1 muon acceleration - amplitude effects in non-scaling ffag - shinji machida cclrc/ral/astec 26...

19
1 Muon acceleration - amplitude effects in non-scaling FFAG - Shinji Machida CCLRC/RAL/ASTeC 26 April, 2006 http:// hadron . kek . jp / ~machida /doc/nufact/ ffag/machida_20060426.ppt & pdf

Upload: reynard-pope

Post on 17-Jan-2016

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 2: 1 Muon acceleration - amplitude effects in non-scaling FFAG - Shinji Machida CCLRC/RAL/ASTeC 26 April, 2006 machida/doc/nufact/ ffag/machida_20060426.ppt

2

Contents

• Code benchmarking• Possible cures of “amplitude problem”• Matching between two FFAG rings• Next steps

Page 3: 1 Muon acceleration - amplitude effects in non-scaling FFAG - Shinji Machida CCLRC/RAL/ASTeC 26 April, 2006 machida/doc/nufact/ ffag/machida_20060426.ppt

3

Code benchmark (1)

• Zgoubi and S(hinji’s)-code had discrepancy (?)

• Initial distributions were different.– Zgoubi assumed 6-D ellipsoid. S-code assumed 2-D ellipse indepe

ndently in horizontal, vertical, and longitudinal space.

(5 to 10 GeV: 30 mm in transverse, 0.05 eVs in longitudinal.)

S-codeZgoubi

Page 4: 1 Muon acceleration - amplitude effects in non-scaling FFAG - Shinji Machida CCLRC/RAL/ASTeC 26 April, 2006 machida/doc/nufact/ ffag/machida_20060426.ppt

4

Code benchmark (2)

• With the same initial condition: independent in each plane.

• Large amplitude particles make a problem also on Zgoubi.• Another confirmation of the problem by Keil with MAD.

(10 to 20 GeV: 30 mm in transverse, 0.05 eVs in longitudinal.)

S-codeZgoubi

Page 5: 1 Muon acceleration - amplitude effects in non-scaling FFAG - Shinji Machida CCLRC/RAL/ASTeC 26 April, 2006 machida/doc/nufact/ ffag/machida_20060426.ppt

5

Code benchmark (3)

(10 to 20 GeV: 30 mm in transverse, 0.05 eVs in longitudinal.)

Correlation in T onlyJl<a and Jh+Jv<a

Correlation in L and TJl+Jh+Jv<a

No correlationJl<a, Jh<a, and Jv<a

Correlation between transverse and longitudinal space eliminates large amplitude particles in both planes.

a is amplitude in normalized phase space.

Some particles are not accelerated.

Page 6: 1 Muon acceleration - amplitude effects in non-scaling FFAG - Shinji Machida CCLRC/RAL/ASTeC 26 April, 2006 machida/doc/nufact/ ffag/machida_20060426.ppt

6

Code benchmark (4)

• In real life, there will be some correlation between horizontal and vertical, but probably independent of longitudinal.

• The best way is to take particle distribution at the end of linac or RLA. Use it as an initial distribution to FFAG.

Page 7: 1 Muon acceleration - amplitude effects in non-scaling FFAG - Shinji Machida CCLRC/RAL/ASTeC 26 April, 2006 machida/doc/nufact/ ffag/machida_20060426.ppt

7

Possible cures (1)

• Longitudinal dynamics is parameterized by

a =qV

ω ⋅ΔT ⋅ΔE

b =T0

ΔTRelative energy gainper phase slip.

RF frequency relativeto revolution freq.

20

18

16

14

12

10

1.00.80.60.40.20.0RF phase/2Pi

36 mm25

0

Phase (1/2 pi)

dp/p

(nor

mal

ized

)

Left figure is slightly differentfor finite amplitude particle.

Amplitude effects

Page 8: 1 Muon acceleration - amplitude effects in non-scaling FFAG - Shinji Machida CCLRC/RAL/ASTeC 26 April, 2006 machida/doc/nufact/ ffag/machida_20060426.ppt

8

Possible cures (2)

• Cure 1– Increase V to increase “a”.

• Cure 2– Decrease to increase “a”.

• Cure 3– Flatten crest by introduction of higher harmonics.

a =qV

ω ⋅ΔT ⋅ΔE

a =qV

ω ⋅ΔT ⋅ΔE

Page 9: 1 Muon acceleration - amplitude effects in non-scaling FFAG - Shinji Machida CCLRC/RAL/ASTeC 26 April, 2006 machida/doc/nufact/ ffag/machida_20060426.ppt

9

Possible cures (RF voltage)

=0 pi, V=1dp/p=0.36%

=30 pi, V=1dp/p=2.8%

=30 pi, V=1.4dp/p=0.88%

V/V_nominal

Dp/

p_rm

s

1 2

=30 pi

0%

5%

Page 10: 1 Muon acceleration - amplitude effects in non-scaling FFAG - Shinji Machida CCLRC/RAL/ASTeC 26 April, 2006 machida/doc/nufact/ ffag/machida_20060426.ppt

10

Possible cures (RF voltage)

• 50% increase of RF voltage makes dp/p around 1% up to 50 pi mm.

5

4

3

2

1

0

dp/p_rms [%]

50403020100emittance [pi mm]

1.0 x V_nominal 1.5 x V_nominal 2.0 x V_nominal

Page 11: 1 Muon acceleration - amplitude effects in non-scaling FFAG - Shinji Machida CCLRC/RAL/ASTeC 26 April, 2006 machida/doc/nufact/ ffag/machida_20060426.ppt

11

Possible cures (higher harmonics)

=0 pi, h=1dp/p=0.36%

=0 pi, h=1+2dp/p=0.42%

=30 pi, h=1+2dp/p=0.58%

=30 pi, h=1+3dp/p=0.77%

Page 12: 1 Muon acceleration - amplitude effects in non-scaling FFAG - Shinji Machida CCLRC/RAL/ASTeC 26 April, 2006 machida/doc/nufact/ ffag/machida_20060426.ppt

12

Possible cures (higher harmonics)

• Second harmonics makes dp/p around 1% up to 50 pi mm.

• It requires more RF power because second harmonics reduce peak voltage 25%.

5

4

3

2

1

0

50403020100emittance [pi mm]

fundamental RF only second harmonics third harmonics

Page 13: 1 Muon acceleration - amplitude effects in non-scaling FFAG - Shinji Machida CCLRC/RAL/ASTeC 26 April, 2006 machida/doc/nufact/ ffag/machida_20060426.ppt

13

Possible cures (lower frequency)

274 MHz=30 pi, V=1dp/p=2.8%

88 MHz=30 pi, V=2x88/200dp/p=1.2%

44 MHz=30 pi, V=2x44/200dp/p=1.4%

2 MHz=30 pi, V=4x2/200dp/p=3.7%

Page 14: 1 Muon acceleration - amplitude effects in non-scaling FFAG - Shinji Machida CCLRC/RAL/ASTeC 26 April, 2006 machida/doc/nufact/ ffag/machida_20060426.ppt

14

Possible cures (lower frequency)

• Lower frequency helps. • However, it requires relatively higher voltage and time

to complete acceleration.

5

4

3

2

1

0

50403020100emittance [pi mm]

200 MHz, V=1 88 MHz, V=2 x 88/200 44 MHz, V=2 x 44/200 2 MHz, V=4 x 2/200

Page 15: 1 Muon acceleration - amplitude effects in non-scaling FFAG - Shinji Machida CCLRC/RAL/ASTeC 26 April, 2006 machida/doc/nufact/ ffag/machida_20060426.ppt

15

Possible cures (summary)

• Increase of a few 10% of RF voltage or second harmonics makes dp/p around 1% up to 50 pi mm beam.

• That requires additional RF power.

• Amplitude effects can be cured when there is only one FFAG.

Page 16: 1 Muon acceleration - amplitude effects in non-scaling FFAG - Shinji Machida CCLRC/RAL/ASTeC 26 April, 2006 machida/doc/nufact/ ffag/machida_20060426.ppt

16

Matching between two FFAG rings (1)

• Zero transverse emittance beam has no problem of longitudinal matching.

5 10 20 [GeV]

0%

3%dp/p_rmslongitudinal phase space

1%

2%

5GeV

10GeV

20GeV

Page 17: 1 Muon acceleration - amplitude effects in non-scaling FFAG - Shinji Machida CCLRC/RAL/ASTeC 26 April, 2006 machida/doc/nufact/ ffag/machida_20060426.ppt

17

Matching between two FFAG rings (2)

• Second harmonics and 10% increase of RF voltage partially cure the problem.

• It depends decay ring acceptance if it is allowed.

=30 pi, h=1, V=1 =30 pi, h=1+2, V=1.1

Page 18: 1 Muon acceleration - amplitude effects in non-scaling FFAG - Shinji Machida CCLRC/RAL/ASTeC 26 April, 2006 machida/doc/nufact/ ffag/machida_20060426.ppt

18

Matching between two FFAG rings (3)

• Still many parameters we can play with.– Injection phase of the second ring (partially done).– Optical parameters of the first ring at injection (partially don

e).– Combination of 2 or more cures (partially done).– etc.

• Need criterion: how much dp/p is tolerable.

Page 19: 1 Muon acceleration - amplitude effects in non-scaling FFAG - Shinji Machida CCLRC/RAL/ASTeC 26 April, 2006 machida/doc/nufact/ ffag/machida_20060426.ppt

19

Next steps

• Scaling FFAG with “higher” RF frequency– Does 44 MHz, 88 MHz makes a reasonable bucket in scalin

g FFAG ?– How high is the k-value supposed to be if the frequency is fix

ed at 200 MHz ? (Berg)k=1800 (my number), 1100 (mori) vs. 800 (present lattice)

• How much dp/p can be allowed in the decay ring?– Need a target value for optimization.– RLA may have as much dp/p as FFAG with amplitude effect

s: a few percent ?– dp/p of scaling FFAG with either low and high frequency is u

nknown.