1. problem set 6 from osborne’s introd. to g.t. p.210 ex. 210.1 p.234 ex. 234.1 p.337 ex. 26,27...

22
1

Upload: monica-morrison

Post on 23-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1. problem set 6 from Osborne’s Introd. To G.T. p.210 Ex. 210.1 p.234 Ex. 234.1 p.337 Ex. 26,27 from Binmore’s Fun and Games

1

Page 2: 1. problem set 6 from Osborne’s Introd. To G.T. p.210 Ex. 210.1 p.234 Ex. 234.1 p.337 Ex. 26,27 from Binmore’s Fun and Games

22

problem set 6

from Osborne’sIntrod. To G.T.

p.210 Ex. 210.1p.234 Ex. 234.1

p.337 Ex. 26,27

from Binmore’sFun and Games

Page 3: 1. problem set 6 from Osborne’s Introd. To G.T. p.210 Ex. 210.1 p.234 Ex. 234.1 p.337 Ex. 26,27 from Binmore’s Fun and Games

3

Minimax & Maximin Strategies

Minimax & Maximin Strategies

Given a game G( , ) and a strategy s of player 1:

min 1t

G s,t

is the worst that can happen to player 1 when he plays strategy s.

maxmin 1ts

G s,t

He can now choose a strategy s for which this ‘worst scenario’ is the best

Page 4: 1. problem set 6 from Osborne’s Introd. To G.T. p.210 Ex. 210.1 p.234 Ex. 234.1 p.337 Ex. 26,27 from Binmore’s Fun and Games

4

A strategy s is called a maximin (security) strategy if

min maxmint ts

G s,t G s,t min maxmin .1 1t tσ

G s,t G σ,t

min

min

1t

1t

G s,t

G s',t

min 1t

G s,t

min 1t

G s',t

{{

s

s'max

s

Page 5: 1. problem set 6 from Osborne’s Introd. To G.T. p.210 Ex. 210.1 p.234 Ex. 234.1 p.337 Ex. 26,27 from Binmore’s Fun and Games

5

A strategy s is called a maximin (security) strategy if

min maxmin1 1t ts

G s,t G s,t min maxmin .1 1t tσ

G s,t G σ,t

These can be defined for mixed strategies as well.

Similarly, one may define

minmax 1t s

G s,t

If the game is strictly competitive then this is the best of the ‘worst case scenarios’ of player 2.

max sup min inf= , =

Page 6: 1. problem set 6 from Osborne’s Introd. To G.T. p.210 Ex. 210.1 p.234 Ex. 234.1 p.337 Ex. 26,27 from Binmore’s Fun and Games

6

where s,t are mixed strategies

Lemma:

minmax maxmint ts s

G s,t G s,t

Take the matrix to be the matrix of player 1’s payoffs of a game G,

i.e. G1

For any matrix G:

Page 7: 1. problem set 6 from Osborne’s Introd. To G.T. p.210 Ex. 210.1 p.234 Ex. 234.1 p.337 Ex. 26,27 from Binmore’s Fun and Games

7

Lemma:For any matrix G:

minmax maxmint ts s

G s,t G s,t

Proof:For any two strategies s,t :

max minτσ

G σ,t G s,τ

max min τσ

G σ,t G s,t G s,τ

??

where s,t are mixed strategies

hence:

max mimi nn maxt τσ s

G σ,t G s,τ minmax maxmint ts s

G s,t G s,t

Page 8: 1. problem set 6 from Osborne’s Introd. To G.T. p.210 Ex. 210.1 p.234 Ex. 234.1 p.337 Ex. 26,27 from Binmore’s Fun and Games

8

Theorem: (von Neumann) For any matrix G:

minmax maxmint ts s

G s,t G s,t

Lemma:

If s is a maximin strategy and t is a minimax strategy of a strictly competitive game, then (s,t) is a Nash equilibrium.

Proof:

The max & min is taken over mixed strategies

No proof is provided in the lecture

Page 9: 1. problem set 6 from Osborne’s Introd. To G.T. p.210 Ex. 210.1 p.234 Ex. 234.1 p.337 Ex. 26,27 from Binmore’s Fun and Games

9

min

max

t

s

G s,t G s,t

G s,t

s

tProof:

max min ts

G s,t G s,t G s,t

=but

hence max mints

G s,t = G s,t G s,tmaxmin = minmax

Page 10: 1. problem set 6 from Osborne’s Introd. To G.T. p.210 Ex. 210.1 p.234 Ex. 234.1 p.337 Ex. 26,27 from Binmore’s Fun and Games

10

max mints

G s,t = G s,t G s,t

t is a best response against s

s is a best response against t

( s , t ) is a Nash Equilibrium.

Page 11: 1. problem set 6 from Osborne’s Introd. To G.T. p.210 Ex. 210.1 p.234 Ex. 234.1 p.337 Ex. 26,27 from Binmore’s Fun and Games

11

Mixed Strategies Equilibria in Infinite

GamesThe ‘All Pay’ Auction

Two players bid simultaneously for a good of value K the bids are in [0,K].

Each pays his bid. The player with the higher bid gets the object. If the bids are equal, they share the object.

There are no equilibria in pure strategies

Page 12: 1. problem set 6 from Osborne’s Introd. To G.T. p.210 Ex. 210.1 p.234 Ex. 234.1 p.337 Ex. 26,27 from Binmore’s Fun and Games

12

is not an equilibriumx, x x <1. K

.

increasing the bid by increases payoff

from to

ε

K/2 - x K - x - ε

is not an equilibrium2. K,K

.

lowering the bid to increases payoff

from to

0

K/2 - K = -K/2 0

is not an equilibriumx, y x < y3.

.

lowering the bid from to increases payoff

from to

y y - ε

K - y K - y + ε

There are no equilibria in pure strategies

Page 13: 1. problem set 6 from Osborne’s Introd. To G.T. p.210 Ex. 210.1 p.234 Ex. 234.1 p.337 Ex. 26,27 from Binmore’s Fun and Games

13

Equilibrium in mixed strategies

, .

A mixed strategy is a (cumulative) probability distribution

over with a density function F 0, K f x

at most is the probability that the player bids F x x.

assume that the support of is an interval F a,b 0,K

x

0

F x = f s ds

a b0 K

F1

iff f x > 0 x a,b

a b0 K

f

xF(x)

F a = 0, F b = 1

Page 14: 1. problem set 6 from Osborne’s Introd. To G.T. p.210 Ex. 210.1 p.234 Ex. 234.1 p.337 Ex. 26,27 from Binmore’s Fun and Games

14

When player bids and player uses a mixed strategy

, then player 's payoff is :2 •

1

F

2x

1

2 2F x K - x + 1 - F x -x

2= KF x - x

Player 's mixed strategy is a best response to if

for all 1 2

1 1 2

F F

x a ,b KF x - x = C

1

and

for all 1 1 2y a ,b KF y - y C.

Page 15: 1. problem set 6 from Osborne’s Introd. To G.T. p.210 Ex. 210.1 p.234 Ex. 234.1 p.337 Ex. 26,27 from Binmore’s Fun and Games

15

Player 's mixed strategy is a best response to if

for all 1 2

1 1 2

F F

x a ,b KF x - x = C

1

and

for all 1 1 2y a ,b KF y - y C.

2KF x - 1 = 0

2Kf x - 1 = 0 2

1f x

K

is uniform and s ince 2

2 2

F f 1/K

a ,b = 0,K

.Similarly is uniform over 1F 0,K

Page 16: 1. problem set 6 from Osborne’s Introd. To G.T. p.210 Ex. 210.1 p.234 Ex. 234.1 p.337 Ex. 26,27 from Binmore’s Fun and Games

16

In equilibrium, the expected payoff of a given bid

(of each player) is :

1

KF(x) - x = K x - x 0K

1 2

xF (x) = F (x) = F(x) =

K

In equilibrium, the expected payoff of each player is . 0

Page 17: 1. problem set 6 from Osborne’s Introd. To G.T. p.210 Ex. 210.1 p.234 Ex. 234.1 p.337 Ex. 26,27 from Binmore’s Fun and Games

17

Rosenthal’s Centipede Game

1 2

0 , 101, 0

1 2

0 , 103102 , 0

1 2

0 , 105104 , 0

0 , 0

D

A

‘Exploding’ payoffsdue to P. Reny

‘Centipede’due to

K.G.Binmore

Page 18: 1. problem set 6 from Osborne’s Introd. To G.T. p.210 Ex. 210.1 p.234 Ex. 234.1 p.337 Ex. 26,27 from Binmore’s Fun and Games

18

Rosenthal’s Centipede Game

1 2

0 , 101, 0

1 2

0 , 103102 , 0

1 2

0 , 105104 , 0

0 , 0

D

A

Sub-game perfect equilibrium

Page 19: 1. problem set 6 from Osborne’s Introd. To G.T. p.210 Ex. 210.1 p.234 Ex. 234.1 p.337 Ex. 26,27 from Binmore’s Fun and Games

19

Rosenthal’s Centipede Game

1 2

1 , 32, 0

1 2

3 , 54 , 2

1 2

5 , 76 , 4

8 , 6

D

A

Sub-game perfect equilibriumdifferent payoffs

1 2

0 , 101, 0

1 2

0 , 103102 , 0

1 2

0 , 105104 , 0

0 , 0

D

A

Page 20: 1. problem set 6 from Osborne’s Introd. To G.T. p.210 Ex. 210.1 p.234 Ex. 234.1 p.337 Ex. 26,27 from Binmore’s Fun and Games

20

1

2, 2

Quietevening

A Variation of the Battle of the Sexes

Noisyevening

B X

B 3 , 1 0 , 0

X 0 ,0 1 , 3

Player 1 has 4 strategiesPlayer 2 has 2 strategies

Page 21: 1. problem set 6 from Osborne’s Introd. To G.T. p.210 Ex. 210.1 p.234 Ex. 234.1 p.337 Ex. 26,27 from Binmore’s Fun and Games

21

1

2, 2

Quietevening

A Variation of the Battle of the Sexes

Noisyevening

B X

B 3 , 1 0 , 0

X 0 ,0 1 , 3

Nash Equilibria

B X

B 3 , 1 0 , 0

X 0 ,0 1 , 3

[ (N,B), B ]

B X

B 3 , 1 0 , 0

X 0 ,0 1 , 3[ (Q,X), X ]

B X

B 3 , 1 0 , 0

X 0 ,0 1 , 3

[ (Q,B), X ]

Page 22: 1. problem set 6 from Osborne’s Introd. To G.T. p.210 Ex. 210.1 p.234 Ex. 234.1 p.337 Ex. 26,27 from Binmore’s Fun and Games

22

1

2, 2

Quietevening

A Variation of the Battle of the Sexes

Noisyevening

B X

B 3 , 1 0 , 0

X 0 ,0 1 , 3

Nash Equilibria

[ (N,B), B ]

[ (Q,X), X ]

[ (Q,B), X ]

not a sub-game perfect equilibrium !!!These S.P.E. guarantee player 1

a payoff of at least 27