1 real-time hybrid simulations p. benson shing university of california, san diego

55
1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

Upload: anne-patrick

Post on 13-Jan-2016

238 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

1

Real-Time Hybrid Simulations

P. Benson ShingUniversity of California, San Diego

Page 2: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

2

Better Known as the Pseudodynamic Test Method

Early Work:Hakuno et al. (1969)Takanashi et al. (1974)

Institute of Industrial Science, University of Tokyo

Hybrid: real-time testing; analytical substructuring; distributed testing and simulation; ……….

Pseudodynamic: slow rate of loading; dynamic properties simulated numerically

Page 3: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

3

Pseudodynamic Test Method

Simple concept but requires care to execute. Precision of displacement control. Accumulation of experimental errors in numerical computation.

Advance to nexttime step: i = i + 1

Update and

Numerical solutionof eqs. of motion

-i i giirMa Cv Ma

ir

gia

id

ir

Test FrameDisplacement

Page 4: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

Experimental Error Accumulation

4

Main source of systematic experimental errors:time-delay in servo-hydraulic loading apparatus

Shing and Mahin (1982)

Page 5: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

5

Dermitzakis and Mahin (1985)

Substructure Test Methods

Advance to nexttime step: i = i + 1

Update and

Numerical solutionof eqs. of motion

-i i i gi Ma Cv r Mba

gia ir

Computer Model

Test Frame

Page 6: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

Range of Configurations

6

Slow Fast Real Time

Discontinuous/Continuous

Local Laboratories

Geographically Distributed

Page 7: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

7

Needs for Real-Time TestsComputer Model Test

Base IsolationDevices

TestActive/PassiveDampers

Computer Model

Page 8: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

General Framework for Hybrid Simulation

8

S Ma Cv r f

( ) ( )A A E EAS

ES M C v r rM a C f

Structural Partitioning

,

,

E ES S B

AA

B

EE

EB

S

0 f

f f f

f

r r

r

A AAA AB

A A A ABA BB BE

A AEB EE

M M 0

M M M M

0 M M

0 0

0E E E EBB BE

A

IEEB

B

E

EEE

M M M r

M

0

0 aM

a

a a

Page 9: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

Total Formulation

9

EA A AS M a C v r r f

E E E ES r M a C v r

Whole Frame Analytical Model Physical Substructure

4AM

3AM

2AM

1AM 1

EM

2EM 2d 2

Er

1d 1r

2d

3d

4d

,2A

Sr

,3Sr

,4Sr

+ =

Page 10: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

Coupled Subdomain Approach

10

12 2 3 3 2 ,2 2 2

3 3 3 3 4 4 3 ,3 3

4 4 4 4 4 ,4 4

0 0 0

0 0 0

0 0 0 0

A A A A A IS

A A A A AS

A A AS

M a C C v r f f

M a C C C C v r f

M a C C v r f

1 1 11 1 2 22

2 2 2 22 2

1

22

00

0 E

A A A A

E IA A A

a v fM C C C

a v f fM C C

r

r

Physical Substructure

1EM

2EM 2d 2

Er

1d 1r

22AM

1AM

2If

Magonette et al. (1998)

Analytical Model

4AM

3AM

12AM 2d

3d

4d

,2A

Sr

,3Sr

,4Sr

2If

Implicit Scheme

Explicit Scheme

Page 11: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

Dynamic Substructuring I

11

2 3 2 ,2 2

3 3 3 4 4 3 ,3 3

4

2

2

4 4 4 24 ,4 4

0 0 0 0 0

ˆ ˆ0 0 0 0

ˆ ˆ0 0 0 0

A A tt

t

A IS

A A A A AS

A A AS

tA

M C v r f

M a C C C v r M

M a C C v r M

a

a

a

Analytical Model

4AM

3AM

2AM 2d

3d

4d

,2A

Sr

,3Sr

,4Sr

2If 2

ta

Physical Substructure

1EM

2EM

2If 2

ta

ga

Page 12: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

Dynamic Substructuring I

12

Actuator

Actuator

Specimen

Shake Table

Computational Model

Sivaselvan and Reinhorn (2004)

Page 13: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

Dynamic Substructuring II

13

,11 1 11 1 2 2

,22 2 222 2 2

00

0

AA A A AS gA AA A A

S gI

ra v M aM C C C

ra v M aC C fM

2AM

2d

1d

,2A

Sr

,1Sr

2If

Physical Substructure

3EM

2EM

1AM

ga

4EM

2td 2

If

Page 14: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

Dynamic Substructuring II

14

Actuator

Shake Table

Computational Model

SD

Smart-UPS

6 2 0

www.apcc.com

Actual Equipment Tested

ga

Horiuchi et al. (2000)Bayer et al. (2005)Bursi et al. (2008)

Page 15: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

15

Nakashima et al. (1992, 1999) Horiuchi et al. (1996) Tsai et al. Darby et al. (1999) Magonette et al. (1998) Bayer et al. (2000) Shing et al. (2002) Wu et al. (2005, 2006)

Real-Time Hybrid Test Methods

Explicit IntegrationSchemes

Implicit IntegrationSchemes

Implicit-Explicit CoupledField Analysis

Page 16: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

16

Newmark Implicit Method for Time Integration

1 1 , 1 1 1A A A E

i i S i i i M a C v r r f

21 1 1i i it d d a

1 1 1i i it v v a

Page 17: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

17

* ( ) ( )1 1

k ki i K d R

1

( 1) ( ) ( )1 1i

k k ki i

d d d

Modified Newton Method

*0 02

A E A E

A Et

t

M M C CK K K

( ) ( ) ( ) ( )1 1 1 1 , 1 1 1

k k A A k E ki i i i S i i i R M d d C v r r f

Page 18: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

18

Modified Newton Method

Number of iterations varies from time step to time step. Increment size decreases as solution converges.

Convergence is guaranteed as long as

is positive definite (Shing and Vannan 1991).

Problems for Real-Time Tests:

2

A E A E

A ES S

t

t

M M C CK K K

Page 19: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

19

Fixed Number of Iterations with InterpolationShing et al. (2002)

Page 20: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

Response Correction and Update

20

11 1 , 1

, 1

1 1 ( )

( ) 1

A A A Ai i i S i

AS i i i

Ei

Ei

M a C v C v

r

r

f

r

r f

( ) ( )1 1

k d ki i d d

( ) * ( ) ( )1 1 1 1

E m k E d k m ki i i i r r K d d

-Method

Compatibility

Equilibrium

Page 21: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

Nonlinear Structure

21

0 5 10 15 20 25 30-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Time (sec)

Dis

pla

cem

en

t (in

ch)

CDM t = 0.001

RTI t = 0.01, N =10

RTI t = 0.01, N =50

-1 -0.5 0 0.5 1 1.5 2 2.5 3-30

-20

-10

0

10

20

30

Disp. (inch)

Fo

rce

(ki

ps)

5.42 5.43 5.44-900

-800

-700

-600

-500

-400

-300

-200

-100

0

Time (sec)

Re

sid

ua

l Fo

rce

Err

or

(kip

s)

CDM t = 0.001

RTI t = 0.01, N =10

RTI t = 0.01, N =50

RTI t = 0.01, N =10

RTI t = 0.01, N =50

Page 22: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

22

System Configuration

NEES@Colorado

Page 23: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

23

Real-Time Substructure Test Platform

dEr

PID Controller

Real-Time Processor

SCRAMNet Card 2

Analytical Substructure Model

ExperimentalElement/Substructure

Target PC –Real-Time Kernel

SCRAMNet Card 1

Special Element

Data-AcquisitionProgram

Actuators

Specimen

OpenSEES

Page 24: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

24

Issues in a Real-Time Test

Actuator time-lag caused by dynamics of servo-hydraulic system and test structure.

Communication delays among processors.

Accounting for real inertia and damping forces.

Convergence errors in numerical scheme.

Interaction of numerical computation with system dynamics.

Page 25: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

25

Phase-Lag Compensation Methods

( )( ) ( ) ( ) ( ) ( )c

PID ff p i d ff p

de t di t i t k e t k e t dt k k d t

dt dt

( ) ( ) ( 1) ( 1)1 1

c k k c n m ni i DFC i id d k d d

PID with Feedforward

Discrete Feedfordward Correction

Phase-Lead Compensator

d

d d

1( )

1

T sPLC s

T s

Page 26: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

System Model for Test Simulation

26

force

Physical test system

Responses update

Iteration with interpolation

Displacement and restoring force,

2se

Delay(2 ms)

id

f

,

,i i

i i

d v

a r

id

m m1 1,i id r

ECd1id

c1id

cp, 1id

m m1 1,i id r

id

1 1

1 1

,

,i i

i i

d v

a r

Error compensation

Explicit part

Converged responses,

m m1 1,i id r

1 1 1 1, , ,i i i id v a r ( Outer loop)

( Inner loop )

Page 27: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

Physical Test System

27

Controller

e PID

Servo-valve and hydraulic actuator

md

-+

displacement response

cpd

ppk A

ffk

Δ pressure feedback

Feed-forward loop

+

+i

d

dt

Test specimen

mr

-

se

Delay

mr

Physical testing system

Page 28: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

28

System Transfer Function (Linear System)

Consider dynamics of servo-hydraulic actuators and test structure.

Communication delays.

Error compensation schemes.

Interaction of numerical computation with physical system.

Jung and Shing (2006)

Page 29: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

29

Implicit Integration Scheme

1d F EP ICid d d d

( )( ) ( )F EF sd s f s

( )( ) ( )EP mEP sd s d s

( )( ) ( )IC mIC sd s d s

External Force

Explicit Prediction

Implicit Correction

Page 30: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

30

2

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

m

s

d s EF s EC s P sRTPD s

f s e IC s EC s P s EP s EC s P s

System Block Diagram and Transfer Function

Page 31: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

31

Physical Test System

Page 32: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

32

Validation with Simulink Model

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 21

2

3

4

5

6

7

8

9

Frequency (Hz)

Am

p. F

act

or

D

kp = 1

kp = 5

Transfer Function, K = Kt

Simulink Model, K = Kt

Transfer Function, K = Kt * 1.1

Simulink Model, K = Kt * 1.1

( 1) ( 1) ( 1)1 1 1 1

m n d n m ni i ini i i

r r K d d

Error Correction:

Page 33: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

33

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 21

2

3

4

5

6

7

8

9

Frequency (Hz)

Am

p. F

act

or

D

70 75 80 85 90 95 100 105 110 115 1200

0.01

0.02

0.03

0.04

0.05

Frequency (Hz)

Am

p. F

act

or

D

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-50

0

50

100

150

200

250

Frequency (Hz)

Ph

ase

An

gle

(d

eg

ree

s)

Analytical Sol.

kp = 1

kp = 3

kp = 5

kp = 7

kp = 7, kp

= -0.0002

Analytical Sol.

kp = 1

kp = 3

kp = 5

kp = 7

kp = 7, kp

= -0.0002

Analytical Sol.

kp = 1

kp = 3

kp = 5

kp = 7

kp = 7, kp

= -0.0002

System Performance (PID Only)

Page 34: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

34

PID with Feedforward

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 21

2

3

4

5

6

7

8

9

Frequency (Hz)

Am

p. F

act

or

D

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

50

100

150

200

250

Frequency (Hz)

Ph

ase

An

gle

(d

eg

ree

s)

Analytical Sol.

kff = 0

kff = 0.04

kff = 0, k

p = 5

Analytical Sol.

kff = 0

kff = 0.04

kff = 0, k

p = 5

Page 35: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

35

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 21

2

3

4

5

6

7

8

9

10

Frequency (Hz)

Am

p. F

acto

r D

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

50

100

150

200

250

Frequency (Hz)

Pha

se A

ngle

(deg

rees

)Analytical Sol.k

DFC = 0

kDFC

= 0.5

kDFC

= 1

kDFC

= 0, kP = 5

Analytical Sol.k

DFC = 0

kDFC

= 0.5

kDFC

= 1

kDFC

= 0, kP = 5

Discrete Feedforward Correction (DFC)

Page 36: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

36

Inertia Effect in Real-Time Tests

Advance to nexttime step: i = i + 1

Update and

Numerical solutionof eqs. of motion

-A Ai i giirM a C v Ma

,S ir

gia

id

ir

Test Frame

tM a+

Page 37: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

37

0 0.5 1 1.5 2 2.5 30

1

2

3

4

5

6

7

8

9

Frequency (Hz)

Am

p.

Fa

cto

r D

0 0.5 1 1.5 2 2.5 30

20

40

60

80

100

120

140

160

180

200

Frequency (Hz)

Ph

as

e A

ng

le (

de

gre

es

)

Analytical Sol.

Mt = M * 0.1

Mt = M * 0.4

Mt = M * 0.7

Mt = M * 1.0

Analytical Sol.

Mt = M * 0.1

Mt = M * 0.4

Mt = M * 0.7

Mt = M * 1.0

Influence of Inertia Force Feedback

Page 38: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

38

Actual Test with Inertia Force Removal

0 5 10 15 20 25 30-1

-0.5

0

0.5

1

1.5

Time (sec)

Dis

pla

ce

me

nt (in

ch

)

CDM t = 0.001 Without Inertia Force Correction With Inertia Force Correction

1.5 2 2.5 3 3.5 4-1

-0.5

0

0.5

1

1.5

Time (sec)

Dis

plac

emen

t (in

ch)

CDM t = 0.001 Without Inertia Force Correction With Inertia Force Correction

Mt/M = 4.7%

Page 39: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

Influence of Support Flexibility

39

0.5 1 1.5 2 2.50

1

2

3

4

5

6

7

8

9

Frequency (Hz)

Amp.

Fac

tor

D

Mr=M

t* 8, K

r=K

t* 8, f

r=f

t * 1

Mr=M

t* 8, K

r=K

t* 32, f

r=f

t * 2

Mr=M

t* 8, K

r=K

t* 128, f

r=f

t * 4

Mr=M

t* 32, K

r=K

t* 128, f

r=f

t * 2

Rigid Support

Page 40: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

40

Nonlinear Structures (2-DOF, Method)

2(1 )

t

s

MK KConvergence: has to be positive definite

0 5 10 15 20 25 30-0.6

-0.3

0

0.3

0.6

Time (sec)

Dis

pla

cem

en

t (in

ch)

CDM t = 0.001PIDPID + DFCPID + PLCPID + FFRTI w/o Actuator

0 5 10 15 20 25 30-1.2

-0.9

-0.6

-0.3

0

0.3

0.6

0.9

1.2

Time (sec)

Dis

pla

cem

en

t (in

ch)

CDM t = 0.001PIDPID + DFCPID + PLCPID + FFRTI w/o Actuator

Strain Hardening

Strain Softening

Page 41: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

Simulation Setup

41

Controller PC

Digital controller andData-acquisition System

Servo-hydraulic actuators and test structure

Rae-Young jung

Rae-Young jung

Rae

-Yo

ung

jung

Rae-Y

oung

jun

g

cd

,m md ri

SCRAMNet

Valve command, Sensors feedback

,m md r

Host-target pair 1

Real-timeTarget PC

Host PC

Host-target pair 2

Real-timeTarget PC

Host PC

SCRAMNet

Switch

Page 42: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

Two-Story Frame

42

Page 43: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

Two-DOF Real-Time Tests

43

Page 44: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

Two-DOF Real-Time Tests

44

0 5 10 15 20 25 30-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time (sec)

Dis

pla

cem

en

t (in

ch)

CDM t = 0.001 PID PID + DFC PID + PLC PID + FF

3.5 4 4.5 5 5.5-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time (sec)

Dis

pla

ce

me

nt (in

ch

)

CDM t = 0.001 PID PID + DFC PID + PLC PID + FF

Page 45: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

45

Real-Time Substructure Test with a Single Column

Actuator

Analytical Model in OPENSEES

Test Column

Page 46: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

46

Real-Time Substructure Test

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

Time (sec)

Dis

pla

ce

me

nt

(in

)

FHT Test Pure Simulation

Page 47: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

47

Test of a Zipper Frame

Georgia TechU. At BuffaloUC-BerkeleyUC-San Diego/U. of ColoradoFlorida A&M

Page 48: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

48

Test Setup

Page 49: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

49

Test Results

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7 8 9

Time [sec]

Dis

plac

emen

t [in

]Analysis

Hybrid Test

-2.5

-1.5

-0.5

0.5

1.5

2.5

3.5

0 1 2 3 4 5 6 7 8 9

Time [sec]

Dis

plac

emen

t [in

]

Analysis

Hybrid TestBrace

Rupture

80% LA 22

200% LA 22

Page 50: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

50

Brace Response

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2-40

-30

-20

-10

0

10

20

30

40

50

60

Axial Displacement [in]

Axi

al F

orc

e [k

ips]

Hybrid Test

Numerical Model

Brace Rupture

(a) Brace 1

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5-50

-40

-30

-20

-10

0

10

20

30

40

50

60

Axial Displacement [in]

(b) Brace 2

Brace Rupture

Page 51: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

51

Brace Damage

Page 52: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

52

Future Challenge - Improve Computational Speed

* ( ) ( ) 1 1

1 1

ˆns ns

s k s kee e n e n

s sA A

K d R

*2ˆeeK1( )

1k

e nR 2( ) 1k

e nR*1ˆeeK *ˆ ns

eeK ( ) 1

ns ke nR

Parallel Computing

Page 53: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

53

Future Challenge - Develop Mixed Control Strategy

Displ. Control

Computer ModelTest Specimen

Force Control

ShearWall

Page 54: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

54

Dr. Rae-Young Jung, Former Grad. Student at CU

Dr. Zhong Wei, Former Grad. Student at CU

Dr. Eric Stauffer, Formerly at NEES@Colorado

Andreas Stavridis, Grad. Student at UCSD

Rob Wallen, NEES@Coloarda

Thomas Bowen, NEES@Colorado

Contributors

Development supported by NSF under NEES Program.

Acknowledgments

Page 55: 1 Real-Time Hybrid Simulations P. Benson Shing University of California, San Diego

55

Thank You