a s a n i n t e r e s t i n g g e o t h e r m a l t a r g e t t h a t

    i s , h o w e v e r , u n l i k e l y t o b e e x p l o i t e d g i v e n i t s

    r e m o t e l o c a t i o n .

    c know l e d gmen t s

    W e t h a n k D . S m i t h o f A S A R C O I n c. fo r t r ac e

    m e t a l a n a l y s e s o f h o t s p r i n g s d e p o s i t s a n d Y .

    K h a r a k a f o r h e l p in m o d e l l i n g t h e w a t e r c h e m -

    i s t ry . C a t h y J a n i k k i n d l y d i d t h e o x y g e n i s o -

    t o p i c a n a l y s e s . C . G r u n d e r p r o v e d a n a b l e

    a s s i s t a n t i n c o ll e c t in g t h e r m a l w a t e r s . D i s c u s -

    s io n s w i t h N . S l e e p i m p r o v e d o u r u n d e r s t a n d -

    i ng o f c o n v e c t io n . T h e m a n u s c r i p t b e n e f i t e d

    f r o m r e v i e w s b y C . B a c o n , H . F e r r iz a n d G .

    M a h o o d .

    Re f e r e n c e s

    Afifi , A.A. , 1983. Dete rmina t ion of dissolved alum inum in

    wa ter samples. U.S. Geol. Surv. , W ater-Resour. Inve st.

    Rep., 82-4018, 13 pp.

    ArnSrsson, S., Gunnlaugsson, E. an d Svavardsson, H., 1983.

    The chemis try of geothermal waters in iceland. I I I .

    Chemical and geothe rma l investigations. Geochim.

    Cosmochim. Acta, 47: 567-577.

    297

    Barn es, H.L., 1979. Solubilities of ore minera ls. In: H.L.

    Bar nes ( Edi to r ) , Geochem is t ry o f Hydr o the r m a l Or e

    Deposi ts . John Wiley & Sons , New York, NY, pp.

    404-460.

    Barnes , R.B, 1975. Th e de termina t ion of specif ic form s of

    alumin um in natura l water . Chem . Geol ., 15: 177-191.

    Bar t le t t , R.W. , 1969. Ma gma convect ion, temp erature dis-

    tr ibut ion, and dif ferent ia t ion. Am. J . Sci . , 267:

    1067-1082.

    Boden, D.R. , 1986. Eruptiv e his tory an d s tructural devel-

    opm ent of the Toqu ima caldera complex, centra l Nevada.

    Geol. Soc. Am. Bull., 97: 61-74.

    Capuano, R.M and C ole, D.R., 1982. Fluid -min eral equilib-

    r ia in a hydrothermal sys tem, Roosevel t Hot Spr ings ,

    Utah . Geochim. C osmoch im. Acta , 46: 1353-1364.

    Chr is tensen, U.R. , 1985. The rmal evo lut ion models of the

    earth . J. Geophys. Res. , 90: 2995-3008.

    Craig, H., 1961. Isoto pic variatio ns in mete oric waters. Sci-

    ence, 1 33: 1702-1703.

    Drake, R.E., 1976. Chronology of Cenozoic igneous and

    tectonic events in the centra l Chilean And es-Lati tudes

    3530 ' to 36S. J . Vo lcanol. Geotherm. Res. , 1: 265-284.

    Ellis , A.J. , 1970. Qu anti ta t ive in terpreta t io n o f chemical

    character is t ics of hydrothermal sys tems. Geothermics ,

    2: 516-528.

    Ellis , A.J . and M ahon, W .A.J. , 1977. Chemis try and Geo-

    therm al System s. Academic Press , New York, NY, 392

    pp.

    Fer riz , H . , 1982. Geologic and prel imin ary reservoir data

    on the Los Humeros geothermal sys tem. Proceedings

    Eigh th W orkshop Geo therm al Reservoir Engineer ing,

    Stanford Univers i ty, SGP-TR-60: 19-24.

    Fournier , R .O., 1979. Geoch emical and hydrologic app li-

    cat ions of enthalpy-chlor ide diagrams in the predict ion

    of underground condit ions in hot-spr ings sys tems. J .

    Volcanol. Geoth erm. R es. , 5: 1-16.

    Fournier , R.O., 1981. Application of wa ter geoch emis try to

    geotherm al explorat ion and reservoir engineer ing. In: L.

    Rybach and L . P . J . Muf f le r ( Edi to r s ) , Geothe r m a l S ys -

    tems: Principles and C ase Histories. Joh n W iley & Sons,

    New York, NY, pp. 109-143.

    Fournier , R .O. and P itt, A.M ., 1985. Th e Yellowstone ma g-

    ma tic-hyd rotherm al sys tem, U.S .A., In: C. S tone (Edi-

    to r ) , 1985 I n te r na t iona l S ym po s ium on Geothe r m a l

    Energy. Geotherm. Resources Council, Davis, CA, pp.

    319-327.

    Fournier , R.O. and R owe, J . J . , 1966. Est im ation of under -

    ground temp eratures f rom the s i l ica con tent of wate r in

    ho t spring s systems. Am. J. Sci. , 264: 685-697.

    Fournier , R .O. and T ruesdell, A.H., 1973. An em pirical Na -

    K-C a geotherm om eter for natural waters . G eochim.

    Cosmochim. Acta, 37: 1255-1275.

    Fournier, R.O., Th om pso n, J.M . and Austin, C .F., 1980.

    Interp reta t ion of chemical analyses of waters col lected

    f rom two g eothermal w ells a t Coso, California . J . G eo-

    phy s. Res. , 85: 2405-2410.

  • 8/12/2019 1-s2.0-0377027387900801-main (1)

    12/12

    298

    F r id r i c h , C . J . a n d M a h o o d , G . A . , 19 8 4. R e v e r s e z o n in g in

    t h e r e s u r g e n t i n t r u s i o n s o f t h e G r i z z l y P e a k c a u l dr o n ,

    S a w a tc h R a n g e , C o lo ra d o . G e o l . S o c . A m . B u l l . , 9 5 :

    779-787 .

    G ru n d e r , A . L . , 1 9 86 . T h e C a la b o z o s c a ld e ra c o m p le x : G e o l -

    o g y , p e t ro lo g y , a n d g e o c h e m is t ry o f a m a jo r s i l i c i c v o l -

    c a n i c c e n t e r a n d h y d r o t h e r m a l s y s t e m i n t h e s o u t h e r n

    A n d e s . P h . D . T h e s i s , S t a n fo rd U n iv e r s i ty , S t a n fo rd , C A .

    G ru n d e r , A . L . , 1 9 8 7 . L o w -g ~ so s i l i c i c v o lc a n ic ro c k s a t t h e

    C a la b o z o s c a ld e ra c o m p le x : E v id e n c e fo r u p p e r -c ru s t a l

    c o n t a m i n a t i o n i n t h e s o u t h e r n A n d e s . C o n t r i b . M i n -

    e ra l . Pe tro l . , 95 : 71-81 .

    H i ld re th , W. , G ru n d e r , A . L . a n d D ra k e , R . E . , 1 9 8 4 . T h e

    L o m a S e c a T u f f a n d th e C a la b o z o s c a ld e ra : A m a jo r a s h -

    f low a n d c a ld e ra c o m p le x in th e s o u th e rn A n d e s o f c e n -

    t ra l Chi le . Geol . Soc . Am. Bul l . , 95 : 45-54 .

    Kee nan , J .H. , K eyes , F .G. , Hi l l , P .G. and M oore , J .G. , 1969 .

    S t e a m T a b l e s ( I n t e r n a t i o n a l E d i t i o n - M e t r i c U n i t s ) .

    J o h n W i le y S o n s , N e w Y o rk , N Y , 16 2 p p .

    K h a ra k a , Y . K . a n d Ma r in e r , R . H . , 1 9 8 7 . C h e m ic a l g e o th -

    e r m o m e t e r s a n d t h e i r a p p l i c a t i o n to f o r m a t i o n w a t e r s

    f r o m s e d i m e n t a r y b a s i n s. I n : T h e r m a l H i s t o r y o f S e d i -

    m e n ta ry B a s in s : Me th o d s a n d C a s e H i s to r i e s . So c . E co n .

    P a le o n to l . M in e ra l . S p e c . I s s . , i n p re s s .

    L ip m a n , P . W . , 1 9 8 4. T h e ro o t s o f a s h f lo w c a ld e ra s in w e s t -

    e r n N o r t h A m e r i c a : w i n d o w s i n t o t h e t o p s o f g r a n i t ic

    ba tho l i ths . J . Geophys . Res . , 89 : 8801-8841 .

    Ma s e , C . W. a n d S a s s , J .H . , 1 98 0 . N e a r - s u r fa c e h y d ro th e r -

    m a l r e g i m e o f t h e L a s s e n ' k n o w n g e o t h e r m a l r e so u r c e s

    a re a ' , C a l i fo rn ia . U . S . G e o l . S u rv . , O p e n - F i l e R e p . 8 0 -

    1230, 31 pp.

    Mc K e n z ie , W. F . a n d T ru e s d e l l , A . H . , 1 9 7 7 . G e o th e rm a l

    r e s e rv o i r t e m p e r a t u r e s e s t i m a t e d f r o m t h e o x y g e n i so -

    to p e c o m p o s i t io n s o f d i s so lv e d s u l f a t e a n d w a te r f ro m

    h o t s p r in g s a n d s h a l lo w d r i l l h o les . G e o th e rm ic s , 5 :5 1 -6 1 .

    S le e p , N . H . a n d L a n g e n , R . T . , 1 9 8 1 . T h e rm a l e v o lu t io n o f

    th e e a r th : s o m e re c e n t d e v e lo p m e n t s . A d v . G e o p h y s . ,

    23: 1-23.

    S o re y , M. L . , L e w is , R . E . a n d O lm s te d , F . H . , 1 9 78 . T h e

    h y d r o th e rm a l s y s t e m o f L o n g V a l l e y c a ld e ra , C a l i fo rn ia .

    U.S . G eol . Surv . , P rof . Pap . 1044-A, 60 pp .

    T a y lo r , H . P . J r . , 1 9 6 8. T h e o x y g e n i s o to p e g e o c h e m is t ry o f

    ig n e o u s ro c k s . C o n t r ib . M in e ra l . P e t ro l . , 1 9: 1 -7 1 .

    T h o m p s o n , J . M. , 1 97 5 . S e le c t in g a n d c o l l e c t in g th e rm a l

    s p r in g s fo r c h e m ic a l a n a ly s i s : A m e th o d fo r f i e ld p e r -

    sonne l . U.S . Geol . Surv . , Open -Fi l e Rep . 75-68 , 12 pp .

    T h o m p s o n , J . M . , 1 98 3. C h e m i c a l A n a l y s e s o f t h e r m a l a n d

    n o n t h e r m a l s p r i n g s in L a s s e n V o l ca n i c N a t i o n a l P a r k

    and v ic in i ty , Ca l i fo rn ia . U.S . Geol . Surv . , Open F i le Rep .

    83-311, 24 pp.

    T h o m p s o n , J . M . , 1 9 85 . C h e m i s t r y o f t h e r m a l a n d n o n t h e r -

    m a l s p r i n g s i n t h e v i c i n i t y o f L a s s e n V o l c a n ic N a t i o n a l

    P a rk . J . V o lc a n o l. G e o th e rm . R e s . , 25 : 8 1 -1 0 4 .

    T h o m p s o n , J . M . a n d A u s t i n , C ., 1 9 8 0 . I n t e r p r e t a t i o n o f

    c h e m ic a l a n a ly s e s o f w a te r s c o l l e c t e d f ro m tw o g e o -

    th e rm a l w e l l s a t C o s o , C A . J . G e o p h y s . R e s . , 8 5 :

    2405-2410 .

    T h o m p s o n , J . M. , G ru n d e r , A . L . a n d H i ld re th , W. , 1 9 8 3 .

    S e l e c te d c h e m i c a l a n a l y se s a n d g e o t h e r m o m e t r y o f h o t -

    s p r in g w a te r s f ro m th e C a la b o z o s c a ld e ra , c e n t r a l C h i l e .

    G e o th e rm . R e s o u r . C o u n c i l , T ra n s . , 7 : 3 3 1 -3 3 5 .

    We is s b e rg , B . G . , 1 9 6 9. G o ld - s i lv e r o re -g ra d e p re c i p i t a t e s

    f ro m N e w Z e a la n d th e rm a l w a te r s . E c o n . G e o l . , 6 4 :

    9 5 -1 0 8 .

    W h i t e , D . E . , 1 9 68 . H y d ro lo g y , a c t iv i ty , a n d h e a t f lo w o f th e

    S t e a m b o a t S p r i n g s t h e r m a l s y s t e m , W a s h o e C o u n t y ,

    Nev ada . U.S . Geol . Surv . , P rof . Pap . 458-C, 109 pp .

    W h i t e , D . E . , 1 9 8 1. A c t iv e g e o th e rm a l s y s t e m s a n d

    h y d r o th e rm a l o re d e p o s i t s . E c o n . G e o l ., 7 5 th A n n iv e r -

    s a ry V o lu m e , p p . 3 9 2 -4 2 3 .

    W h i t e , D . E . a n d H e ro p o u lo s , C . , 19 8 3. A c t iv e a n d fo s s i l

    h y d r o t h e r m a l - c o n v e c t i o n s y st e m s o f t h e G r e a t B a s i n .

    G e o th e rm . R e s o u r . C o u n c i l , S p e c . R e p . , 1 3 : 4 1 -5 3 .