1. pipeline design-installation

19
 SUBSEA PIPELINE DESIGN CRITERIA INSTALLATION CONDITION CHAPTER I PREFACE This file provides detail calcula tion for designing subsea pipeline that in clud es: Wall thickness selection; On-bottom stability analy sis; a nd Free-span analysis Detail calculation here only provides f or insta llation condition, while calcul ation on other condition has been provided in othe r fi le. CHAPTER II DESIGN BASIS 2.1 Pipeline Design Parameter. Corrosion coating thickness t corr 4mm := Outer diameter D s 24in 609.6 mm = := 2.2 Material Properties Steel density  ρ s 490pcf := Corrosion coating density  ρ corr 80pcf := Concrete coat density  ρ cc 190pcf := Modulus elasticity E 3.002 10 7  psi := Coefficient of thermal expansion  α 11.7 10 6 K 1 := Structural damping  δ 0.125 := Poisson ratio  ν 0.3 := Pipeline material API5L Gr X 52 := SMYS 290MPa API5L Gr X 42 = if 317MPa API5L Gr X 46 = if 359MPa API5L Gr X 52 = if 386MPa API5L Gr X 56 = if 414MPa API5L Gr X 60 = if 448MPa API5L Gr X 65 = if 483MPa API5L Gr X 70 = if := SMYS 3.59 10 8 × Pa =

Upload: faridah-zahra

Post on 02-Nov-2015

24 views

Category:

Documents


1 download

DESCRIPTION

engineering

TRANSCRIPT

  • SUBSEA PIPELINE DESIGN CRITERIAINSTALLATION CONDITION

    CHAPTER IPREFACE

    This file provides detail calculation for designing subsea pipeline that includes:

    Wall thickness selection;On-bottom stability analysis; andFree-span analysis

    Detail calculation here only provides for installation condition, while calculation on other condition has been provided in other file.

    CHAPTER IIDESIGN BASIS

    2.1 Pipeline Design Parameter.

    Corrosion coating thickness tcorr 4mm:=

    Outer diameter Ds 24in 609.6 mm=:=

    2.2 Material Properties

    Steel density s 490pcf:=

    Corrosion coating density corr 80pcf:=

    Concrete coat density cc 190pcf:=

    Modulus elasticity E 3.002 107psi:=

    Coefficient of thermal expansion 11.7 106

    K1

    :=

    Structural damping 0.125:=

    Poisson ratio 0.3:=

    Pipeline material API5L_Gr_X 52:=

    SMYS 290MPa API5L_Gr_X 42=if

    317MPa API5L_Gr_X 46=if

    359MPa API5L_Gr_X 52=if

    386MPa API5L_Gr_X 56=if

    414MPa API5L_Gr_X 60=if

    448MPa API5L_Gr_X 65=if

    483MPa API5L_Gr_X 70=if

    := SMYS 3.59 108

    Pa=

  • SMTS 414MPa API5L_Gr_X 42=if

    434MPa API5L_Gr_X 46=if

    455MPa API5L_Gr_X 52=if

    490MPa API5L_Gr_X 56=if

    517MPa API5L_Gr_X 60=if

    531MPa API5L_Gr_X 65=if

    565MPa API5L_Gr_X 70=if

    := SMTS 4.55 108

    Pa=

    Manufacturing process Seamless = 1

    UO; TRB; ERW = 2

    UOE = 0.85

    PF 1:=

    2.4 Environmental Parameter

    Pipeline condition Installation = 1

    Hydrotest = 2

    Operation = 3

    PC 1:=

    Highest astronomical tide HAT 0.53m:=

    Lowest astronomical tide LAT 0.61m:=

    Water depth dmax 22.708m HAT+:= dmax 23.238 m=

    dmin 14.935m HAT+:= dmin 15.465 m=

    Kinematic viscosity of seawater v 1.076 105

    ft2

    sec1

    :=

    Seawater density sw 64pcf:=

    Gravity g 9.807 m s2

    =

    Current at 90% water depth Ur 0.45m s1

    PC 1= PC 2=if

    0.48m s1

    PC 3=if

    := Ur 0.45m

    s=

    Significant wave height Hs 1.8m PC 1= PC 2=if

    3.6m PC 3=if

    := Hs 1.8 m=

    Significant Wave period Ts 6.3s PC 1= PC 2=if

    8.3s PC 3=if

    := Ts 6.3 s=

  • 2.5 Pipeline Operational Data

    Content density cont 0kg m3

    PC 1=if

    1025kg m3

    PC 2=if

    57.522pcf PC 3=if

    :=

    Design pressure Po 0psi PC 1=if

    1350psi PC 3=if

    1.5 1350 psi PC 2=if

    :=

    Design temperature Td 140F:=

    Seabed temperature Tsw 23 C:=

    Corrosion allowance Ca 2.54mm:=

    External pressure Pe.max sw g dmax:= Pe.max 2.336 105

    Pa=

    Pe.min sw g dmin:= Pe.min 1.555 105

    Pa=

    Axial pressure Fa 0N:=

    Bending stress M 72% SMYS:= M 258.48 MPa=

    2.6 Soil Parameter

    Soil type 1 = sand

    2 = clay

    soil 2:=

    Medium density of sand sand 1860kg m3

    :=

    Medium density of clay clay 326.309kg m3

    :=

    Medium density of soil soil sand soil 1=if

    clay soil 2=if

    := soil 326.309kg

    m3

    =

    Undrained shear stress Su 2kPa:=

  • 2.8 Design Factor

    Internal pressure factor design

    ASME B31.8 F 0.72:=

    API RP 1111 fd 0.72:=

    Weld joint factor

    ASME B31.8 Ee 1:=

    API RP 1111 fe 1:=

    Temperature derating factor

    ASME B31.8 T 1:=

    API RP 1111 ft 1:=

    Collapse factor

    ASME B31.8

    f0 0.7:=API RP 1111

    Propagation buckling design factor

    ASME B31.8

    fp 0.8:=API RP 1111

    Local buckling factor

    DNV 1981

    xp 0.72:=Longitudinal stress usage factor

    Hoop stress usage factor yp 0.92:=

    Material resistance factor m 1.15:=

    Incidental factor inc 1.05:=

  • CHAPTER IIIWALL THICKNESS SELECTION

    3.1 Internal Pressure Contaiment Criteria

    On the installation conditions, the pipe was empty,

    so that the internal pressure contaiment criteria for installation conditions will not be calculated.

    Internal pressure Pi Po:= Pi 0 Pa=

    3.2 External Pressure Collapse

    Initial steel wall thicknesstint.epc 6mm:=

    External pressurePe.max 2.336 10

    5 Pa=

    Elastic stress Pel 2 E

    tint.epc

    Ds

    3

    1 2

    := Pel 4.337 10

    5 Pa=

    Yield stress Py 2 SMYStint.epc

    Ds

    := Py 7.067 106

    Pa=

    Collapse stress Pc

    Pel Py

    Pel2

    Py2

    +

    := Pc 4.329 105

    Pa=

    External pressure collapse

    criteria

    ExternalPressureCollapse_API_criteria "accepted" Pe.max Pi f0 Pcif

    "not accepted" otherwise

    :=

    ExternalPressureCollapse_API_criteria "accepted"=

    Safety factor SFipc

    f0 Pc

    Pe.max Pi:= SFipc 1.297=

  • 3.3 Local Buckling Criteria

    Initial steel wall thickness tint.lb 7mm:=

    Cross sectional area A Ds tint.lb( ) tint.lb:= A 0.013 m2=

    Longitudinal stress (axial) x.N

    Fa

    A:= x.N 0=

    Longitudinal stress (bending) x.M 0.72 SMYS:= x.M 2.585 108

    Pa=

    Longitudinal stress x x.N x.M+:= x 2.585 108

    Pa=

    Critical longitudinal stress (axial) xcr.N SMYSDs

    tint.lb

    20if

    SMYS 1 0.001

    Ds

    tint.lb

    20

    20

    Ds

    tint.lb

    < 100if

    :=

    ycr 2.793 107

    Pa=

    value lb 1300

    Ds

    tint.lb

    y

    ycr

    +:= lb 2.255=

    LocalBuckling_Criteria "accepted"

    x

    xcr

    lby

    ycr

    + 1if

    "not accepted"

    x

    xcr

    lby

    ycr

    + 1>if

    :=Local buckling criteria

    LocalBuckling_Criteria "accepted"=

    Safety factor SFlb

    1

    x

    xcr

    lby

    ycr

    +

    := SFlb 1.124=

  • 3.4 Propagation Buckling Criteria

    Initial steel wall thickness tint.pb 9mm:=

    External pressure Pe.max 2.336 105

    Pa=

    Buckle propagation pressure Ppb 24 SMYStint.pb

    Ds

    2.4

    := Ppb 3.478 105

    Pa=

    Propagation buckling criteria PropagationBuckling_API_Criteria "not accepted" Pe.max Pi fp Ppbif

    "accepted" otherwise

    :=

    PropagationBuckling_API_Criteria "accepted"=

    Safety factor SFpb

    fp Ppb

    Pe.max Pi:= SFpb 1.191=

    3.5 Selected Wall Thickness

    This following t.int.ins is selected wall thickness from installation condition.

    The final selected wall thickness is obtain from comparing this initial wall thickness eith other initial wall thicness

    from hydrotest and operation condition.

    tint.ins max tint.epc tint.lb, tint.pb, ( ):=

    tint.ins 9 mm=

    tint.hyd 17mm:= (Obtained from hydrotest condition calculation)

    tint.op 18.54mm:= (Obtained from operation condition calculation)

    tcalc max tint.ins tint.hyd, tint.op, ( ):= tcalc 0.73 in=Selected wall thickness from calculation

    Selected wall thickness Pipe OD 6.625" WT 0.75" ts 0.75in:=

  • CHAPTER IVON BOTTOM STABILITY ANALYSIS

    4.1 Vertical Stability

    4.1.1 Pipe Weight Calculation

    Initial concrete coating thickness tint.cc 25mm:=

    Internal diameter ID Ds 2 ts Ca( ) := ID 576.58 mm=Corrosion coating diameter Dcorr Ds 2 tcorr+:= Dcorr 617.6 mm=

    Total outer diameter Dtot Ds 2 tcorr+ 2 tint.cc+:= Dtot 667.6 mm=

    Steel pipe mass / length mst

    4Ds

    2ID

    2

    s:= mst 241.454

    kg

    m=

    Corrosion coating mass / length mcorr

    4Dcorr

    2Ds

    2

    corr:= mcorr 9.881

    kg

    m=

    Concrete coat mass / length mcc

    4Dtot

    2Dcorr

    2

    cc:= mcc 153.605

    kg

    m=

    Content mass / length mcont

    4ID

    2 cont:= mcont 0

    kg

    m=

    Added mass;

    Dicplaced water; Buoyancy / length

    B

    4Dtot

    2sw:= B 358.859

    kg

    m=

    Total pipe mass / length mtot mst mcorr+ mcc+ mcont+ B:=

    mtot 46.081kg

    m=

    Total pipe weight / length Wtot mtot g:= Wtot 451.905N

    m=

    4.1.2 Vertical Stability Calculation

    Vertical stability VS

    mtot B+( )B

    := VS 1.128=

    Vertical_Stability "accepted" VS 1.1>if

    "not accepted; enlarge concrete coating thickness" VS 1.1if

    :=

    Vertical_Stability "accepted"=

  • 4.2 Lateral Stability

    4.2.1 Hydrodynamics Parameter Calculation

    4.2.1.1 Wave-Induced Particle Velocity

    Spectral peak period Tp 1.05 Ts:= Tp 6.615 s=

    Periode

    referensi

    Tn

    dmin

    g:= Tn 1.256 s=

    Peakedness

    parameter

    Tp

    Hs

    := 4.931s

    m0.5

    =

    5 3.6sec

    m

    if

    1 5sec

    m

    if

    3.3 otherwise

    := 3.3=

    Figure 4.1 Significant water velocity, Us* (DNV RP E305)

    Water particle velocity

    (Wave induced)

    Tn

    Tp

    0.19=

    Us

    0.22 Hs

    Tn

    := Us 0.315m

    s=

  • 4.2.1.2 Zero-Up Crossing Period

    Figure 4.2 Zero-up crossing period, Tu (DNV RP E305)

    Zero-up crossing period Tu 1 Tp:= Tu 6.615 s=

    4.2.1.3 Average Velocity on Pipeline

    Velocity on 90% depth Ur 0.45m

    s=

    The amount of current passing through the pipe is affected by the type of seabed soil in which the pipe is laid.

    In terms of the soil is clay soil, the soil roughness is negligible, so in this case UD = Ur

    UD Ur:= UD 0.45m

    s=

    4.2.1.4 Hydrodynamics coefficient

    Reynold's number Re

    UD Us+( )v

    Dtot:= Re 5.111 105

    =

    Wave - current velocity ratio M

    UD

    Us

    := M 1.427=

    Drag coefficient CD 1.2 Re 5 104

  • 4.2.2 Seabed Soil Factor

    Figure 4.4 Recommended friction factors for clay (DNV RP E305)

    ratio

    Dtot Su

    mtot g:= ratio 2.955=

    Soil friction

    factor

    2.3:=

    4.2.3 Hydrodynamics Force

    Wave particle acceleration As 2 Us

    Tu

    := As 0.3m

    s2

    =

    Lift force fL. ( )1

    2

    sw

    g Dtot CL Us cos ( ) UD+( )2:=

    Drag force fD. ( )1

    2

    sw

    g Dtot CD Us cos ( ) UD+( )2:=

    Inertia force fI. ( ) Dtot

    2

    4

    sw

    g CM As sin ( ):=

  • 4.2.4 Lateral Stability Calculation

    4.2.4.1 Calibration Factor

    Figure 4.3 Calibration factor, Fw, as function of K and M (DNV RP E305)

    K

    Us Tu

    Dtot

    := K 3.125=Keulegan-Carpenter number

    Calibration factor Fw 1:=

    4.2.4.2 Lateral Stability Check

    i 0 180..:=phase angle range

    i i deg:=

    Required submerged weight ms. ( )fD. ( ) fI. ( )+( ) fL. ( )+

    Fw:=

    mreq. ( ) max ms. ( )( ):=

    mreq. ( ) 22kg

    m=

    SFw

    mtot

    mreq. ( ):= SFw 2.095=

    LS "accepted" SFw 1if

    "not accepted, enlarge concrete coating thickness" SFw 1

  • CHAPTER VFREE-SPAN ANALYSIS

    5.1 Static Analysis

    Static span length Lfr.st 130m:=

    Total pipe weight / length Wtot 451.905N

    m=

    Drag force FD max fD. ( )( ) g:= FD 140.312N

    m=

    Inertia force FI max fI. ( )( ) g:= FI 161.23N

    m=

    Support type 1 = pinned - pinned

    2 = fixed - pinned

    3 = fixed - fixed

    support 1:=

    End condition constant Cfr.st 8 support 1=if

    10 support 2=if

    12 support 3=if

    := Cfr.st 8=

    Distributed pipe weight Wd Wtot2

    FD2

    FI2

    +

    2

    +:= Wd 499.9N

    m=

    Area moment of inertia I

    64Ds

    4ID

    4

    := I 1.354 10

    3 m

    4=

    Section modulus ZI

    Ds

    2

    := Z 4.441 103

    m3

    =

    Longitudinal stress l

    Wd Lfr.st2

    Cfr.st Z:= l 2.378 10

    8 Pa=

    Hoop stress y 1.017 107

    Pa=

    Equivalent stress e l2

    y2

    +:= e 2.38 108

    Pa=

    Allowable stress allow 0.72 SMYS( ) PC 1=if

    0.9 SMYS( ) PC 2= PC 3=if

    :=

    allow 2.585 108

    Pa=

    Static span criteria static_span_criteria "Static span length accepted" e allow

  • 5.2 Dynamic Analysis

    5.2.1 Critical Span Length

    5.2.1.1 Stability Parameter

    Effective mass meff mst mcorr+ mcc+ mcont+ B+:=

    meff 763.799kg

    m=

    Stability parameter Ks

    2 meff

    sw Dtot2

    := Ks 0.418=

    5.2.1.2 Reduced Velocity

    Figure 5.1 Reduced velocity for cross-flow oscillations based on the reynolds number.

    Figure 5.2 Reduced velocity for inline oscillations based on the stability parameter

    Reynold's number Re 5.111 105

    =

    Reduced velocity for cross-flow

    oscillation

    Vr.cf 5.9:=

    Reduced velocity for inline oscillation Vr.in 1.4:=

  • 5.2.1.3 Critical Span Length

    End condition constant Cfr.dy 2

    support 1=if

    15.5 support 2=if

    22 support 3=if

    := Cfr.dy 9.87=

    Critical span length for cross-flow

    motion

    Lfr.dy.cf

    Cfr.dy Vr.cf Dtot

    2 Us Ur+( )E I

    meff

    := Lfr.dy.cf 69.973 m=

    Critical span length for inline motion Lfr.dy.in

    Cfr.dy Vr.in Dtot

    2 Us Ur+( )E I

    meff

    := Lfr.dy.in 34.085 m=

    Critical span selected for dynamic

    analysis criteria

    Lfr.dy min Lfr.dy.cf Lfr.dy.in, ( ):= Lfr.dy 34.085 m=

    5.2.2 Dynamic Stress

    5.2.2.1 Vortex Shedding Frequency

    Figure 5.3 Strouhal's number for circular cylinder as function of Reynold's number

    Reynold's number Re 5.111 105

    =

    Strouhal's number St 0.2:=

    Vortex shedding frequency fv

    St Us Ur+( )Dtot

    := fv 0.2291

    s=

    5.2.2.2 Pipeline Natural Frequency

    Pipeline natural frequency fn

    Cfr.dy

    2

    E I

    meff Lfr.dy4

    0.5

    := fn 0.8191

    s=

    Pipe frequency criteria pipe_frequency_check "pipeline critical span accepted" fv 0.7fnif

    "redesign pipe" otherwise

    :=

    pipe_frequency_check "pipeline critical span accepted"=

  • DEFINITION

    pcflb

    ft3

    :=

    year 31536000sec:=

    C K:=